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We study Landau-Zener-Stückelberg (LZS) interferometry in a cQED architecture under the effects of
dissipation. To be specific, we consider a superconducting qubit driven by a dc + ac signal and coupled to a
transmission line resonator, but our results are valid for general qubit-resonators devices. To take the environment
into account, we assume that the resonator is coupled to an Ohmic quantum bath. The Floquet-Born-Markov
master equation is numerically solved to obtain the dynamics of the system for an arbitrary amplitude of the drive
and different timescales. We unveil important differences in the resonant patterns between the strong coupling
and ultrastrong coupling regimes in the qubit-resonator interaction, which are mainly due to the magnitude of
photonic gaps in the energy spectrum of the system. We identify in the LZS patterns the contribution of the qubit
gap and the photonic gaps, showing that for large driving amplitudes the patterns present a weaving structure
due to the combined intercrossing of the different gaps contributions.
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I. INTRODUCTION

Circuit quantum electrodynamics (cQED) [1–4]—the
study of the interaction between superconducting circuits be-
having as artificial atoms and transmission line resonators—
has become one of the test beds for quantum information
processing tasks [5]. Originally implemented for studying
on-chip light-matter interactions, the enormous advances dur-
ing the last decade in the development of long-lived qubits-
resonators devices, have shown the possibility of performing
a large number of high-fidelity quantum gates, entangling and
coupling distant qubits to realize two qubit gates and to carry
out nondemolition readout operations [6–16].

Landau-Zener-Stückelberg (LZS) interferometry has been
established as a powerful tool to probe the energy level spec-
trum of a superconducting qubit and to study coherent phe-
nomena for large driving amplitudes [17]. In typical LZS pro-
tocols, the qubit energy levels are modulated back and forth
through an avoided crossing at a frequency faster than the
qubit decoherence rate. Strong driving dynamic has been ex-
perimentally investigated in superconducting qubits [18–22],
Cooper pair boxes and quantum dots devices [23–27]. In addi-
tion, LZS interferometry was recently proposed to determine
relevant information related to the coupling of a qubit with a
noisy environment [27–32].

In the present work, we analyze LZS conditions in cQED,
by strongly driving a qubit coupled to a quantum mode of an
oscillator. We take into account the coupling of the system to a
quantum bath and study the dissipative dynamics in the strong
qubit-resonator coupling using the Floquet-Markov master
equation [31,33,34]. We focus in the strong driving regime
(large driving amplitudes), beyond standard approaches that
restrict the driven dynamics to the rotating wave approxima-
tion (RWA). In this way, we analyze the emergence of the
multi-Floquet modes in the dissipative scenario of cQED,
unvealing the interference patterns and population features

that are not captured within the RWA. In addition, our work
complements previous ones focused on the analysis of dis-
sipative Landau Zener transitions—for a constant velocity
driving—in cQED [35]. Alternative driving schemes have
been also implemented in cQED, like the periodic latching
modulation of a transmon studied in Ref. [36]. Although
we use parameters typical for superconducting qubits and
microwave resonators experiments [37], our study can be
extended to analyze Floquet spectroscopic experiments re-
cently implemented in driven qubits coupled to mechanical
resonators and for high or low-frequency driving fields [38].

The paper is organized as follows. In Sec. II, we introduce
the driven cQED model Hamiltonian for the case of a flux
qubit driven by an ac flux. We discuss the structure of the en-
ergy spectrum in the absence of driving, which will be useful
to understand the emergence of multi-Floquet modes under
the driving protocol. Section III is devoted to analyze the LZS
interference patterns neglecting dissipation, with the aim of
comparing the patterns that emerge due to the photonic gaps
in the driven Jaynes Cummings model valid under the RWA,
with those of the full driven Rabi Hamiltonian, where the
counter rotating terms in the qubit-resonantor interaction are
taken into account. In Sec. IV, we extend the analysis to the
dissipative case, which is relevant for realistic experimental
situations. The strong coupling (SC) and ultrastrong coupling
(USC) in the qubit-resonator interaction are analyzed in detail
and the structure of the respective LZS patterns are character-
ized for finite times and in the stationary regime, after full
relaxation with the bath degrees of freedom. A concluding
summary is provided in Sec. V.

II. MODEL HAMILTONIAN

We consider a flux qubit driven by an ac harmonic flux
and coupled capacitively to a transmission line resonator
that contains one mode of the EM field, as customary
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in cQED architectures [9,37,39]. The correspondent model
Hamiltonian is

H (t ) = Hq(t ) + Hr + Hqr , (1)

where

Hq(t ) = 1
2 [ε(t )σz + �σx],

Hr = ωra†a,

Hqr = gσy(a + a†), (2)

are the terms for the driven flux qubit restricted to a two-level
system [31], the resonator and the Rabi interaction Hamilto-
nians, respectively. We take h̄ = 1 in this work. The qubit is
driven by a time dependent bias ε(t ) = ε0 + A cos ωt , where
ε0 is the static bias component on top of which is the harmonic
ac modulation of amplitude A and frequency ω [17,22,31,32].
The operators σx, σy, and σz are the Pauli matrices and � is
the coupling strength between the states |↑〉 and |↓〉 of the
computational basis of the qubit. In the absence of driving,
the qubit Hamiltonian Hq has eigenenergies ±ωq/2, with
ωq =

√
ε0

2 + �2. The frequency of the resonator is ωr and
a† (a) is the creation (annihilation) operator for resonator
photons. The capacitive coupling between the flux qubit and
the resonator here studied [37,39] is represented in terms of
the σy operator, being g the coupling strength. Other well
studied cases, like a charge qubit coupled capacitively to
a resonator [1,2] or a flux qubit coupled inductively to a
resonator [40] are modeled in terms of the operator σz in
Hqr . For the composite Hilbert space Hqubit ⊗ Hresonator we
use the product state basis {|↓, n〉 , |↑, n〉}n∈N , where n is the
eigenvalue of the resonator photon number operator a†a.

Throughout this work we will consider �/ωr = 0.0038,
which corresponds to typical experiments in driven flux qubits
with small qubit gap [18], where � ∼ 10–50 MHz, while typ-
ical cavity frequencies are in the range of ωr/2π ∼ 10 GHz
[1]. In spite of these specific parameters, our results can be
easily extended to other types of superconducting qubits. We
study different values of the coupling parameter in the range
g/ωr = 0.0019–0.1125. All relevant parameters are summa-
rized in the following table.

Parameters of the Driven Rabi model.

Parameter Value (in units of ωr)

� 0.0038
ω 0.0375
g 0.0019–0.1125
ωr 1

In cQED, it is customary to define the strong coupling (SC)
and ultrastrong coupling (USC) regimes, with the conditions
g � 0.1ωq/r and g > 0.1ωq/r , respectively [5,41]. The USC
regime has been experimentally achieved in recent years
with superconducting qubits enabling the study of exciting
and novel phenomena in the field of light-matter interaction
[5,42,43].

Before focusing on the driven dynamics we analyze the
structure of the energy spectrum in the absence of driving,
i.e., by replacing ε(t ) → ε = ε0 in the Hamiltonian of Eq. (1).

FIG. 1. Lowest energy levels of the Rabi Hamiltonian Eq. (1)
without driving (A = 0), as a function of the dc bias ε = ε0, for
the parameters �/ωr = 0.0038. (a) g/ωr = 0.0019 (SC) and (b)
g/ωr = 0.1125 (USC) (solid lines). The qubit gap is at ε = 0 while
the photonic gaps are at ε = ±ωr . The color (dashed) lines are the
energies ±ε/2 (±ε/2 + ωr) of the product states |↑, 0〉 and |↓, 0〉
(|↑, 1〉 and |↓, 1〉) in the absence of qubit-resonator coupling (g = 0)
and for � = 0.

As we will show in the following sections this analysis will
be useful to interpret the interference LZS patterns once the
driving is included. In Fig. 1, we plot the three lowest energy
levels as a function of ε, obtained after the numerical diago-
nalization of the Hamiltonian in the SC and the USC regimes,
by choosing respectively g/ωr = 0.0019 (SC) and 0.1125
(USC). The qubit-resonator interaction mixes the states of the
product basis in a nontrivial way. However, away from the
avoided crossings and for the parameters considered in this
work, the eigenenergies can be approximated by ±ε/2 + nωr .
The associated eigenstates, spanned in the product basis, have
weight mainly on the states |↑, n〉 and |↓, n〉, respectively,
with n the number of photons in the resonator.

Due to the �
2 σx term in the Hamiltonian Hq of Eq. (2),

“qubit gaps” of magnitude � open at ε = 0. Additionally,
“photonic gaps” �n ≈ 2g

√
n + 1 open at ε = ±ωr as a result

of the qubit-resonator interaction [1].
Our analysis goes beyond the dispersive regime, g � |ε −

ωr | � |ε + ωr |, which is usually employed for nondemoli-
tion readout of the qubits in typical cQED proposals [1]. In
that scheme, the resonator experiences a frequency shift that
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depends on the qubit state. Thus the state of the qubit can
be read out indirectly by performing measurements on the
resonator [5]. However, this technique relies on the use of an
effective Hamiltonian and the range of parameters where the
approximation is valid is restricted, while we report general
results for arbitrary parameters.

III. LZS INTERFEROMETRY

In order to study the LZS interferometry in cQED, we
now include the time dependent bias ε(t ) = ε0 + A cos ωt .
To calculate the quantum dynamics of the full driven Rabi
Hamiltonian, Eq.(1), we use the Floquet formalism [44]
that allows for an exact treatment of time-periodic Hamil-
tonian H (t ) = H (t + τ ), with τ = 2π/ω the period of the
drive. In this formalism, the solutions of the Schrödinger
equation i d

dt |ψ (t )〉 = H (t ) |ψ (t )〉 are expressed as |ψα (t )〉 =
e−iεαt |α(t )〉, where the Floquet states |α(t )〉 and corre-
sponding quasienergies εα are obtained from the eigen-
value equation H |α(t )〉 = εα |α(t )〉, being H = H (t ) − i∂t

the Floquet Hamiltonian. The resulting Floquet states satisfy
|α(t )〉 = |α(t + τ )〉 [45,46]. We obtain numerically the Flo-
quet states and quasienergies following the same procedure as
in Ref. [31].

In LZS interferometry, when a quantum system is driven
through an energy-level avoided crossing of magnitude �̃

by a periodic signal of amplitude A and frequency ω, the
resonance condition, for which the transfer of population is
maximum, depends on the velocity of passing through the
avoided level crossing [17]. Usually, the slow driving regime
is defined for Aω < �̃2, while the fast driving condition is
attained for Aω � �̃2. In recent years, the specific features
of the associated LZS resonance patterns have been studied
and probed in driven qubits as both regimes have also been
experimentally attained [27,47–50].

A. The driven Jaynes-Cummings Hamiltonian: photonic-LZS

In this section, we analyze the Hamiltonian defined by
Eq. (2) under the assumption of � � ε0 ∼ ωr and for relative
small driving amplitudes A < ε0. These two conditions can
be written in compact form as � � |ε0| − A, under which
the term �

2 σx can be neglected in Eq. (2), as the system is
always driven away from the qubit avoided crossing at ε0 = 0.
In this case, the separation of the energy levels of the qubit
ωq =

√
ε2

0 + �2 can be thus approximated by ε0.
In addition, assuming {g, |ωq − ωr |} � |ωq + ωr |, the

qubit-resonator interaction gσy(a† + a) can be replaced by
ig(σ−a† − σ+a), as a result of a rotating wave approxima-
tion (RWA) [1,51,52], where σ+ and σ− are the raising and
lowering operators for the qubit, respectively. This interaction
conserves the number of excitations of the system qubit-
resonator and makes possible to solve separately the dynamics
for each of the two-dimensional subspaces spanned by
{|↑, n〉 , |↓, n + 1〉}n∈N and the single state {|↓, 0〉}. Un-
der these assumptions the driven Jaynes-Cummings (DJC)
Hamiltonian, defined in each of the mentioned subspaces [1],

H (n)
JC (t ) =

(
n + 1

2

)
ωr

(
1 0

0 1

)
+ 1

2

(
δ(t ) −i�n

i�n −δ(t )

)
, (3)

FIG. 2. Numerically obtained LZS interference patterns for the
DJC Hamiltonian, Eq. (3). Plots of P|↓,n+1〉→|↑,n〉 as a function of
the driving amplitude A and dc bias δ0 in units of ω, for g/ωr =
0.0019 and n = 3 (a) [n = 10 (b)] and g/ωr = 0.1125 and n = 0 (c)
[n = 1 (d)].

is used to solve the system dynamics instead of the original
driven Rabi Hamiltonian, Eq. (2). As a consequence the sys-
tem can be studied as a collection of (noninteracting) driven
two level systems with a photon-number dependent gap �n =
2g

√
n + 1, and energies globally shifted. In Eq. (3), we have

defined δ(t ) ≡ ε(t ) − ωr = δ0 + A cos ωt , with δ0 = ε0 − ωr .
In the following, we assume that the system is prepared

at the initial time t = 0 in the product state |↓, n + 1〉. After
calculating the Floquet states and quasienergies of H (n)

JC (t ),
we compute the time-averaged probability (averaged over a
period of the driving) of finding the system in the |↑, n〉 state,
P|↓,n+1〉→|↑,n〉 = 1

τ

∫ τ

0 dtP|↓,n+1〉→|↑,n〉(t ).
In Fig. 2, we show the numerical results for the intensity

plot of P|↓,n+1〉→|↑,n〉 as a function of the driving amplitude
A and dc detuning δ0, for the SC and USC regime and for
two different values of n. For g/ωr = 0.0019 [see Figs. 2(a)
and 2(b)], as the photonic gap is small up to values of
n � 1 (�n ∼ 0.01

√
(n + 1)ω), the system is in the fast driving

regime. In this case, the resonance condition is satisfied for√
δ2

0 + �2
n = mω, which is the straightforward generalization

of the usual resonance condition obtained for flux qubits in the
fast driving regime [18,31,53]. For large detuning δ0 � �n,
the m-resonance condition becomes δ0 ≈ mω. Notice that the
width of the resonance lobes in Figs. 2(a) and 2(b) depends on
the photon number n, as the magnitude of the avoided crossing
is �n = 2g

√
n + 1. These LZS patterns can be qualitatively

described by an analytical expression for the average probabil-
ity near the m-resonance, P

RWA
|↓,n+1〉→|↑,n〉, originally derived for

driven flux qubits in the fast driving and within a rotating wave
approximation [17–19,32,54], and here trivially extended to
analyze the DJC:

P
RWA
|↓,n+1〉→|↑,n〉 = 1

2

[
�nJ−m

(
A
ω

)]2

[δ0 − mω]2 + [
�nJ−m

(
A
ω

)]2 . (4)

This equation shows Lorentzian-shaped resonances with a
maximum probability value of 1

2 at δ0 = mω and width
|�nJ−m( A

ω
)|, being Jm(x) the mth order Bessel function
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FIG. 3. Instantaneous transition probability P|↓,n+1〉→|↑,n〉(t ) for
driving amplitude A/ω = 3 and coupling g/ωr = 0.0019. (Top) Pho-
ton number n = 3 (a) and 10 (b) for resonance δ0/ω = 0. (Bottom)
Photon number n = 3 (c) and n = 10 (d) for resonance δ0/ω = 1.
The fast oscillations exhibited in the numerical results (solid line),
are not captured by the RWA approximation, Eq. (5) (dashed line).

of the first kind. In particular, at the zeros of J−m(x) is
P

RWA
|↓,n+1〉→|↑,n〉 = 0, a phenomenon known as coherent destruc-

tion of tunneling [33].
Despite of the fact that the shape and positions of the

resonances in Figs. 2(a) and 2(b) are captured by Eq. (4), the
instantaneous transition probability P|↓,n+1〉→|↑,n〉(t ) depicted
in Fig. 3 exhibits fast oscillations which are not reproduced by
the RWA expression. Following Ref. [17], the instantaneous
transition probability (near a m-resonance) between |↓, n + 1〉
and |↑, n〉 can be written in the RWA as

Pm
|↓,n+1〉→|↑,n〉(t ) = 1

2

[
�nJ−m

(
A
ω

)]2


2
m

(1 − cos 
mt ), (5)

being 
m =
√

[δ0 − mω]2 + [�nJ−m( A
ω

)]2 the generalized
Rabi frequency. Equation (5) essentially captures the sinu-
soidal oscillations of Fig. 3, however, it fails in describing
the fast oscillations which are associated to the Landau Zener
transitions at the avoided crossing [54]. Notice that the period
of these fast oscillations depends on the value n, which
changes the effective gap �n and therefore the instantaneous
transition probability.

Upon increasing g or increasing n the photonic gap be-
comes much larger than the driving frequency ω and the
LZS interferometry patterns correspond to the slow driving
regime. In Figs. 2(c) and 2(d), we show the USC case for
g/ωr = 0.1125, where already for n = 0 is �n > ω. In this
case, the resonances describe arcs around the point A = 0,
δ0 = 0 and the resonance condition depends on the value A, in
contrast to the fast driving regime [17,23,48,54]. Notice that
for n = 1, the complete adiabatic regime (i.e., null transition
probability to the excited state) is attained for the range of
A and δ0 values considered, and thus the average probability
remains P|↓,n+1〉→|↑,n〉 ∼ 0.5.

B. The driven Rabi Hamiltonian: combined
photonic-LZS + qubit-LZS

Away from the regime analyzed in the previous section, the
full driven Rabi (DR) Hamiltonian (2) has to be solved. The
effect of the counter rotating terms become important either
because of ultrastrong coupling or because of extremely large
detuning, {g, |ωq − ωr |} ∼ |ωq + ωr |. Under these conditions,
the RWA that gave place to the DJC Hamiltonian, Eq. (3),
breaks down [41,43,51].

In the following, we analyze the LZS interferometry pat-
terns that emerge for the DR Hamiltonian, i.e., when the time
dependence ε(t ) = ε0 + A cos ωt is taken into account. As
we will show, the different avoided crossings present in the
spectrum of Fig. 1 will produce a richer and more complex
structure in the LZS patterns in comparison to those obtained
for the DJC effective two-level system.

In order to make the calculations numerically affordable,
and without loss of generality in our analysis, we consider up
to n = 3 photons and calculate the time-averaged probability,
P|↑〉, of measuring the qubit in the state |↑〉 regardless the
number of photons in the resonator, for the initial condition
|↓, 0〉, as a function of the driving amplitude A and the
dc bias ε0.

Different resonance conditions—dependent on the driving
amplitude A, the magnitude of the different gaps and their
relative position with respect to the dc bias ε0—contribute to
the interference patterns. A gap can mediate a LZS transition
only if it is reached by the driving range (ε0 − A, ε0 + A).
Therefore, for a given value of ε0 and for increasing ampli-
tudes starting at A = 0, different avoided crossings can be
accessed [18,20].

We start by analyzing the intensity plot of P|↑〉 for the SC
regime (g/ωr = 0.0019), in terms of A and ε0. Figure 4(a)
exhibits resonances characteristic of the fast driving [17,46].

Given a gap in the energy spectrum of magnitude �̃ located
at ε̃ and under fast driving regime, the m-resonance condition
can be written as ε0 − ε̃ ≈ mω, which is a generalization of
the resonance condition for an isolated gap at ε̃ = 0 [54].
Thus, in principle, one can use a generalization of Eq. (4)
by replacing δ0 → ε0 − ε̃ in order to describe the resonance
patterns associated to an isolated gap.

To understand the structure of Fig. 4(a), it is instructive
to focus on the three lowest energy levels of the spectrum
shown in Fig. 1(a). The qubit central gap separating the
first and second levels is involved in the |↓, 0〉 ↔ |↑, 0〉
transitions, with the associated qubit resonance condition
ε0 = mω. The photonic gap at ε0 = −ωr mediates |↓, 0〉 ↔
|↑, 1〉 transitions, with a resonance condition given by ε0 =
−ωr + mω. On the other hand, the photonic gap at ε0 = ωr

favors |↑, 0〉 ↔ |↓, 1〉 transitions, with a resonance condition
ε0 = ωr + mω. The LZS interference associated with this
later gap does not contribute to P|↑〉 since in the present case
we start with the initial condition |↓, 0〉. The different qubit
and photonic resonances conditions are thus organized along
(shifted) horizontal lines, giving place to the pattern exhibited
in Fig. 4(a), where the “qubit-LZS” interference pattern and
the “photonic-LZS” interference pattern are combined.

In Fig. 5, we show a scheme depicting the boundaries of the
regions where resonances associated to the qubit and photonic
avoided crossings occur in P|↑〉, as a function of the dc bias
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FIG. 4. Intensity plots of the LZS interference patterns for the
driven Rabi Hamiltonian (2). Plots of P|↑〉 as a function of the
driving amplitude A and ε0, for (a) g/ωr = 0.0019 and (b) 0.1125.
The calculations were performed for ω/ωr = 0.0375 and �/ωr =
0.0038. The insets in both panels show the resonances patterns in
more detail.

ε0 and amplitude A. The dashed-line rectangle delimits the
region of parameters considered in this work. We label six
different regions according to the resonances that appear in
the patterns. Following the description of Fig. 4(a), we see
that regions I and II present no resonances. In region III, there
is a pure qubit-LZS pattern with only the resonances mediated
by the qubit gap at ε0 = 0. In region IV, coexist the combined
qubit-LZS pattern and the photonic-LZS pattern associated to
the gap at ε0 = −ωr . Analogously, in region V coexist the
qubit-LZS pattern and the photonic-LZS pattern due to the gap
at ε0 = ωr (seen when the initial condition has components in
|↑, 0〉). Finally, region VI contains the combined qubit-LZS
pattern and both photonic-LZS patterns.

Figure 4(b) exhibits the case of ultra strong coupling with
g/ωr = 0.1125. We observe a different structure of reso-
nances, as a consequence of the enlargement of the pho-
tonic gaps located at ε0 = ±ωr . The resonances associated
to the gap at ε0 = −ωr form arcs around the point A = 0,
ε0 = −ωr = −26.667ω [partially observed in the inset of

FIG. 5. (Solid lines) Scheme of the boundaries of the regions
where the LZS resonances mediated by the different avoided cross-
ings occur in plots of P|↑〉, as a function of the driving parameters ε0

and A. States involved in the transitions are indicated. A rectangle in
dashed lines shows the range of the parameters considered along this
work.

Fig. 4(b)], which as we have already mentioned, are expected
for the slow driving regime [48,49]. However in our work the
slow driving regime is attained due to the increase in the value
of �n, instead of reducing the driving frequency ω. Addition-
ally, the lobe-shaped resonances associated to the central qubit
gap � are distorted for large amplitudes A in comparison to
the SC (g/ωr = 0.0019) case analyzed in Fig. 4(a). Notice that
the maximum value of P|↑〉 in Fig. 4(b) is larger than 1/2 due
to the superposition of different resonances and in contrast to
Fig. 4(a), where resonances are isolated and P|↑〉 � 1/2.

The qualitative differences exhibited between Figs. 4(a)
and 4(b) are thus mainly related to the increase in the size
of the photonic gaps �n as g/ωr increases from the SC to the
USC regime. Notice that the qubit-LZS interference patterns
correspond always to the fast driving regime as we consider
ω = 10� along this work.

IV. DISSIPATIVE EFFECTS

Experimentally, the system is affected by the electromag-
netic environment that introduces decoherence and relaxation,
affecting the quantum phase of the superposition states, and/or
causing spontaneous decay of the population. Several phe-
nomenological approaches have taken into account noise and
dissipation in LZS interferometry, adding an extra broadening
to the Lorentzian-shaped m-order resonances described in
Eq.(4) in terms of decoherence and relaxation rates[17,19].
However these approximations fail to describe the structure
of the LZS patterns in the presence of dissipation in the case
of strongly driven qubits [30,31], since they are valid either for
large frequencies, or for low ac amplitudes, or for timescales
smaller than the relaxation time. Here we study dissipative
effects in LZS interferometry beyond these phenomenolog-
ical approaches, using the Floquet-Born-Markov formalism
for time-periodic Hamiltonians, which allows for an exact
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treatment of driving protocols of arbitrary strength and fre-
quency [31,33,34].

To study the quantum dynamics of the system coupled to
the environment, we consider that the resonator is weakly
coupled to a thermal reservoir modeled as an infinite set
of noninteracting harmonic oscillators [55]. This assumption
is justified in typical cQED architectures in which the su-
perconducting qubit is fabricated inside a transmission line
resonator [1,42]. Thus, when the qubit and the resonator are
off-resonant (ωq �= ωr), the resonator effectively acts as a
filter of the environmental noise for the qubit. As a result,
the qubit coherence times are enhanced because it is only
indirectly coupled to the external noise sources through the
transmission line. It should be noted that in some flux qubits
[9,39], quasiparticle and dielectric losses in the qubits were
identified as likely sources of energy damping. However, for
simplicity, in what follows, we will neglect decay mechanisms
in the qubit (i.e., qubit-reservoir terms will not be considered
in the model Hamiltonian). This is appropriate for qubits that
are “Purcell limited” [1,9,56].

The general theoretical approach to study open systems is
to consider a total (system plus bath) Hamiltonian given by

H (t ) = HS (t ) + HB + HSB , (6)

where HS is the system Hamiltonian and

HB =
∑

ν

ωνb†
νbν,

HSB = (a + a†)
∑

ν

cν (bν + b†
ν ) + (a + a†)2

∑
ν

c2
ν

ων

, (7)

are the terms for the bath and the system-bath interaction. In
the cQED architecture considered here, the bath oscillators
have frequencies ων , with b†

ν (bν) the creation (anhilation)
operators, and are linearly coupled to the resonator operator
(a + a†), with coupling strength cν . Following the usual ap-
proach, the bath is characterized by a continuous distribution
of modes with an Ohmic spectral density J (ω) = κωe−ω/ωD ,
with damping constant κ and cutoff frequency ωD.

The time evolution of the reduced density matrix is com-
puted after expanding ρ(t ) in terms of the time-periodic
Floquet basis, ραβ (t ) = 〈α(t )|ρ(t )|β(t )〉, and performing the
Born (weak coupling) and Markov (fast relaxation) approx-
imations. The resulting Floquet-Born-Markov (FBM) master
equation [34] is solved numerically, and with it we compute
P|↑〉(t ). For details on these calculations we refer the reader to
Refs. [31,32,57].

We consider the system as composed by the qubit and
the resonator and described by the DR Hamiltonian (2).
Following the Born approximation, the resonator is assumed
as weakly coupled to the Ohmic thermal reservoir. Thus, for
the numerical results—and consistent with typical experimen-
tal parameters—we take κ = 0.001, corresponding to weak
dissipation, and a large cutoff frequency ωD = 12.5ωr . The
bath temperature is T = 0.0175 ωr/kB (∼20 mK). In Fig. 6,
we plot P|↑〉(t ) (for the initial condition |↓, 0〉) as a function
of A and ε0 in the strong coupling case, for g/ωr = 0.0019.

First, we describe in Fig. 6(a) the results for finite time
t = 1000τ . At this finite time, the spectroscopic pattern still
reflects the effect of the initial condition |↓, 0〉, and resembles
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FIG. 6. LZS interference patterns for the Rabi Hamiltonian in the
SC Regime (g/ωr = 0.0019) considering effects of dissipation. Plots
of P|↑〉(t ) as a function of the driving parameters A and ε0, at finite
time t = 1000τ (a) and in the asymptotic regime t = ∞ (b). The
calculations were performed for ω/ωr = 0.0375, �/ωr = 0.0038,
T = 0.0175 ωr/kB, and κ = 0.001 (see text for details).

the one obtained for the unitary evolution, Fig. 4(a). However,
when we compare both patterns two main differences emerge
in Fig. 6(a): (i) the resonances associated to the photonic gaps
at ε = −ωr are broadened and (ii) the probability P|↑〉(t ) takes
values close to 1. These features are better seen in Fig. 7(a),
where we plot P|↑〉 as a function of ε0 for A/ω = 35. In
the case of the unitary evolution, we observe narrow peaks
corresponding to the qubit resonances at ε0 = nω and peaks
corresponding to the photonic resonances at ε0 = −ωr + mω.
After adding dissipation, the qubit resonances stay narrow
due to the Purcell effect [1,56], which strongly reduces
the qubit relaxation rate by a factor g2/δ2

0 ∼ 10−6. On the
other hand, the photonic resonances broaden since they are
directly affected by the cavity-bath relaxation. Moreover, at
the photonic resonance the probability takes values close to
P|↑〉 = 1. There is a transfer of population among the |↓, 0〉 ↔
|↑, 1〉 states followed by decay transitions |↑, 1〉 → |↑, 0〉
induced by the dissipative coupling with the bath. In this way,
when the initial condition is |↓, 0〉 the effect of the ac drive and
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FIG. 7. (a) Avareged transition probability for the closed system
P|↑〉 (dashed line) and considering effects of dissipation at finite time
P|↑〉(t → 1000τ ) (solid line) as a function of ε0 for g/ωr = 0.0019
and A = 35 ω. (b) Avareged transition probability in the asymptotic
regime P|↑〉(t → ∞) as a function of ε0 for g/ωr = 0.0019 and
A = 35 ω. Numerical results when the system is taken as qubit plus
resonator (DR Hamiltonian) coupled to an Ohmic bath (solid line)
and when we regard the driven qubit coupled to a structured bath
(dashed lines).

the dissipation is to continuously pump population from |↓, 0〉
to |↑, 0〉, leading to P|↑〉 ≈ 1. For ε0 > 0, the ground state
has a principal weight on state |↓, 0〉, and therefore P|↑〉 ≈ 1
corresponds to population inversion, and the resonance can be
interpreted as a blue sideband resonance [31,57]. On the other
hand, for ε0 < 0, the ground state has a principal weight on
state |↑, 0〉, and therefore P|↑〉 ≈ 1 corresponds to full cooling
into the ground state, as in a red sideband resonance [31,57].

Effects of the bath are much more noticeable in the steady
state regime for t → ∞ [Fig. 6(b)] where the characteristic
diamondlike spectroscopy patterns are easily identified. The
steady state is independent of the initial condition, and thus the
asymptotic pattern combines the effect of the photonic gaps at
ε0 = −ωr and at ε0 = ωr . This can be understood in terms of
the energy spectrum shown in Fig. 1 and the different regions
defined in Fig. 5.

In region I (II) of Fig. 5 where resonances are absent,
only the dissipative contribution is present, and thus P|↑〉(t →

∞) ∼ 1(0), respectively. Region III, corresponding to the
first diamond, presents a qubit-LZS pattern with narrow
lobe-shaped qubit resonances at ε0 = nω and a background
structure due to the relaxation processes. Regions IV and V
correspond to the intermediate sector between diamonds, for
ε0 < 0 and ε0 > 0, respectively. In the second diamond sector
(region VI), the combined effect of the resonances associated
to the qubit gap and the two photonic gaps contribute to the
LZS transitions. The photonic resonances at ε0 = −ωr + mω

give maxima with P|↑〉 ≈ 1, due to the LZS transition plus
decay mechanism described above. On the other hand, the
photonic resonances at ε0 = ωr + mω give P|↑〉 ≈ 0. In this
case, at the photonic resonance there is a transfer of population
between |↑, 0〉 ↔ |↓, 1〉 states plus dissipative decay transi-
tions |↓, 1〉 → |↓, 0〉, leading to P|↑〉 ≈ 0. In Fig. 7(b), we see
clearly the two types of photonic resonances with alternating
broad peaks with P|↑〉 ≈ 1 and broad dips with P|↑〉 ≈ 0, in a
plot of the dependence of P|↑〉 with ε0 for A = 35 ω. It is also
possible to notice the narrow peaks corresponding to the qubit
resonances at ε0 = nω.

For the analysis of Fig. 6(b), it is also worthwhile to men-
tion that for g � ωq/r , a plausible assumption is to consider
the quantum system solely as the qubit. In this approach,
the transmission line resonator is taken as a part of the
environment seen by the qubit and it is possible to map the
composite (resonator-bath) reservoir to a “structured bath” of
noninteracting harmonic oscillators with an effective spectral
density

Jeff (ω) = 16κg2ω2
r ω(

ω2
r − ω2

)2 + (κωrω)2
, (8)

that behaves as Ohmic at low frequencies and presents a
Lorentzian peak at ω = ωr [31,58,59]. The qubit-structured
bath coupling Hamiltonian is of the form HqB ∝ σyX , with X
a coordinate of the structured bath. In Fig. 7(b), we see a good
agreement between the P|↑〉 obtained from the qubit coupled
through σy to an structured bath and the corresponding results
of Fig. 6(b) for the DR Hamiltonian. Within the “qubit +
structured bath” scenario one can interpret the qubit LZS
pattern of region III as the LZS pattern of a qubit transversely
coupled to a bath, studied in Ref. [32], which is characterized
by narrow resonance peaks and a background off-resonance
population.

One can also compare with the LZS pattern of Ref. [31],
where a qubit coupled to a structured bath through σz was
analyzed. We can identify differences and similarities with
the present work. (i) The first diamond LZS pattern of
Ref. [31] presents antisymmetric resonances (characteristic
of longitudinal coupling to the bath) instead of the narrow
resonances and background observed here in region III of
Fig. 5 (identified with the first diamond). (ii) The second
diamond of the LZS pattern of Ref. [31] presents the same
structure of alternating bright and dark lobes obtained here in
region VI, which has been explained in terms of red and blue
sidebands.

The case of ultra strong coupling (g = 0.1125 ωr , shown
in Fig. 8) cannot be reduced to the “qubit + structured bath”
picture. In this situation, the photonic gaps �n = 2g

√
n + 1

are larger than the driving frequency ω, and the associated
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FIG. 8. LZS interference patterns for the Rabi Hamiltonian in
the USC regime (g/ωr = 0.1125) considering effects of dissipation.
Plots of P|↑〉(t ) as a function of the driving parameters A and ε0, at
finite time t = 50τ (a) and in the asymptotic regime t = ∞ (b). The
calculations were performed for ω/ωr = 0.0375, �/ωr = 0.0038,
T = 0.0175 ωr/kB, and κ = 0.001 (see text for details).

photonic-LZS patterns are in the slow driving regime, as
discussed in the previous section. In Fig. 8(a), we plot the
LZS pattern at a finite time t = 50τ . At short times, it is
possible to observe the effect of the initial condition (the
state |↓, 0〉), and the plot resembles the results obtained for
the unitary evolution in Fig. 4(b). The steady state regime
is shown in Fig. 8(b). The first diamond, in region III, is
similar to the one in Fig. 6(b), since it corresponds to the
qubit-LZS pattern. The different behavior of the USC regime

is manifested for amplitudes A beyond the first diamond.
In region IV, one can distinguish the arc-shaped photonic
resonances with the arcs centered around the point A = 0,
ε0 = −ωr . Similarly, in region V, one can observe the arcs
centered around the point A = 0, ε0 = ωr , corresponding
to the other photonic resonances. More interestingly, in the
second diamond, region VI, the combined pattern of the inter
crossing of two arc-shaped photonic resonances is observed.
This later intercrossed pattern structure is an interested and
novel signature of the driven cQED in the USC regime. As a
final comment we stress that for the USC regime, the steady
state is attained for timescales shorter than in the SC regime.
In our case for t = 1000τ , the LZS patterns in the USC
(not shown) resemble those of the stationary case obtained
in Fig. 8(b).

V. CONCLUDING REMARKS

To summarize, we have thoroughly analized the LZS in-
terference patterns that arise in a realistic cQED architecture
taking into account the noise effects introduced by the en-
vironment, i.e. decoherence and relaxation. We studied the
system composed by a harmonically driven superconducting
qubit that is transversally coupled to a transmission line
resonator.

We considered different values of the qubit-resonator cou-
pling strength corresponding to the strong coupling (SC) and
ultrastrong coupling (USC) regimes and observed important
differences in the resonance patterns between both situations.
A comprehensive description of the results was given in
terms of the energy spectrum of the system Hamiltonian. We
analyzed how the environment affects the LZS patterns for
different timescales and compared these results with those
obtained when noise is neglected.

We identify in the LZS patterns the contributions due to
the qubit gap at ε0 = 0 and those due to the photonic gaps at
ε0 = ±ωr . In particular, it was shown that for large amplitudes
the interference patterns can be interpreted as the combined
intercrossing of patterns of qubit-LZS and photonic-LZS.

Dissipative effects induce dramatic changes in the structure
of the LZS patterns in comparison to the ideal (noiseless) case.
The features analyzed along this work could help to design
better strategies to mitigate noise in LZS interferometry, open-
ing the possibility to extend the field of cQED for the case of
strongly driven qubits.
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