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Abstract: In this paper we state a condition which characterizes the sub-class of TU -games1

(games with transferable utility) having non-empty core of dimension k, for any 0 ≤ k ≤2

n − 1. It improves and generalizes the adding up (AU ) property used by Brandenburger3

and Stuart for the case k = 0 (games with one-point core) to study biform games. It also4

embraces one of the two conditions stated by Zhao for the case k = n − 1 (games having5

core with non-empty interior, relative to the set of pre-imputations) while studying some6

geometric properties of the core. The condition allows us to show that all the information7

about the geometric dimension of the core is contained in the vector of excesses associated to8

the nucleolus of the game. It also allows us to get some insight about the geometric properties9

of the cone of balanced games as well. In particular, we prove that all the games in the relative10

interior of each face of the cone have a core with the same geometric dimension. This fact is11

illustrated for the case of three-person games. We also present a couple of examples to show12

how the results of the paper can be used to deal with biform games from a new perspective.
13

Keywords: TU -games; core; geometric dimension; biform games
14

1. Introduction
15

The core of a game with transferable utility (TU -game) is the most appealing and widely studied16

solution concept for this class of games, although, for some games, it can be the empty set. The17

classical theorem of Bondareva [1] and Shapley [2] gives a necessary and sufficient condition for the18

non-emptiness of the core. In general, when the core is non-empty, it contains more than one point.19

Recently, Brandenburger and Stuart [3] worked with a condition that, whenever the the core of a game20

is non-empty, it is guaranteed that this set has only one element. This condition is then used extensively21

to study a rather new class of games, namely, biform games. On the other hand, Zhao [4] gives two22
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necessary and sufficient conditions for the core of a game to have non-empty interior (relative to the set23

of pre-imputations). In this paper we provide a necessary and sufficient condition to guarantee that the24

core of a game has dimension k, for any 0 ≤ k ≤ n− 1, n being the number of players in the game. For25

k = n − 1, our condition is equivalent to Zhao’s condition given in Theorem 1 of [4]. For k < n − 1,26

the condition we state is strongly related to the existence of a balanced family of coalitions, other than27

N (N stands for the set of players in the game) with maximal worth (see Section 2). During the proof of28

Theorem 3 (Section 4), it will emerge that the geometric dimension of the core is determined, to a great29

extent, in the general case, by the structure of the family of coalition with maximum excess appearing30

in the ordered vector of excesses related to the nucleolus ([5]). This is a fact which is clearly stated by31

[4] for k = n − 1, and which is proven in the general case in our Corollary 4 (Section 4). Our result32

also provides some insight about the geometry of the cone of balanced games. In particular, it allows33

us to show that all the games in the relative interior of each of the faces of that cone have core with the34

same dimension. The paper has the following organization: in the next section, we present some basic35

facts related to the theory of TU -games and the adding up property used by [3] as well. In Section 2, we36

tackle the case k = 0, namely, when the games have core with only one point which, therefore, coincides37

with the nucleolus of the game. The case k = 0 is then used as the first step of an inductive process38

which allows us to deal with the general situation in Section 4. Some of the results of this section are39

related to the work of [6]. In Section 5 we use the results of the previous section to bring a geometric40

description of the cone of balanced games in terms of the dimension of the core of the games in each of41

its faces. The case n = 3 is used to illustrate this approach. We also include a section to grasp how the42

results of the paper can be used to study biform games from a new perspective. We close the paper with43

some concluding where we outline some further lines of work.44

2. Preliminaries
45

A TU -game is an ordered pair (N, v), where N = {1, 2, ..., n} is a finite non-empty set, the set of46

players, and v is the characteristic function, which is a real valued function defined on the family P(N)47

of subsets of N , satisfying v(φ) = 0. The elements of P(N) are the coalitions.48

The set of pre-imputations is E = {x = (x1, . . . , xn) ∈ Rn :
∑

i∈N xi = v(N)}, and the set of49

imputations is A = {x ∈ E : xi ≥ v(i) for all i ∈ N}.50

Let a game (N, v) be given. For any x ∈ E,S ∈ P(N),the excess of the coalition S with respect to51

x is e(S, x) = v(S) − x(S), where, as usual, x(S) =
∑

i∈S xi if S 6= φ and 0 otherwise. The core of52

(N, v) is the set C = {x ∈ E : e(S, x) ≤ 0 for all S ∈ P(N)}.53

The core of a game may be the empty set. The Shapley-Bondareva theorem ([1],[2]) characterizes54

the sub-class of TU -games with non-empty core. In this result, the notion of a balanced family of55

coalitions plays a key role. A non-empty family of coalitions B is balanced if there exists a set of56

positive numbers λB = (λS)S∈B, the balancing weights, such that
∑

S∈B(i)
λS = 1 for all i ∈ N . Here,

57

B(i) = {S ∈ B : i ∈ S} . The quantity w(B, λB, v) =
∑

S∈B λSv(S) is the worth of the balanced family58

B with respect to the set of balancing weights λB = (λS)S∈B. Balancedness can also be defined as59

follows. Let χS ∈ Rn denote the n-dimensional vector defined by (χS)i = 1 if i ∈ S and 0 if i /∈ S60

(the indicator vector of S). Then, a family B of coalitions is balanced if there exist positive balancing61
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weights λB = (λS)S∈B such that
∑

S∈B λSχS = χN . A minimal balanced family is one including no62

other proper balanced subfamily. Such a family always has a unique vector of balancing weights ([2]).63

In this case, we are going to use w(B, λB) simply to denote w(B, λB, v).64

A game (N, v) is balanced if
∑

S∈B λSv(S) ≤ v(N) for any balanced family B with balancing65

weights λB. Shapley-Bondareva’s theorem states that the core of a TU−game is non-empty if and only
66

if the game is balanced.67

Usually, when the core is non-empty, it contains more than one point. However, in some situations,
it is convenient to restrict oneself to work in the subclass of balanced games whose core has exactly one
imputation. This happens, for instance, when studying biform as introduced by [3]. There, the authors
use the Adding Up condition, which determines a subclass of balanced games having core with that
property (See e.g. [7]). A game (N, v) possesses the Adding Up condition (AU) if∑

i∈N

(v(N)− v(N\{i})) = v(N).

This is only a sufficient condition that guarantees the single point property of the core (whenever this68

set is non-empty). In the following section, we extend the AU property and show that the extension is69

also necessary.70

3. Games with a single-point core
71

To motivate our next definition, we note that B = {N\{i}}i∈N is a minimal balanced family of72

coalitions with cardinality n, whose indicator vectors χS, S ∈ B, are linearly independent. Furthermore,73

when the Adding Up property is valid, it satisfies that w(B, λB, v) = v(N) for the unique collection of74

balancing weights λB = ( 1
n−1)S∈B for B. Given a family of coalitions B with m members, MB will stand75

for an m× n matrix whose rows are the indicator vectors χS of the coalitions S belonging to B.
76

Definition 1 Let a game (N, v) be given. A balanced family of coalitions B is determining in (N, v)77

if it satisfies the following two conditions:78

i) rank(MB) = n.79

ii) There is a collection of balancing weights λB for B such that w(B, λB, v) ≥ w(B′, λB′ , v) for any80

other balanced family B′ with balancing weights given by λB′ .
81

When (N, v) is balanced, any determining family B satisfies w(B, λB, v) = v(N).
82

Theorem 1 Let (N, v) be a TU -game. Then |C| = 1 if and only if there is a determining family B83

with w(B, λB, v) = v(N) for some collection λB of balancing weights.84

Proof Let us assume first that there exists a determining family B, and a collection of balancing
weights λB with w(B, λB, v) = v(N). Then, the Shapley-Bondareva theorem guarantees the
non-emptiness of the core. Moreover, if x ∈ C, then x(S) = v(S) for all S ∈ B. Since B is determining,
the linear system

MBy = vB,

where vB is the vector (v(S))S∈B, has a unique solution. Thus, |C| = 1.85
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On the other hand, if |C| = 1, the game is balanced and w(B, λB, v) ≤ v(N) for any balanced family
of coalitions B with balancing weights given by λB. Moreover, the unique point in C is the nucleolus1

x̂ of (N, v). The nucleolus satisfies that max
S

e(S, x̂) = 0. Moreover, from the characterization of the

nucleolus given by [8], we have that B∗ = {S : e(S, x̂) = 0} is a balanced family of coalitions. For
any other coalition S not in B∗, e(S, x̂) < 0. We claim that B∗ is a determining family in (N, v). If
rank of MB∗ < n, there is y 6= 0 such that MB∗y = 0. Let x(ε) = x̂ + εy. Then MB∗x(ε) = vB∗ ,

so e(S, x(ε)) = 0 for all S ∈ B∗. Furthermore, if ε is small enough, e(S, x(ε)) < 0 for all S /∈ B∗.
Moreover, since for any collection λB∗ of balancing weights for B∗, it holds that

λB∗MB∗y = χNy = 0,

we have that x(ε) is a pre-imputation, different from x̂, belonging to C. But this contradicts the assumed86

cardinality for C. Then, rank(MB∗) = n. Finally, since87

w(B∗, λB∗ , v) =
∑
S∈B∗

λSv(S)

=
∑
S∈B∗

λSx̂(S) = v(N),

we conclude that B∗ is a determining family of coalitions.�
88

Corollary 2 A sufficient condition for the core of a game (N, v) to have only one imputation is that89

there is a minimal balanced family B with |B| = n and w(B, λB) = v(N).90

The latter condition is not, however, a necessary condition as the following example shows.
91

Example 1 Let (N, v) a game with N = {1, 2, 3} and v(N) = 1, v({1, 3}) = v({2, 3} =92

1, v({1, 2}) = −1, and v(S) = 0 otherwise. The only core imputation x in this game is x = (0, 0, 1),93

and the only determining families are:94

B1 = {{1}, {2}, {1, 3}, {2, 3}} and B2 = {{1}, {2}, {1, 3}, {2, 3}, N}, none of them being a95

minimal balanced family of coalitions.96

4. General case
97

Theorem 1 characterizes the class of balanced games with 0-dimensional core 2. In order to bring a98

condition for the general case, we generalize the definition of determining family given in the previous99

section as follows.
100

Definition 2 Let a game (N, v) be given. A balanced family B is k-determining for the game (N, v)101

if it satisfies:102

1To define the nucleolus of a game (N, v), we have to associate first, to each pre-imputation x, the 2n-vector θ(x) whose
entries are the quantities (e(S, x))S⊆N ordered in a non increasing order. θ(x) is the vector of excesses associated to x. The
nucleolus of (N, v) is the pre-imputation x̂ such that θ(x̂) is minimal in A with respect to the lexicographical order �L.
θ(x) ≺L θ(y) if and only if there exists 1 ≤ k < 2n − 1 such that θi(x) = θi(y) for all i ≤ k, and θk+1(x) < θk+1(y).

θ(x) =L θ(y) if and only if θi(x) = θi(y) for all 1 ≤ i ≤ 2n − 1.
2We recall that the (geometric) dimension of a convex set is the smallest dimension of an affine subspace containing it.
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i) rank(MB) = n− k.103

ii) There is a collection of balancing weights λB for B such that w(B, λB, v) ≥ w(B′, λB′ , v) for any104

other balanced family B′ with balancing weights given by λB′ .105

iii) rank(MB) ≥ rank(MB′) for any other balanced family B′ satisfying w(B′, λB′ , v) = w(B, λB, v)106

for some set λB′ of balancing weights.107

Clearly, any determining family is a 0-determining family.
108

Theorem 3 Let a TU -game (N, v) be given. Then, the core of the game has dimension k, 0 ≤ k ≤109

n− 1, if and only if there is a k-determining family B with w(B, λB, v) = v(N) for some collection λB110

of balancing weights.111

Proof Theorem 1 proves the case k = 0. To complete the proof for the remaining values 0 < k ≤112

n− 1, we are going to use an inductive argument.113

Let us assume that the claim has been proven for all s < k ≤ n − 1, and that there exists a k-114

determining family B satisfying w(B, λB, v) = v(N) for some collection λB of balancing weights. Once115

more, because of ii) of Definition 2, and the Shapley-Bondareva theorem, we get that C 6= φ. We note116

that any core imputation x ∈ C should satisfy v(S) = x(S) for all S ∈ B.Namely, it should be a solution117

of the linear system MBy = vB. But, since rank(MB) = n− k, the dimension of C is bounded by k. In118

the case that this dimension were 0 ≤ s < k, there would exist, because of the induction hypothesis, an119

s-determining family B′ satisfying w(B′, λB′ , v) = v(N) = w(B, λB, v) for some set λB′ of balancing120

weights. However, since rank(MB′) = n − s > n − k = rank(MB), we get a contradiction with121

condition iii) of Definition 2. This contradiction shows that the dimension of C should be k.122

Conversely, let us assume now that C has dimension k. Then the game is balanced and w(B, λB, v) ≤123

v(N) for any balanced family of coalitions B with balancing weights given by λB. Like in the proof of124

Theorem 1, let x̂ be the nucleolus of (N, v), and B∗ = {S : e(S, x̂) = 0}, which is a balanced family125

of coalitions ([8]). For any coalition S outside of B∗, e(S, x̂) < 0. Let n − k̂ = rank(MB∗). We claim126

that B∗ is a k-determining family indeed. In fact, since w(B∗, λB∗ , v) = v(N), for any s-determining127

family B, it holds that rank(MB) = n − s ≥ n − k̂ = rank(MB∗), and consequently, s ≤ k̂. On128

the other hand, s ≥ k, or the core would have a dimension lesser than k, according to the induction129

hypothesis. Thus, k ≤ s ≤ k̂. If k < k̂, rank(MB∗) < n − k and the dimension of Kernel(MB∗) > k.130

Let N(ε) = {y ∈ Kernel(MB∗) : ‖y‖2 ≤ ε}. For each y ∈ N(ε), let us consider the associated point131

x(y) = x̂ + εy. Then MB∗x(y) = vB∗ , so e(S, x(y)) = 0 for all S ∈ B∗. Furthermore, if ε is small132

enough, e(S, x(y)) < 0 for all S /∈ B∗. Finally, because for any y ∈ Kernel(MB∗) it holds that χNy = 0133

(cfr. Section 3), it turns out that x(y) is a pre-imputation belonging to C. Since a universal ε value can be134

found guaranteeing that e(S, x(y)) < 0 for all S /∈ B∗, y ∈ N(ε), we obtain that x̂ + N(ε), which is an135

affine manifold of dimension k̂ > k, is included in the core. But this is a contradiction with the assumed136

k value for the core dimension. This proves that k = k̂ = s and thus, B∗ is a k-determining family.�
137

Remark 1 The extreme case k = n − 1 also follows from Theorem 2 of [4], where he proves that138

a game (N, v) has a (n − 1)-dimensional core if and only if the only balanced family of coalitions139

with maximal worth is B = {N}, which in this case is a (n − 1)-determining family. This condition140

implies that the non-equality of the first two components of the vector of excesses associated to the141

nucleolus is a necessary and sufficient condition for the core of a balanced game to have non-empty142

interior (relative to the set of pre-imputations). On the other hand, since {N} is the only family which143
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could be (n− 1)-determining, Zhao’s result turns to be equivalent to our statement in Theorem 2 for this144

particular case.145

For k = n− 1, Zhao’s condition indicates that the information about the geometric dimension of the146

core is contained in the vector of excesses of the nucleolus of the game. Within the proof of Theorem147

3 the properties of the family B∗ = {S : e(S, x̂) = 0} have played a key role suggesting that that148

relationship could be true for all the remaining cases. The next result highlights this fact.
149

Corollary 4 The geometric dimension of the core of a balanced TU game (N, v) is k, 0 ≤ k ≤ n−1,150

if and only if the rank(MB∗) = n− k.151

Proof The last part of the proof of Theorem 3 includes the proof that if the core dimension is k, for152

some 0 ≤ k ≤ n− 1, then rank(MB∗) = n− k.153

But, if rank(MB∗) = n− k, then, the geometric dimension of C cannot be greater than k. Moreover,154

if it were k′ < k, a similar argument than that used during the proof of Theorem 3 would show that155

an affine manifold of dimension k is included in the core, providing a contradiction. Thus, the core156

dimension should be k.�157

5. A geometric interpretation
158

Given a minimal balanced family of coalitions B, let ΛB = (λS)φ 6=S⊆N be the (2n − 1)-vector where159

λS is the balancing weight of S if S ∈ B and λS = 0 if S /∈ B. Let δB = ΛB − λ{N}. Thus, δB differs160

from λB only in the entry indexed by N, taking the value δN = −1 whenever B 6= {N} and δN = 0161

if B = {N}. Let us denote with Vn the set of balanced TU -games with n-players, and with B the162

cone generated by the family {δB : B 6= {N} is a minimal balanced family}. Then, Vn = B∗, where163

B∗ = {y ∈ R2n−1 : 〈y, δ〉 ≤ 0 for all δ ∈ B} is the polar cone of B. It is well-known that each generating164

vector δB of B determines a (2n− 2)-dimensional face of Vn ([2]). Theorem 3 allows us to characterize,165

in terms of the dimension of the core, all the members in the relative interior of each of these faces as166

well as in the relative interior of any other face of Vn.
167

Theorem 5 Let N be given and let B 6= {N} be a minimal balanced family. Then, the dimension of168

the core of any game in the relative interior of the face of Vn determined by δB is n− rank(MB).169

Proof We recall that for any v in the relative interior of the face of Vn determined by δB, 〈v, δB〉 = 0

and 〈v, δB′〉 < 0 for any other B′ 6= B. Thus, B is the only family different from {N} with maximal
worth. Therefore, it is a k-determining family for v, and according to Theorem 3, the dimension of its
core is k = n− rank(MB). �

Remark 2 A similar result to that stated in Theorem 5 is also true when the face of Vn considered is170

Vn itself. In this case, all the games in the relative interior of Vn have (n−1) dimension core, as follows171

from Corollary 4, and the fact that, for all the games in this set, B∗ = {N}.
172

The next result enlighten the fact that all the games in the relative interior of any face of Vn, and173

not only for those faces determined by minimal balanced families of coalitions, have core with the same174

geometric dimension.
175

Proposition 6 Let W be a lower dimension face of Vn. Then, there exists 0 ≤ k ≤ n − 1 such that,176

for any game v in the relative interior of W, the dimension of the core of v is k.177
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Proof Given W there exists a finite collection B1, ..,Bs of minimal balanced families such that, for178

any v in the relative interior of W, 〈v, δBi〉 = 0 for all i = 1, ..s, and 〈v, δB′〉 < 0 for any other minimal179

balanced family B′ 6= Bi, i = 1, ..., s. Let B =
s⋃
i=1

Bi, which is also a balanced family. Since any set of
180

balancing weights for B is a convex combination of the sets of balancing weights of the minimal balanced181

families Bi, i = 1, ..., s, it follows that 〈v, δBi〉 = 0 for all v in the relative interior of W. Consequently,182

v(N) = w(B, λB, v) ≥ w(B′, λB′ , v) for any other balanced family B′ with set of balancing weights183

given by λB′ . On the other hand, if B′ is any balanced family with w(B′, λB′ , v) = w(B, λB, v), then184

B′ =
⋃
i∈S′
Bi,where S ′ ⊆ {1, ..., s}. Therefore, rank(MB) ≥ rank(MB′) and thus, if rank(MB) = n−k,

185

B turns to be a k-determining family for any game v in the relative interior of W. But this implies that186

all the games in this set have a core with the same dimension k.�
187

Example 1 Three person-games188

This case can be analyzed exhaustively. We recall that the only minimal balanced families in this189

case are, apart from {N},B0 = {{1}, {2}, {3}},B1 = {{1}, {2, 3}},B2 = {{2}, {1, 3}},B3 =190

{{3}, {1, 2}} and B4 = {{12}, {1, 3}, {2, 3}}. According to Remark 2, a game is in the relative191

interior of the cone of balanced 3-person games V3 if and only if its core has dimension two. On the192

other extreme, the only minimal-dimensional face of V3 is the 3-dimensional face determined by all the193

minimal balanced families together (or its corresponding δ′s vectors) and it embraces all essential games194

(v(S) =
∑
i∈S

v({i}) for all φ 6= S) having 0-dimensional core. The cone V3 has five 6-dimensional faces
195

determined by the minimal balanced families. The relative interior of the face corresponding to B0 is the196

set of all balanced games for which v({1})+v({2})+v({3}) = v({1, 2, 3}) (games for which |A| = 1).197

Therefore, all these games also have a 0-dimensional core, although this is not the only 6-dimensional198

face sharing this property. In fact, all the games in the relative interior of the face corresponding to B4
199

have a one-point core too, and all of them are superadditive balanced games. In these two cases, all the200

faces, and not only their relative interiors, are composed for games with a one-point core. This core201

dimensional coincidence between the games in the relative interior of the faces associated to B0 and B4
202

follows from the general fact that a family BC , whose members are the complements of the members of203

a minimal balanced family B, is also a minimal balanced family, and hence, rank(MB) = rank(MBC ).204

Consequently, balanced games in the relative interior of the faces associated to B and BC have core with205

the same dimension.206

The face corresponding to B1 (a behavior shared with B2 and B3) includes superadditive and non-207

superadditive games all of them having 1-dimensional core. However, the superadditivity condition can208

be violated only by coalitions {1, 2} or {1, 3} but never by coalition {2, 3}.209

There are also nine 5-dimensional faces in V3, all of them embracing games with one-point core. The210

games in the relative interior of the faces associated to B1∪B2,B1∪B3 and B2∪B3 are not superadditive211

games, being {1, 2}, {1, 3} and {2, 3} the only coalitions violating the superadditivity condition in each212

case respectively. The games in the relative interior of the 5-dimensional face determined by B1 ∪ B4
213

are superadditive games such that, apart from the constrain v({2, 3}) + v({1}) = v(N) imposed by214

B1, they also satisfy the convexity constraint given by v({1, 2, 3}) = v({1, 2}) + v({1, 3}) − v({1}).215

The relative interior of the faces determined by B2 ∪ B4 and B3 ∪ B4 admit a similar description to that216

given for B1 ∪ B4. The games in the relative interior of the face associated to B0 ∪ B1 (and similarly217



Version October 29, 2014 submitted to Games 9 of 13

those prescribed by B0 ∪ B2 and B0 ∪ B3) are balanced games satisfying the following two condition218

v({1}) + v({2}) + v({3}) = v({1, 2, 3}) and v({2}) + v({3}) = v({2, 3}) as well. To complete the219

description, we mention that the cone has three 4-dimensional faces. The games in the relative interior of220

the face determined by B0 ∪B2 ∪B3 are games with one-point set of imputation satisfying the following221

convexity constraint: v({1, 2, 3}) = v({1, 2})+v({1, 3})−v({1}) like the games in the face determined222

by B1∪B4. The other two 4-dimensional faces, namely, those determined by B0∪B1∪B2 and B0∪B1∪B3
223

admit a similar description to that given for the face determined by B0 ∪ B2 ∪ B3.224

6. Biform games
225

In this section we focus on biform games, as studied by [3]. A biform game is a two-stage model. In226

the first stage, each one of the n players of the game selects a (non-cooperative) strategy determining a227

profile of strategies. Depending on this profile of strategies, a cooperative TU -game is prescribed to be228

played in the second stage of the game. Then, a payoff to each of the players is assigned, payoff which229

is strongly dependent on and related to the solution of the cooperative game played. Biform games are230

very flexible models capable to deal with a broad range of situations. However, in order to get positive231

mathematical results, some structure has to be assumed on the family of games to be played in the232

second stage of the game. One of the main results of [3] provides a necessary and sufficient condition233

for a profile of strategies be a Nash equilibrium in a biform game satisfying the Adding Up property,234

the No Externality condition and the balancedness property of the cooperative game associated to each235

profile of strategies. This latter condition, along with the Adding Up property, locates all the cooperative236

games associated with the profile of strategies in the same face of the cone of the balanced cooperative237

TU -games. Moreover, the Adding Up property guarantees that all the games in that face have core with238

just one element. Our purpose here is illustrate, with a couple of examples, what happens if the biform239

game prescribes that all the TU -cooperative games belong to the same face, but different from that240

specified by the Adding Up property, in the cone Vn of balanced cooperative games. In particular, we241

are going to consider the case in which all the cooperative games associated with the profile of strategies242

have one-dimensional core. We are going to work with a simpler version of n-biform games than the243

original of [3]. To this end let us consider n non-empty finite sets S1, ..., Sn, the sets of individual244

non-cooperative strategies. Then, a n-biform game is a pair (S, V ) where S = (S1, ..., Sn) is the set of245

profiles of strategies and V : S → Vn is just a map. As usual, given a profile of strategies s ∈ S, a player246

i, and a strategy ri ∈ Si,(ri, s−i) denotes the profile of strategies obtained from s by changing the strategy247

si of the i-th player in s by the strategy ri. Let P : S → Rn be a function which, for each profile of248

strategies s ∈ S, selects an element P (s) = (P1(s), ..., Pn(s)) in the core of the cooperative game V (s).249

A profile of strategies s ∈ S is a Nash equilibrium for the biform game (S, V ) related to the procedure250

P (a P -Nash equilibrium) if and only if for each i = 1, ..., n, and for each ri ∈ Si, Pi(s) ≥ Pi(r
i, s−i).251

A biform game (S, V ) satisfies the No Externality (NE) condition if for each i = 1, .., n, s ∈ S and252

ri ∈ Si, V (ri, s−i)(N\{i}) ≥ V (s)(N\{i}). Given a biform game (N, V ) satisfying AU and NE, a253

profile of strategies s is a Nash equilibrium if and only if V (s)(N) ≥ V (ri, s−i)(N) for every ri ∈ Si254

(Lemma 5.2 of [3]).255
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We point out that our definition of biform games implies that all the games V (s), s ∈ S, have non-256

empty core. Moreover, when AU is present, all the games involved in the biform game have one-point257

core. In this case, the procedure P is univocally defined as that assigning to each player, for each s ∈ S,258

the utility obtained for each player in the unique point of the core of V (s).
259

Example 2260

In this example, we consider a coordination game like Example 5.2 studied by [3]. This is a three261

person game in which each player has two non-cooperative strategies Yes (Y ) and No (N ). There are262

also two 2× 2 matrices whose entries are 3-person TU -games. Then, player 1 chooses the row, player 2263

chooses the column, and player 3 chooses the matrix. The figure below depicts the situation.264

N Y

N V (N ,N ,N ) V (N ,Y ,N )

Y V (Y ,N ,N ) V (Y ,Y ,N )

N Y

N V (N ,N ,Y ) V (N ,Y ,Y )

Y V (Y ,N ,Y ) V (Y ,Y ,Y )265

N Y266

We say that the biform game (N, V ) satisfies condition B3 if for each s ∈ S, V (s) belongs to the
relative interior of the face of V3 determined by B3 = {{3}, {1, 2}}. For simplicity, we will also assume
that the cooperative game associated to each profile of strategies s ∈ S is superadditive. Moreover, we
will assume that both marginal contributions V (s)({2, 3})−V (s)({3}) and V (s)({2, 3})−V (s)({3})}
are positive. Then, for each profile of strategies s ∈ S, the core of the game V (s) is given by

C(s) = {(x1, x2, x3) ∈ R3 : x3 = V (s)({3}),
x1 + x2 = V (s)({1, 2}),

x1 ≥ max{V (s)({1, 3})− V (s)({3}), V (s)({1})},
x2 ≥ max{V (s)({2, 3})− V (s)({3})}, V (s)({2})}},

with at least one of the two last inequalities being strict. We will also assume that

max{V (s)({1, 3})− V (s)({3}), V (s)({1})} = V (s)({1, 3})− V (s)({3}),

and that
max{V (s)({2, 3})− V (s)({3}), V (s)({2})} = V (s)({2, 3})− V (s)({3}).

From

2(V (s)({1, 2}) + V (s)({3}) = 2V (s)(N)

> V (s)({1, 3}) + V (s)({2, 3}) + V (s)({1, 2}),

it follows that

V (s)({1, 2}) > V (s)({1, 3}) + V (s)({2, 3})− 2V (s)({3})
> 0.

Let

λ(s) =
V (s)({1, 2})

V (s)({1, 3}) + V (s)({2, 3})− 2V (s)({3})
.
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We then define the procedure P as

P (s) = (λ(s)(V (s)({1, 3})− V (s)({1})), λ(s)(V (s)({2, 3})− V (s)({1})),
V (s)({3})), (1)

for all s ∈ S. The procedure P , for players 1 and 2, splits the value V (s)({1, 2}) proportional to the267

marginal value of these players when they join to player 3.268

A particular case, when for each s ∈ S, V (s) is a 0 − 1 normalized game (V (s)({i}) = 0 for all269

i, V (s)(N) = 1), reveals clearly the fact that, somehow, when condition B3 is present, coalitions {1, 2}270

and {3} play the game without too much interaction.271

In fact, when the procedure P is given by (1), s = (s1, s2, s3) ∈ S is a Nash equilibrium for (N, V )272

if and only if (s1, s2) is an equilibrium point for the zero sum two person game having the function273

A(ŝ1, ŝ2) = −V (s1,ŝ2,ŝ3)(1,2)
V (s1,ŝ2,ŝ3)(1,3)

as the payoff function for player 1.274

To see this claim, we first note that, under the conditions of the theorem, for all s ∈ S, V (s)(1, 2) =

V (s)(N) = 1. It is also easy to see that, for each pair of profile of strategies s, ŝ, P1(s) ≥ P1(ŝ) if and
only if

−V (ŝ)(1, 3)V (s)(2, 3) + V (ŝ)(2, 3)V (s)(1, 3) ≥ 0,

and similarly, P2(s) ≥ P2(ŝ) if and only if

−V (ŝ)(1, 3)V (s)(2, 3) + V (ŝ)(2, 3)V (s)(1, 3) ≤ 0.

Now, let us assume that s = (s1, s2, s3) is a Nash equilibrium for (N, V ). Then, for all ŝ1 we have that
P1(s) ≥ P1(ŝ1, s

−1) and so,
V (s)(1, 3)

V (s)(2, 3)
≥ V (ŝ1, s

−1)(1, 3)

V (ŝ1, s−1)(2, 3)
. (2)

Similarly, from the fact that P2(s) ≥ P2(s2, s
−2) we get that

V (s)(1, 3)

V (s)(2, 3)
≤ V (ŝ2, s

−2)(1, 3)

V (ŝ2, s−2)(2, 3)
. (3)

But both inequalities, (2) and (3), imply that (s1, s2) is an equilibrium point for the zero sum game275

played by players 1 and 2 in which the former has the payoff function A(s1, s2) = −V (s)(1,3)
V (s)(2,3)

.276

Conversely, suppose that for some profile of strategies s = (s1, s2, s3) ∈ S, the pair of strategies277

(s1, s2) is also an equilibrium point for the zero sum game already described. Then, both inequalities (2)278

and (3) hold. From them, we get that P1(s) ≥ P (ŝ1, s
−1) for all ŝ1 and P2(s) ≥ P2(ŝ2, s

−2) for all ŝ2.279

On the other hand, since for any profile of strategies s, P3(s) = 0, we also have that P3(s) ≥ P3(ŝ3, s
−3)280

for all ŝ3. So, s = (s1, s2, s3) is a Nash equilibrium for the game (N, V ).
281

Example 3 In this example, we consider a four dimensional version of the coordination game studied282

in Example 3. There are four players, each one with two non-cooperative strategies Y and N. Then, for283

each i = 1, 2, 3, 4, Si = {Y,N} and the set of joint non-cooperative strategies is S = S1×S2×S3×S4.284

Given a strategy s ∈ S, a four-person TU -game V (s) is prescribed to be played. The purpose of this285

example is to analyze a biform game for which all the games to be played in the second stage have286

one-dimensional core. Furthermore, like we did in Example 2, we will also assume that all of the287

cooperative games have a common structure.288
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According to the classification given by Shapley [2] of the minimal balanced families of coalitions289

in a four-person game, only B3 = {{1, 2}, {3}, {4}} and B4 = {{1, 2, 3}, {1, 2, 4}, {3, 4}} have290

rank(MB3) = rank(MB4) = 3. We will analyze here the case related to B3 to show that it behaves291

quite in the same way as Example 2 does. We say that a four-person biform game (N, V ) satisfies292

condition B3 if for each s ∈ S, V (s) belongs to the relative interior of the face of V4 determined by B3.293

Thus, in each case, and for any s ∈ S, V (s) has one-dimensional core. We will also assume that each294

game V (s) is in 0− 1 normalization.295

Given a four-person biform game (N, V ) satisfying condition B3, for each profile of strategies s ∈ S,
the core of the game V (s) is given by

C(s) = {(x1, x2, x3, x4) ∈ R3 : x3 = 0, x4 = 0),

x1 + x2 = V (s)({1, 2}) = 1,

x1 ≥ max{V (s)({1, 3}), V (s)({1, 4}), V (s)({1, 3, 4}), 0},
x2 ≥ max{V (s)({2, 3}), V (s)({2, 4}), V (s)({2, 3, 4}), 0}}.

We will also assume that

max{V (s)({1, 3}), V (s)({1, 4}), V (s)({1, 3, 4}), 0} = V (s)({1, 3})
> 0,

and

max{V (s)({1, 3}), V (s)({1, 4}), V (s)({1, 3, 4}), 0} = V (s)({2, 3})
> 0.

Since for each s ∈ S,

1

2
(V (s)({1, 2}) + V (s)({1, 3}) + V (s)({2, 3})) + V (s)({4}) < 1,

we conclude that always

0 < V (s)({1, 3}) + V (s)({2, 3}) < V (s)({1, 2}).

Then, if

λ(s) =
V (s)({1, 2})

V (s)({1, 3}) + V (s)({2, 3})
,

we define the procedure P as

P (s) = (λ(s)V (s)({1, 3}), λ(s)V (s)({2, 3}), 0, 0).

This procedure is very similar to that defined by (1) in Example 3, and with similar arguments to those296

used there, we can prove that s = (s1, s2, s3, s4) ∈ S is a Nash equilibrium for the game (N, V )297

if and only if (s1, s2) is an equilibrium point for the zero sum two person game having the function298

A(ŝ1, ŝ2) = −V (s1,ŝ2,ŝ3,ŝ4)(1,2)
V (s1,ŝ2,ŝ3,ŝ4)(1,3)

as the payoff function for player 1.299
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7. Conclusions
300

In this paper we have given a geometric description of the cone of n-person balanced TU -games. We301

think that this geometric approach opens the possibility to study several game theoretic problems from a302

different point of view. We mention a couple of examples to illustrate this point. Like we did in Section303

6, a better understanding of the set of balanced TU -games can be useful to endow biform games with a304

definite structure and to study, for instance, some stability properties of the solutions. On the other hand,305

when dealing with a game with empty core, a standard procedure is to modify the characteristic function306

of the game somehow to obtain a new game with non-empty core. The family of strong ε-cores ([9]) is,307

perhaps, the most relevant example of this approach to study non-balanced TU -games. The aspiration308

core ([10], [11]) is another key example of this methodology. The geometric characterization we present309

here could help to get a better knowledge about how these procedures ”project” non-balanced games on310

the cone of balanced games. It could also help to define new more appropriate procedures.311
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