Ternary Ni–Co–Fe Exsolved Nanoparticles/Perovskite System for Energy Applications: Nanostructure Characterization and Electrochemical Activity

Mariano Santaya, Horacio E. Troiani,* Alberto Caneiro, and Liliana V. Mogni

ABSTRACT: The exsolution of Ni–Co–Fe from a Sr0.93(Ti0.3Fe0.56Ni0.07Co0.07)O3−δ perovskite (STFNC) is explored as a strategy to produce electrochemically active electrodes for symmetric-SOFC (S-SOFC). It was found that a nanostructured NiCoFe ternary alloy phase, with approximately equal amounts of each metal, can be formed by this method. The STFNC electrode is studied via electrochemical impedance spectroscopy, showing a really interesting potential as S-SOFC electrode: the anode polarization resistance was 1.12 Ω-cm² in a wet 10%H₂ atmosphere at 700 °C (exsolving in situ the NiCoFe phase), and the cathode polarization resistance at 700 °C in air was 0.054 and 0.042 Ω-cm², before and after exsolution, respectively.

KEYWORDS: exsolution, perovskite, ternary alloy, symmetric-SOFC

Exsolution has been intensively studied in the fields of energy materials for conversion and storage as a method for the preparation of catalytically active and durable metal nanoparticles.¹ This method consists of the segregation of easily reducible metals that are originally contained in an oxide lattice and diffuse to the surface, forming nanoparticles when exposed to reducing conditions at high temperatures. The particularity of this method is that exsolved nanoparticles remain attached to the surface of the original phase, forming a “socket” between the particle and the host oxide.² Socketing constitutes an important issue: it prevents undesired coarsening, with its consequent reduction of the nanoparticles’ surface area, and it increases the stability of the system. Exsolution also induces modifications in the original parent matrix; these modifications are constituted by the obvious change in chemical composition and by the possible structural and nanostructural modifications after segregation of the exsolved phase.³ Particularly, the area of solid oxide fuel cells (SOFC) is under exploration for this approach to obtain alternative anode materials with better performance for low- and intermediate-temperature SOFCs, but specifically with better stability under carbon-rich fuel atmospheres in comparison to the state of the art Ni-YSZ anode.⁴ In this sense, also these kinds of materials based in oxides could operate in a symmetrical cell configuration, working alternatively as anode and cathode.⁵ This is especially interesting for materials that could be regenerated under redox cycles, known as smart materials,⁶ because it could extend the lifetimes of cells.

Most of the previous works on exsolution show the formation of single metal phases or even binary alloys. Examples of single metal exsolved phases can be found in samples with only one easily reducible B-site cation accompanied by stable nonreducible cations, as is the case for Ni exsolution from La0.52Sr0.28Ni0.06Ti0.94O3−δ,³,⁴ and also from double perovskites such as La0.75Sr0.25(Cr0.5Fe0.5)0.85Fe0.15O3−δ with reductions at 850 to 800 °C, respectively. As for bimetallic alloy exsolution, Fe–Ni nanoparticles were exsolved from single perovskites as reported previously by our group in La0.52Sr0.28Ni0.06Ti0.94O3−δ,³,⁴ and also from double perovskites such as Sr3Fe2Ni12Mo13O45−δ with reductions at 850 to 800 °C in humidified H₂ atmospheres; also Fe–Co binary alloys were exsolved from LaxSr0.6Fe0.7Ti0.3−xCo0.2O3−δ and LaxSr0.5Co0.45Fe0.45Nb0.1O3−δ after reducing in wet H₂ atmospheres at 850 and 750 °C, respectively, and from Co/Fe co-doped perovskites such as La0.5Ba0.5MnO3−δ.⁵

Cite This: https://dx.doi.org/10.1021/acsaem.0c01997
Sr₂Fe₁.₅Mo₀.₅O₆−δ double perovskite, using dry 5%H₂ atmospheres at 850 and 800 °C, respectively. In all cases the authors highlight the good catalytic activity of the exsolved nanoparticles, and some of them also remark on their high resistance to carbon deposition under C-based fuel operation. It can be noted that different atmospheres and temperature conditions for exsolution are used in these works, generally finding more aggressive reduction conditions for single metal exsolution and softer conditions for bimetallics. Different reduction conditions are needed for different cases since exsolution depends on many factors such as A-site deficiency, the sample microstructure, and the reducibility of the exsolved cation (e.g., Ni and Co are easier to reduce than Fe), etc.

However, there is no deep exploration on the formation of ternary alloy nanoparticles by exsolution from perovskite-based oxides or how these nanoparticles could increase the catalytic activity. A recent study presented Cu−Fe−Ni exsolution in the form of nanosized Cu-rich and Fe-rich ternary alloys, exsolving from Cu₁−ₓNiₓFe₂O₄ spinels at 800 °C under wet H₂ as a strategy to produce active SOFC anodes. A ternary Co−Ni−Mo alloy was also used to impregnate a Sr₂FeMoO₆−δ anode, achieving lower electrode polarization resistance (Rₑ) values than impregnating with precious metals such as Pd. The results found in these studies suggest that ternary alloys can be interesting alternatives to improve the catalytic activity of SOFC’s anodes. It was also demonstrated that trimetallic Fe−Ni−Co nanoparticles in multimawled carbon nanotubes showed higher activity than either Fe−Ni and Fe−Co bimetallic nanoparticles for the ORR, in a liquid electrolyte system. Here it is worth noting that in these oxidizing atmospheres the metallic nanoparticles are oxidized to (Fe,Ni,Co)Oₓ. Considering the mentioned potential of ternary alloys to improve catalytic activity, exsolution of Ni−Fe−Co ternary alloy nanoparticles from a Sr₀.₉₃(Ti₀.₃F₀.₅₄Ni₀.₀₇Co₀.₀₇)O₃−δ perovskite (STFNC) is explored in this work, and electrochemical impedance spectroscopy tests are made to evaluate the electrode performance for both the fuel oxidation and O₂-reduction reactions.

Figure 1 shows Nyquist and Bode plots of the cell working as anode in wet 10%H₂ at 700 °C and the equivalent circuit model used for fitting. Similar equivalent circuits have been proposed recently for these types of anodes, where several rate-limiting processes can be distinguished. Contributions in the ultrahigh- and high-frequency (UHF and HF) regions are usually attributed to ion and electron charge transfer processes in similar anode materials, while the middle- and low-frequency (MF and LF) contributions are normally attributed to surface processes such as adsorption/desorption of the fuel.
contribution of MF and LF arcs added together (R_{MF+LF}) and the same for the R_{HF+UHF} arcs since these contributions are difficult to separate from one another. Both R_{MF+LF} and R_{HF+UHF} show an Arrhenius type temperature dependence with relatively low activation energies.

Figure 1c shows Nyquist and Bode plots of the STFNC cell working as cathode in air (pristine and re-ox cathode) at 700 °C, together with the equivalent circuit model. Two arcs are easily distinguishable, labeled as high- and low-frequency contributions (HF and LF). The Arrhenius plot of each contribution along with the total resistance (R_{tot}) is shown in Figure 1d. The R_{LF} arc can be attributed to O$_2$ gas diffusion according to its high capacitance values and low activation energy ($C \sim 3 F \cdot cm^{-2}$; $E_a \sim 0.03$ eV). As expected for gas diffusion, this R_{LF} follows the same behavior for both pristine and re-ox cathode. However, the high-frequency arc, fitted with a Warburg type circuit element (R_{HF}), is significantly improved from the pristine to the reox cathode conditions; e.g., at 700 °C R_{HF} decreases around 67%, whereas at 500 °C it decreases as much as ~428%. Then, this contribution is probably due to a co-limiting process involving O-ion diffusion and a surface exchange process, which is improved by surface modification induced by the redox cycle.

The anode polarization resistance ($R_{P,A}$) values measured for STFNC were 1.12 Ω·cm2 (700 °C) and 3.93 Ω·cm2 (600 °C) in a wet 10%H$_2$ atmosphere, and the cathode polarization resistance ($R_{P,C}$) values measured in air were 0.054 Ω·cm2 (700 °C) and 0.14 Ω·cm2 (600 °C) before reduction, with a significant improvement to 0.042 Ω·cm2 (700 °C) and 0.071 Ω·cm2 (600 °C) after reduction/reoxidation was performed. These values suggest that STFNC could be a potential electrode material for intermediate-temperatures symmetric-SOFC. Larger resistance values were found for a SrTi$_{0.5}$Fe$_{0.07}$O$_{3+\delta}$ sample prepared by the same sol–gel method, with R_{P} values at 700 °C of 0.45 Ω·cm2 as cathode and of 7.89 Ω·cm2 as anode also in a wet 10%H$_2$ atmosphere. Also, larger resistance values are usually found for other electrodes proposed as candidates for symmetric-SOFC such as chromites La$_{0.75}$Sr$_{0.25}$Cr$_{0.5}$Mn$_{0.5}$O$_{3+\delta}$, also for La$_{0.8}$Sr$_{0.2}$FeO$_{3+\delta}$ ferrites, Co-doped La$_{0.8}$Sr$_{1.2}$Fe$_{0.7}$Co$_{0.3}$O$_{3+\delta}$ double perovskite, and for Pr$_{0.6}$Sr$_{0.4}$Fe$_{0.7}$Ni$_{0.3}$O$_{3+\delta}$ materials. A recent study showed a similar La$_{0.8}$Sr$_{0.2}$Fe$_{0.7}$Ti$_{0.2}$Co$_{0.1}$O$_{3+\delta}$ perovskite with a $R_{P,A}$ of ~0.8 Ω·cm2 at 700 °C as anode in pure humidified H$_2$, and a $R_{P,C}$ of 0.1 Ω·cm2 as cathode at 700 °C in air. A SrFe$_{0.8}$W$_{0.2}$O$_{3+\delta}$ electrode was also recently investigated, reporting $R_{P,A}$ values of 0.2 Ω·cm2 in pure wet H$_2$, and a $R_{P,C}$ of 0.084 Ω·cm2 in air, but these were obtained at temperatures of 800 °C. Comparison of STFNC electrode with the materials in the literature gives very promising results, with a reasonably good anode performance considering the soft reducing atmosphere used (humidified 10% H$_2$) and the low temperatures (up to 700 °C), and with a remarkable cathode performance, with lower R_P values than that of the S-SOFC electrodes previously cited.

The improvement of cathodic performance for the re-ox, compared to the pristine STFNC, can be attributed to the changes induced in the sample after exsolution. Figure 2a shows the X-ray diffraction (XRD, Panalytical Empyrean diffractometer with Cu Kα radiation) patterns of the STFNC sample before and after reduction at 750 °C in a wet 10%H$_2$ atmosphere for 4 h (labeled pristine and reduced, respectively), and after reoxidation for 1 h in air at 750 °C (reoxidized). The perovskite peaks shift to the left in the reduced sample, indicating a higher lattice parameter, which can be the result of accommodating O vacancies after the reduction process, and of the modified stoichiometry after metal exsolution. A metallic phase matching Ni/Fe/Co FCC structure can be identified in this reduced sample and is no longer present in the reoxidized case, whereas small peaks associated with the formation of transition metal oxide with FCC structure are observed. This suggests that the nanoparticles become fully oxidized after the 1 h reoxidation treatment at 750 °C. The metallic phase observed in the reduced sample is further confirmed by a STEM-EDS map shown in Figure 2b (TEM TALOS F200X equipped with 4 windowless SDD Super-X EDS detector system). The different chemical elements are identified with nanometer resolution, which allows one to obtain detailed information about the nanoparticle’s composition and sizes (ranging from ~10 to ~40 nm).

Figure 2. (a) XRD pattern of the STFNC sample before (pristine), after reduction in a 10%H$_2$/3%H$_2$O/87%Ar atmosphere at 750 °C (reduced), and after reoxidation at 750 °C for 1 h in air (reoxidized). (b) STEM HAADF image and EDS maps of Sr, Ti, Fe, Co, and Ni of the reduced sample.
Nanoparticles with high concentrations of Ni and Co can be distinguished from the parent oxide with the EDS mapping. The situation is not as clear in the Fe map, since the perovskite matrix still contains plenty of Fe after exsolution and thus there is no contrast between the nanoparticles and the oxide. For this reason, a punctual EDS analysis over one nanoparticle is shown in Figure 3a (FEI TECNAI F20 microscope). This analysis reveals that the nanoparticle is formed with approximately equal amounts of Ni, Fe, and Co. The fact that Ni, Fe, and Co do not exsolve separately to form isolated particles, but are instead found forming a homogeneous ternary nanostructured phase, may lead to new questions regarding the exsolution mechanisms: do these metals exsolve together once a diffusion path is formed? Or do they exsolve separately and then aggregate on the surface, as was suggested by Kwon et al.?24 Answers to these questions may be found with advanced materials science techniques such as in situ microscopy, as was studied for single metal Ni exsolution from \(\text{La}_{0.43}\text{Ca}_{0.37}\text{Ti}_{0.94}\text{Ni}_{0.06}\text{O}_{3-\delta} \).25

Punctual EDS analysis was also performed over the parent oxide, revealing that there is no Ni nor Co left in the perovskite, in contrast to the EDS map of Figure 2b for Ni and Co (although there the signal could be due to a noise contribution). In the following we will assume that almost all of the Ni and Co segregates to the surface, and thus there is no Ni or Co left in the perovskite after exsolution. Then, considering that the exsolved alloy contains almost equal amounts of Ni, Co, and Fe and that all of the Ni and Co are exsolved, we can state that approximately 0.07 of each of these metals left the B-site of the perovskite to form metallic nanoparticles. This reaction is described in eq 1.

\[
\text{SrTiO}_3 \rightarrow 0.07\text{NiFeCo} + 0.93\text{Sr(Ti, Fe)}\text{O}_{3+\delta} + x\text{O}_2
\]

(1)

Thus, the resulting perovskite has an equivalent \(AB_{0.85}\text{O}_{3+\delta} \) stoichiometry. Although this result is not exact and comes from a series of assumptions, it serves to illustrate that there is a Sr excess after exsolution. The sample can accommodate this Sr excess by segregation of SrO (reaction 2) or by forming a layered perovskite (reaction 3), as well as a combination of these two possibilities.

\[
\text{Sr(Ti, Fe)}_{0.85}\text{O}_{3+\delta} \rightarrow 0.15\text{SrO} + 0.85\text{Sr(Ti, Fe)}\text{O}_{3-\delta}
\]

(2)

\[
\text{Sr(Ti, Fe)}_{0.85}\text{O}_{3-\delta} \rightarrow 0.15\text{Sr(Ti, Fe)}\text{O}_{3-\delta} + 0.7\text{Sr(Ti, Fe)}\text{O}_{3-\delta}
\]

(3)

In fact, Figure 3b shows a HR-TEM image over a zone of the sample where a fringe pattern with a periodicity of \(\sim 13 \) Å can be observed, suggesting the formation of a layered structure, compatible with an \(n = 1 \) Ruddlesden–Popper phase \(\text{Sr}_n\text{(Ti, Fe)}\text{O}_{2n+1} \). The corresponding EDS analysis reveals a Sr-rich composition for this area. Although the exact configuration of the resulting sample is not clear, the fact that there is an excess of Sr after exsolution is evident and it is a potential drawback to electrochemical performance. On the other hand, since exsolution itself is beneficial to electrochemical performance, the combination of these two effects gives a more complex result. Also, the Sr excess could be detrimental to the SOFC performance after long-term operation. Experimenting with different amounts of Ni and Co doping could give a better compromise between the amount of exsolved metal phase and the Sr excess that remains after exsolution.

As a summary, exsolution of NiCoFe ternary alloy nanoparticles from a STF-based perovskite was achieved. Surprisingly, these metals were seen to exsolve together, forming a unique NiFeCo phase with similar amounts of each metal. Electrochemical impedance spectroscopy tests were performed with the STFNC sample before (pristine) and after exsolution (re-ox), observing an improved performance for the re-ox sample. However, the exsolution of a large amount of B-site metals results in a Sr excess after exsolution, which could affect negatively the cell performance after long-term operation. Experimenting with different amounts of Ni and Co doping could be a key to finding a better compromise between the amount of exsolved metals and the Sr excess that remains after exsolution. In any case, we believe that exsolution of ternary alloy phases is a very interesting phenomenon to be investigated further.
The STFNC was prepared by a glycine combustion sol–gel method adapted from ref 14 and using titanium butoxide (C5H9O3Ti), SrCO₃, Fe(NO3)₃·9H2O, Ni(NO3)₂·6H2O, and Co(NO3)₂·6H2O as starting materials. The resulting powder was treated for 6 h at 850 °C and deposited on La0.8Sr0.2Ga0.8Mg0.2O3 (LSGM) dense electrolyte. A buffer layer of La0.6Ce0.4O2–δ (LDC) was previously deposited over the electrolyte surface, to avoid chemical reaction between the LSGM electrolyte and the STFNC electrode. The electrode ink was spin coated over the LSGM/LDC electrolyte and fired at 1000 °C for 1.5 h. A silver grid was painted on top of the electrodes, and gold contacts were used on top as current collectors. Electrochemical impedance spectroscopy (EIS) tests were performed on symmetrical cell STFNC/LDC/LSGM/LDC/STFNC electrodes by using an Autolab PGSTAT32/FRA2 potentiostat and frequency analyzer, with STFNC/LDC/LDC/STFNC electrodes by using an Autolab PGSTAT32/FRA2 potentiostat and frequency analyzer, with frequencies ranging from 1 MHz to 10 mHz, and with 10 mV AC perturbation and no DC bias. EIS measurements were carried out in air, raising the temperature to 700 °C (pristine cathode). Then, STFNC was reduced at 700 °C in a 10%H2/3%H2O/87%Ar atmosphere to exsolve the metallic nanoparticles (exsolved anode), which was evaluated as a function of temperature between 700 and 550 °C in this reducing atmosphere. Afterward, the electrode was reoxidized and measured again in air (re-ox cathode).

EXPERIMENTAL METHODS

AUTHOR INFORMATION

Corresponding Author

Horacio E. Troiani — Departamento Caracterización de Materiales, CNEA-CONICET, Centro Atómico Bariloche, CP8400 San Carlos de Bariloche, Argentina; Instituto Balseiro, Universidad Nacional de Cuyo, R8402AGP San Carlos de Bariloche, Argentina; Email: troiani@cab.cnea.gov.ar

Authors

Mariano Santaya — Departamento Caracterización de Materiales, Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, Centro Atómico Bariloche, CP8400 San Carlos de Bariloche, Argentina

Alberto Caniero — Y-TEC, YPF Tecnología, CP1923 Berisso, Argentina

Liliana V. Mogni — Departamento Caracterización de Materiales, Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, Centro Atómico Bariloche, CP8400 San Carlos de Bariloche, Argentina; Instituto Balseiro, Universidad Nacional de Cuyo, R8402AGP San Carlos de Bariloche, Argentina

Complete contact information is available at: https://pubs.acs.org/10.1021/acsaem.0c01997

Funding

We received funding from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Grant PIP-0565, the Agencia Nacional de Promoción de Ciencia y Tecnología (ANPCyT) Grant PICT 2016-2965, the Comisión Nacional de Energía Atómica (Grant PAC 2019-2020), and the Instituto Balseiro-Universidad Nacional de Cuyo (Grants 06/CS83 and 06/C601).

Notes

The authors declare no competing financial interest.

(19) Cao, Y.; Zhu, Z.; Zhao, Y.; Zhao, W.; Wei, Z.; Liu, T. Development of tungsten stabilized SrFe$_{0.8}$W$_{0.2}$O$_{3-\delta}$ material as novel symmetrical electrode for solid oxide fuel cells. J. Power Sources 2020, 455, 227951.

(20) Ruiz-Morales, J. C.; Canales-Vázquez, J.; Peña-Martínez, J.; López, D. M.; Núñez, P. On the simultaneous use of La$_{0.75}$Sr$_{0.25}$Cr$_{0.5}$Mn$_{0.5}$O$_{3-\delta}$ as both anode and cathode material with improved microstructure in solid oxide fuel cells. Electrochim. Acta 2006, 52, 278–284.

(22) Zhou, J.; Shin, T. H.; Ni, C.; Chen, G.; Wu, K.; Cheng, Y.; Irvine, J. T. S. In Situ Growth of Nanoparticles in Layered Perovskite La$_{0.8}$Sr$_{1.2}$Fe$_{0.9}$Co$_{0.1}$O$_{4-\delta}$ as an Active and Stable Electrode for Symmetrical Solid Oxide Fuel Cells. Chem. Mater. 2016, 28, 2981–2993.

(23) Lu, X.; Yang, Y.; Ding, Y.; Chen, Y.; Gu, Q.; Tian, D.; Yu, W.; Lin, B. Mo-doped Pr$_{0.6}$Sr$_{0.4}$Fe$_{0.8}$Ni$_{0.2}$O$_{3-\delta}$ as potential electrodes for intermediate-temperature symmetrical solid oxide fuel cells. Electrochim. Acta 2017, 227, 33–40.
