PAPER

Artificial pinning centers in MgB$_2$ superconducting bulks

To cite this article: L B S Da Silva et al 2020 Supercond. Sci. Technol. 33 045013

View the article online for updates and enhancements.
Artificial pinning centers in MgB\(_2\) superconducting bulks

L B S Da Silva\(^1\), A Serquis\(^2\), E E Hellstrom\(^3\) and D Rodrigues Jr\(^1\)

\(^1\)Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP, Brazil
\(^2\)Centro Atomico Bariloche, INN-CONICET-CNEA, San Carlos de Bariloche, RN, Argentina
\(^3\)Applied Superconductivity Center, Florida State University, Tallahassee, FL, United States of America

E-mail: lucasarno@usp.br and durval@demar.eel.usp.br

Received 12 November 2019, revised 31 January 2020
Accepted for publication 10 February 2020
Published 28 February 2020

Abstract

The optimization of MgB\(_2\) superconducting properties is extremely important for practical application. The introduction of an effective artificial pinning center in this material can enhance its critical current density efficiently. In this paper, VB\(_2\) is described as a material that provides effective pinning in the MgB\(_2\) bulks. The simultaneous addition of SiC as a carbon source is also analyzed. The samples were prepared using ball milling under a controlled atmosphere and heat treatment with a continuous argon flux. As a result, the superconducting properties could be optimized due to the effective improvement in the pinning behavior as well as with the carbon doping.

Keywords: MgB\(_2\), artificial pinning center, VB\(_2\), addition, SiC doping, critical current density, pinning

(Some figures may appear in colour only in the online journal)

1. Introduction

MgB\(_2\), with its known superconductivity since 2001 [1], is considered a strategic material for practical applications. The principal characteristics of this superconducting material are the high value of its critical temperature (~39 K), the transport capacity (~10\(^5\) A cm\(^{-2}\)) and the absence of weak-link problems [2]. Another advantage of this material is the possibility to improve its superconducting properties through small changes in the synthesis parameters. The principal mechanisms that can be optimized through the synthesis process are the grain connectivity, densification, MgO growth, pinning, and doping.

Many research groups have worked with chemical doping in an attempt to replace Mg and/or B in the crystalline structure of MgB\(_2\). Some chemical elements, such as Ti, Zr, Hf, Al, Mn, Li, Si, Ta, Zr and others [3–9], were used as doping elements. Changes in the intrinsic properties were observed, such as the enhancement of the critical temperature (\(T_c\)) and the upper critical magnetic field (\(H_{c2}\)). Other effective doping methods occur with addition of carbon sources (including organic sources) [9–16], causing the replacement of B with C atoms in the crystalline structural of MgB\(_2\) [10, 11].

Another procedure which has been used to improve the critical current density is the addition of structural defects in the MgB\(_2\) matrix. These defects can act as efficient pinning centers if their dimensions are comparable to the coherence length of MgB\(_2\) [12]. In recent years, the Group of Superconductivity of the Lorena Engineering School—University of São Paulo, in collaboration with other groups, have worked with addition of other diborides in the MgB\(_2\) phase. These diborides, with the same AlB\(_2\) crystaline structure as MgB\(_2\) [7–9, 15, 17, 18], proved to be a good option for pinning improvement. In previous works using TaB\(_2\) and ZrB\(_2\) as additions [7–9] it could be seen that the critical current density of the material was enhanced. That behavior was attributed to the fact that Ta and Zr doping can replace Mg atoms in the crystalline structure of MgB\(_2\) and simultaneously improve pinning with the introduction of defects in the superconducting matrix. The addition of AlB\(_2\) and VB\(_2\) was also tested previously [15], and the effect of this new composite in the MgB\(_2\) superconducting properties is also the enhancement of the critical current density. However, the reasons for this improvement were unknown. The enhancements in the MgB\(_2\) superconducting properties when other diboride are added in the production process of MgB\(_2\) is the main motivation to continue studying this method. VB\(_2\) is specially interesting
due to the immiscibility between V and Mg, with the possibility to study only the effect of the introduction of artificial pinning centers in the superconducting properties of MgB$_2$ without doping.

In this work, VB$_2$ is mixed with MgB$_2$ during the preparation process, using ball milling and a controlled atmosphere. Samples with simultaneous additions of VB$_2$ and SiC were also prepared, focusing on the improvement of critical current density and irreversible magnetic field, important characteristics for practical applications. A detailed discussion is made in an attempt to define the influence of this addition on the MgB$_2$ superconducting behavior and on the pinning mechanisms acting in the material. The microstructural and crystallographic characterization were simultaneously analyzed alongside the superconducting properties.

2. Experimental procedure

MgB$_2$ superconducting bulks with the addition of VB$_2$ and simultaneous addition of VB$_2$ and SiC were prepared. The use of VB$_2$ is an attempt to introduce artificial pinning centers in the superconducting matrix. SiC is a carbon source to enhance the irreversibility field [10, 11]. The production methodology uses the in situ method, ball milling under nitrogen atmosphere and heat treatment with continuous argon flux.

Table 1 shows the specification of the initial material. Pure powders of Mg and B and powders with 2 at% of VB$_2$ and with 10 wt% of SiC were mixed using a ball mill machine (Fritsch—Laborgerätebau, Industriests 8) for 1 h in a glovebox with controlled atmosphere of nitrogen. The powders were compacted using a uniaxial press under a pressure of ~10 MPa. The heat treatment was performed under continuous argon flux and with a 3°C min$^{-1}$ heating rate to 600 °C, holding for 2 h, and slow cooling with a 2°C min$^{-1}$ rate to room temperature. This profile of heat treatment was chosen to promote the sintering, densification and improvement of the intergrain connectivity [7, 19, 20]. Table 2 shows the MgB$_2$ samples prepared and analyzed in this work.

The crystallographic characterization was performed with a Shimadzu model XRD 6000 diffractometer at room temperature, using Ni-filtered Cu-K$_\alpha$ x-ray radiation (1.5417 Å), scanning between 20° and 80° with an angular step of 0.02° in 2θ with 1 s of counting per point. The samples were measured as powders, to avoid preferred orientations. The crystallographic refinement was simulated using the Full Prof software (freeware), and the Rietveld method [21].

Optical characterization was performed using a Micro-Raman spectrometer (Renishaw 2000T 64000), with 747 nm light radiation and xy polarization. Polarization was used to analyze only the E_{2g} phonon radiation, due to the strong electron-phonon interactions.

A Quantum Design Evercool II physical properties measurement system (PPMS) with vibration sample measurement (VSM) was used to perform the superconducting characterization and extract the superconducting parameters.

3. Results and discussion

A compilation of the x-ray crystallography characterization and crystalline refinement using the Rietveld method is showed in Table 3. Figure 1 displays the x-ray diffractogram after refinement for the sample of MgB$_2$ with simultaneous addition of 2 at% of VB$_2$ and 10 wt% of SiC. The $Y_{ obs} - Y_{calc}$ curve and the value of chi2, demonstrate the good quality of the refinement.

For all samples the presence of MgO was detected, with values ranging between 15 and 20 wt% even with all experimental care taken during the preparation process of the bulks. This behavior is intrinsic of the production process, when working with Mg and B, due to the easy oxidation of these elements. The grown of Mg$_2$Si is due to the SiC addition and

<table>
<thead>
<tr>
<th>Table 1. Powders specification.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powders</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>Mg</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>VB$_2$</td>
</tr>
<tr>
<td>SiC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2. Stoichiometry and sample names for MgB$_2$ bulks.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample parameters</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Pure MgB$_2$</td>
</tr>
<tr>
<td>MgB$_2$ + 10 wt% SiC</td>
</tr>
<tr>
<td>MgB$_2$ + 2 at% VB$_2$</td>
</tr>
<tr>
<td>MgB$_2$ + 2 at% VB$_2$ + 10 wt% SiC</td>
</tr>
</tbody>
</table>
an evidence for C doping. Even with Mg oxidation and the addition of new elements, the MgB$_2$ phase is between 72 and 83 wt% of the total bulk. The XRD analysis corresponds to a small fraction of the total bulk, and the SiC concentration in the MgB$_2$ + 2% VB$_2$ sample shows that the SiC phase may be more concentrated in certain bulk regions and not homogeneously distributed in the MgB$_2$ matrix.

Using conventional XRD, the lattice parameters a and c do not present significant changes. However, it is known that even a small amount of a C source is enough to promote C doping in the MgB$_2$ crystalline structure [22]. Maybe a more accurate technique can identify some significant changes in the MgB$_2$ lattice parameter. On the other hand, as expected due to the immiscibility between Mg and V, the lattice parameter a and c also do not present significant changes, when VB$_2$ is added.

Figure 2 shows the microstructure of the MgB$_2$ matrix with addition of VB$_2$ powders, using the backscattered electron detection mode and fractured sample. Some small grains of VB$_2$ randomly scattered in the MgB$_2$ matrix can be identified by the contrast difference. High densification and a lack of pores in the superconducting matrix is observed, important characteristics for superconducting properties.

Figure 3 displays the microstructure of the MgB$_2$ + VB$_2$ sample, using a secondary electron detecting mode and fractured sample. The MgO phase is seen as a thin cloud around the MgB$_2$ matrix. The amount of these oxide regions could be quantified with x-ray diffractometry analyses (∼15–20 wt%). These MgO in excess can be prejudicial to the superconducting properties because they affect the inter-grain connectivity [23].

Figure 4 exhibits the microstructure of a VB$_2$ grain, analyzed using TEM in high-resolution mode. This micrograph shows the 101 orientation, with an interplanar distance of ∼1 nm. A diameter of about 15 nm was estimated treating this grain as a sphere. The size of these inclusions is important for the effective performance as artificial pinning centers, improving the J_c and H_{irr} of the samples. The VB$_2$ grain is embedded in the MgB$_2$ superconducting matrix.

Figure 5 presents the E$_{2g}$ Raman phonon spectroscopy for all samples, with xy polarization. All curves follow the same behavior and the peaks of the maximum for the E$_{2g}$ Raman phonon show a thin dislocation to higher energy when SiC and VB$_2$ are added in the production process, compared with the
pure MgB$_2$ sample. According to Parisiades et al. 2009 [22], MgB$_2$ doping with different materials could displace the peak maximum. This displacement to high energy can be caused by C doping with the replacement of B to C atoms in the MgB$_2$ crystalline structure. The dislocation of about 23 cm$^{-1}$ in the peak maximum of E$_{2g}$ Raman phonon spectroscopy with xy polarization.

Figure 5. E$_{2g}$ Raman phonon spectroscopy with xy polarization.

Studying the magnetic hysteresis curves in the ZFC and FC regimes, the magnetic susceptibility as a function of temperature was used to estimate the superconducting fraction. The demagnetization factor due to the parallelepiped geometry of the sample was considered and was estimated according to Sato, 1989 [24]. The values of superconducting fraction can be seen in table 4. These values show the large amount of impurities and unreacted MgB$_2$ phase.

DC magnetization loops versus applied magnetic field at 5 K and 20 K were used to extract the J_c (H, T = 5 K and 20 K) versus μ_0H curves using

$$J_c = \frac{20\Delta M}{a_1(1 - \frac{a_1}{a_2})}$$

where ΔM is the difference of magnetization in a given field, a_1 and a_2 ($a_1 < a_2$) are the lengths of the parallelepiped edges perpendicular to the magnetic field, and J_c is given in CGS units. This equation follows the Bean critical model [25].

Figure 6. Normalized magnetization as a function of temperature, under an applied magnetic field of 30 Oe.

Table 4 also presents the irreversibility fields H_{irr} and upper critical field H_c determined using the onset of M versus μ_0H curves and the intersection of M versus μ_0H curve with the abscissa axis, respectively. Figure 7(a) is an example how the H_{irr} and H_c were determined, according to Fuchs et al. [26] criterion. For the samples measured at 5 K, the H_{irr} and H_c are higher than the applied magnetic field, therefore the M versus μ_0H curves were fitted and extrapolated to estimate the H_{irr} (figure 7(b)), H_c could not be found.

Figure 8 shows the curves of critical current densities as a function of the applied magnetic field, at 5 K and 20 K. Under high magnetic field, the values of J_c for the samples with addition of SiC are higher than those obtained for the pure MgB$_2$ sample, due to carbon doping and the replacement of B with C atoms in the crystalline structure of MgB$_2$. However, the improvement of the critical current densities under high magnetic field for samples with addition of VB$_2$ has a different explanation. The addition of VB$_2$ in the superconducting matrix introduces crystalline defects in the material with sizes comparable to the coherence length of the MgB$_2$ (table 4), acting as efficient pinning centers. The enhancement in the value of H_{irr} is another effect caused by the same reason. The reason for the enhancement of J_c for the samples with VB$_2$ addition only under a high magnetic field is exactly due to the action of artificial pinning centers addition, when the magnetic flux lines penetration is more intense.

When the sample is prepared with the combined addition of SiC and VB$_2$, the result is the enhancement of the critical current densities in high magnetic field and an effective improvement in the MgB$_2$ superconducting properties. The SiC addition acts as an effective carbon dopant and the VB$_2$ acts as effective pinning centers.

Figure 9 displays the curves of the pinning forces as a function of applied magnetic field. The inset of figure 9 exhibits the normalized curves of reduced flux pinning force $f_p/F_{p\text{max}}$ as a function of reduced magnetic field $b = B/B_{c2}$ for all samples. The shape of the f_p versus b curves
indicates the pinning mechanisms acting in the sample, according to the Dew-Hughes model \(^{27,28}\). As expected, due to the granular nature of the MgB\(_2\) superconducting phase, the pinning mechanism acting in the pure sample is essentially due to the grain-boundaries (nucleon-surface-normal, \(n_b \cdot n_n = \frac{1}{2}\)). Under a high magnetic field, the pinning forces of the samples with the addition of VB\(_2\) are higher than those observed for the others. The addition of SiC also changes the shape of the \(f_p\) versus \(b\) curves and it shifts the \(b_{f_{\text{max}}}\) to lower values (table 4), an indication that another pinning mechanism is acting simultaneously with the grain-boundaries pinning, probably due to a normal phase (nucleon-volume-normal, \(f(b) = (1-b)^2\)). These normal phases can be the VB\(_2\), unreacted SiC and/or Mg\(_2\)Si, according to the XRD analyzes.

Table 4 presents the values of the coherence lengths for samples at 20 K. The average coherence length is around 7 nm at 20 K, comparable to the grain size of the VB\(_2\) included in the superconducting matrix (figure 4). These sizes of the coherence length and the superconducting behavior are clear evidence that the addition of VB\(_2\) in the preparation process was efficient, producing effective pinning, which agrees with the \(F_p\) versus \(\mu_0 H\) and \(f_p\) versus \(b\) curves (figure 9).

The coherence lengths were calculated using the following equation

\[
\xi(T) = \frac{\phi_0}{\sqrt{2\pi H_{c2}(T)}}
\]

where, \(\phi_0 = \frac{h}{2\pi} = 2.0679.10^{-15}\) Tm\(^2\) is the magnetic flux quantum \(^{26}\). The values of \(H_{c2}(T)\) were extracted at the intersection of \(M\) versus \(\mu_0 H\) curve with the abscissa axis \(^{26}\).
4. Conclusion

The MgB2 sample preparation methodology and the VB2 and SiC additions were efficient, adding effective artificial pinning centers and effective doping, respectively improving the critical current densities of the material in a high magnetic field and enhancing the H_{c2}. With the combination of crystallography, microstructural, optical, and superconducting analyses it could be concluded that the reason for this enhancement in the superconducting properties of the samples could be attributed to carbon doping with the addition of SiC and to the introduction of VB2 clusters acting as effective pinning centers. The sample that presents the best superconducting behavior is the MgB2 with the simultaneous addition of 10 wt% of SiC and 2 at% of VB2.

Acknowledgments

The authors acknowledge the LME/LNNano, Brazil, for technical support during the electron microscopy work, and the financial support by São Paulo Research Foundation (FAPESP, grant #2018/11521-5), CNPq, and CAPES, Brazil and ANPCyT, Argentina. DRJ is a CNPq researcher and AS is CONICET-CNEA researcher.

ORCID iDs

L B S Da Silva https://orcid.org/0000-0002-8086-0857
A Serquis https://orcid.org/0000-0003-1499-4782
E E Hellstrom https://orcid.org/0000-0001-8263-8662
D Rodrigues Jr https://orcid.org/0000-0001-6522-1777

References

[5] Slusky J S et al 2001 Loss of superconductivity with the addition of Al to MgB2 and a structural transition in $\text{Mg}_{1-x}\text{Al}_x\text{B}_2$ Nature 410 343

Table 4. Superconducting parameters of the samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>$T_{c\text{MAX}}$ (K)</th>
<th>ΔT_c (K)</th>
<th>H_{c2}(5 K) (T)</th>
<th>H_{c2}(20 K) (T)</th>
<th>H_{c2}(50 K) (T)</th>
<th>ξ(20 K) (nm)</th>
<th>b_{fmax}</th>
<th>Super. Fraction</th>
</tr>
</thead>
</table>
sources, prepared using high energy ball milling and HIP
Phys. Proc. 36 468–74
current density and flux pinning of MgB2 superconductor by
nanoparticle SiC doping Appl. Phys. Lett. 81 3419–21
[20] Larbalestier D C et al 2001 Strongly linked current flow in
polycrystalline forms of the superconductor MgB2 Nature
410 186–9
[21] Rodriguez-Carvajal J 1993 Recent advances in magnetic
structure determination by neutron powder diffraction
Physica. B 192 55–69
[22] Parisiades P, Liarokapis E, Zhigadlo N D, Katrych S and
Karpinski J 2009 Raman investigations of C-, Li- and Mn-
Willis J O, Peterson D E and Mueller F M 2002 Influence of
microstructures and crystalline defects on the
superconductivity of MgB2 J. Appl. Phys. 92 351
demagnetizing factors of uniformly magnetized
rectangular rod and cylinder J. Appl. Phys. 66 983
Rev. Lett. 8 250
[26] Fuchs G, Müller K H, Handstein A, Nenkov K,
Upper critical field and irreversibility line in
superconducting MgB2 Solid State Commun. 118
497–501
[27] Dew-Hughes D 1974 Flux pinning mechanism in type II
superconductors Phil. Mag. B 30 293
[28] Dew-Hugles D 1987 The role of grain boundaries in
determining Jc in high-field high-current superconductors
Phil. Mag. B 55 459