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Abstract. We analyze the dynamics of entanglement due to decoherence in a
system of two identical fermions with spin 3/2 interacting with a global bosonic
environment. We make use of an appropriate measure of the so-called fermionic
entanglement to quantify the fermionic correlations, and compare the dynamical
effects due to decoherence with those that arise in a pair of distinguishable
qubits immersed in the same environment. According to the system’s initial
state, three types of qualitatively different dynamics are identified: i) invariant
regime, corresponding to initial states that belong to a decoherence free subspace
(DFS), which maintain invariant their entanglement and coherence throughout
the evolution; ii) exponential decay, corresponding to initial states orthogonal to
the DFS, and evolve towards states whose entanglement and coherence decrease
exponentially; iii) entanglement sudden death, corresponding to initial states that have
some overlap with the DFS and exhibit a richer dynamics leading, in particular,
to the sudden death of the fermionic entanglement, while the coherence decays
exponentially. Our analysis offers insights into the dynamics of entanglement
in open systems of identical particles and into the existence of decoherence free
subspaces and entanglement sudden death in indistinguishable-fermion systems.

Keywords: Dynamics of entanglement, Sudden death and sudden birth, Fermionic
systems, Decoherence, Avoiding Errors

Submitted to: J. Phys. A: Math. Gen.

Page 1 of 19 AUTHOR SUBMITTED MANUSCRIPT - JPhysA-114022.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Sudden death of entanglement in fermionic systems under collective decoherence 2

1. Introduction

Entanglement and coherence are fundamental features of quantum information
processing (QIP) [1, 2]. The former, exhibiting non-classical correlations, is
commonly referred to as a key resource for quantum information tasks [3]. The
latter, corresponding to the capability of a system to allow for the interference of
its possible states, has two important roles both in quantum control schemes and
in settling the conditions to allow for quantum correlations, included entanglement
[4].

In real experimental applications, the coupling of a system to the surrounding
environment generally causes decoherence, which manifests as a loss of coherence
and entanglement and leads to the concomitant loss of the quantum properties of the
system (an algorithm based on systems whose states are completely decohered can
be simulated by classical computers [5]). Consequently, the quantum information
community is continuously researching around a specific goal: to avoid decoherence
in a particular quantum information task. A possible solution is implemented by
error correction theory [6]. An alternative scheme consists in avoiding errors, by
encoding the information employing states belonging to decoherence-free subspaces
(DFS) [7, 8]. A remarkable model within this latter approach is collective decoherence,
which implies that the environment couples in the same way to each part of the
quantum global system [9, 10]. There exist experimental applications implementing
this approach to different systems such as trapped ions, superconducting devices
and neutral atoms [11–16].

As for entanglement, a typical behaviour when the (entangled) system couples
to its environment is an exponential decay. However, under certain quantum
channels it has been shown that the entanglement may completely vanish in a finite
time, dynamic denominated as entanglement sudden death (ESD) [17,18]. This notable
phenomenon has been the subject of several theoretical and experimental studies
and is recognized as more disruptive (when compared with the typical decay) to QIP
due to the complete disappearance of entanglement [19–26]. Thus, it is important to
identify the possible initial set-ups and interactions which can exhibit ESD .

Research on the dynamics of entanglement and coherence under decoherence
channels has been largely developed, but mostly circumscribed to study systems
of distinguishable parties. However, many physical applications in QIP involve
systems composed of identical particles [27], in which the exchange symmetry has
to be taken into account. This calls for studies focusing on the dynamics of useful
quantum resources (particularly entanglement and coherence) in composite systems
of indistinguishable parties, able to reveal whether or not phenomena which are well-
known in the distinguishable-particle case (such as ESD) are also exhibited in the
indistinguishable-particle scenario. A first important difference between these two
cases is that the model of local interaction with independent reservoirs ceases to
be valid when dealing with identical, indistinguishable parties. Indeed, an open
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Sudden death of entanglement in fermionic systems under collective decoherence 3

bipartite system preserves the symmetry under the exchange of its (non-interacting)
parts if and only if there is a common environment, so that the evolution is global
(non-local) [28]. This is especially relevant when studying decoherence processes in
identical-particle systems, a matter that is analyzed below, in relation with systems
of two identical fermions [29].

In this paper we contribute to the analysis of the dynamics of entanglement
and decoherence in composite systems with exchange symmetry, in contrast with
usual approaches involving distinguishable parties. In particular, we study the
collective decoherence approach in a pair of 3/2-spin indistinguishable fermions,
and explore whether the evolution of both the (fermionic) entanglement and the
coherence share some features with those that appear in a pair of distinguishable
qubits embedded in a global environment. The reason why we compare two
3/2-spin fermions with two 1/2-spins is that these systems correspond to the
smallest composites of indistinguishable and distinguishable parties, respectively,
that exhibit the phenomenon of entanglement. Thus our comparison amounts to
compare the dynamics in the simplest indistinguishable vs distinguishable bipartite
entangled systems. As a result, we find conditions that guarantee the existence of a
DFS when considering two identical fermions under collective and non-dissipative
decoherence, and also the conditions leading to ESD in that same system.

The article is organized as follows. In Sec. 2 we introduce the reader
to the basics of entanglement in indistinguishable-fermion systems, in particular
to the corresponding (fermionic) entanglement measure, and briefly review its
distinguishable-qubit counterpart. Section 3 is devoted to present the surrounding
environment and the non-dissipative dynamical model under which the central
system (either constituted by fermions or qubits) will evolve. In Sec. 4 we consider
different initial states and investigate the dynamics of the entanglement and the
coherence in the open system consisting of two identical fermions and compare
it with that of a two-(distinguishable)-qubit system. In particular, our examples
disclose the existence of decoherence-free subspaces for each system of interest, and
also the presence of entanglement sudden death and sudden birth, for a particular
choice of initial states. We summarize and conclude this work in Sec. 5.

2. Entanglement in two-identical-fermion systems

Let us consider a pair of identical, indistinguishable particles, and denote with
H the single-particle Hilbert space (with dimH = d), with an orthonormal
basis {|i〉} = {|1〉 , |2〉 , . . . , |d〉}. Let HS = H ⊗ H stand for the Hilbert space
of the composite (two-particle) system S. The antisymmetric subspace of HS,
namely H−, has dimension d(d − 1)/2, and is spanned by vectors {|ψ−n 〉} with
n ∈ {1, 2, . . . , d(d − 1)/2}. In its turn, the symmetric subspace of HS, namely
H+, has dimension d(d + 1)/2, and a basis composed of the vectors {

∣∣ψ+
k

〉
} with

k ∈ {1, 2, . . . , d(d + 1)/2}.
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Sudden death of entanglement in fermionic systems under collective decoherence 4

Writing d = 2s + 1, it is convenient to resort to an angular momentum
representation [27], and to identify each state |i〉 of the single-particle basis with
the angular momentum states |s, ms〉, with ms ∈ {−s, . . . , s}, so that

{|1〉 = |s, s〉 , |2〉 = |s, s− 1〉 , ..., |n〉 = |s,−s〉}. (1)

Within this representation, the eigenstates {|j, m〉} (with −j ≤ m ≤ j and 0 ≤ j ≤ 2s)
of the total angular momentum operators Jz and J2, constitute a natural basis of HS.
The antisymmetric eigenstates, characterized by an even value (including 0) of the
quantum number j [30, 31], constitute a suitable basis {|ψ−n 〉} of H−, whereas the
remaining (symmetric) states (with j odd) constitute a basis {

∣∣ψ+
k

〉
} of H+.

If S represents a system composed of a pair of identical fermions, the
appropriate Hilbert space for describing the system is H−. The antisymmetric
combination (with |ij〉 = |i〉 ⊗ |j〉)

|ψsl
ij 〉 =

1√
2
(|ij〉 − |ji〉), (i 6= j) (2)

is called a Slater determinant (state with Slater rank 1). The composite system
of two identical fermions is said to be separable, or non-entangled (throughout
this paper we mean entanglement between particles, as opposed to entanglement
between modes) if and only if its density matrix can be decomposed as a statistical
mixture of pure states of Slater rank 1: [32]

ρ
sep
f f = ∑

ij
pij|ψsl

ij 〉〈ψsl
ij |, (3)

where pij ≥ 0, and ∑ij pij = 1. From here it follows that in order to describe
entangled states of indistinguishable fermions, we need to consider basis of S that
include elements different from Slater determinants.

Now, according to the discussion following Eq. (1), for s = 1/2 the basis {|ψ−n 〉}
possess a single element (with Slater rank 1), and hence no entanglement is present.
Therefore the fermion system of lowest dimensionality exhibiting the phenomenon
of entanglement corresponds to s > 3/2, or rather d > 4 and dimH− > 6. Thus, for
example, for s = 3/2 (d = 4), only the states |j, m〉 with j ∈ {0, 2} are antisymmetric,
and the basis of H− becomes

{
∣∣ψ−n 〉} = {|2, 2〉, |2, 1〉, |2, 0〉, |2,−1〉|2,−2〉, |0, 0〉}. (4)

Determining whether a generic two-fermion state is entangled or not is still an
open problem, yet important progress has been made for some states. In particular,
necessary and sufficient separability criteria have been formulated for two-fermion
pure states in terms of appropriate entropic measures (see [33] and references
therein). Moreover, for fermionic systems with d = 4 a closed analytical expression
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Sudden death of entanglement in fermionic systems under collective decoherence 5

for the amount of entanglement, or fermionic concurrence C f (ρ f f ), in a general (pure
or mixed) two-fermion state ρ f f is known [27],

C f (ρ f f ) = max{0, λ1 − λ2 − λ3 − λ4 − λ5 − λ6}, (5)

where the λi’s are, in decreasing order, the square roots of the eigenvalues of ρ f f ρ̃ f f
with ρ̃ f f = Dρ f f D−1, and

D =



0 0 0 0 1 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1


κ, (6)

where κ is the complex conjugation operator. The matrix D is expressed in the basis
with (ordered) elements: |2, 2〉, |2, 1〉, |2, 0〉, |2,−1〉, |2,−2〉, and i|0, 0〉. Notice that
this is not strictly the total angular momentum basis, due to the additional phase of
the last element.

Table 1 shows the concurrence (5) for each of the states (4). The states |0, 0〉 and
|2, 0〉 are maximally entangled, while all the other states in the list correspond to
single Slater determinants thus have zero (fermionic) entanglement.

The fermionic concurrence is an extension, to identical-fermion systems, of
the usual concurrence Cq which for a two-(distinguishable)-qubit mixed state ρqq

is given by [34]
Cq(ρqq) = max{0, λ1 − λ2 − λ3 − λ4}, (7)

where the λi’s are, in decreasing order, the square roots of the eigenvalues of
ρqqρ̃qq with ρ̃qq = (σy ⊗ σy)ρ∗qq(σy ⊗ σy), and the complex conjugation is taken in
the computational basis

{|k〉} = {|00〉 , |01〉 , |10〉 , |11〉}, (8)

with σz |0〉 = |0〉, and σz |1〉 = − |1〉. From here it follows that the elements
of {|k〉} are eigenstates of the total angular momentum along the ẑ direction
Jz = 1

2 σz ⊗ I2 + I2 ⊗ 1
2 σz, with I2 the 2× 2 identity operator (throughout the paper

we put h̄ = 1).

3. Dynamical model

We now present the dynamical model that will be considered for analyzing the
entanglement dynamics of an open system S (which can be composed of several
parties). We assume that the system interacts globally with an environment E, under
a nondissipative interaction. That is, if the total Hamiltonian writes as

H = HS + HE + HI , (9)

Page 5 of 19 AUTHOR SUBMITTED MANUSCRIPT - JPhysA-114022.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Sudden death of entanglement in fermionic systems under collective decoherence 6

C f∣∣ψ−1 〉 = |2, 2〉 = |ψsl
12〉 0∣∣ψ−2 〉 = |2, 1〉 = |ψsl
13〉 0∣∣ψ−3 〉 = |2, 0〉 = 1√

2
(|ψsl

14〉 − |ψsl
23〉) 1∣∣ψ−4 〉 = |2,−1〉 = |ψsl

24〉 0∣∣ψ−5 〉 = |2,−2〉 = |ψsl
34〉 0∣∣ψ−6 〉 = |0, 0〉 = 1√

2
(|ψsl

14〉+ |ψsl
23〉) 1

Table 1: Vector basis (4) with their corresponding fermionic concurrences.

where HS and HE stand for the free Hamiltonians of S and E, respectively, and HI
denotes the interaction Hamiltonian, then we will focus on those interactions for
which

[HS, H] = 0. (10)

This means that no energy exchange occurs between S and E, so that HS is
conserved.

Further, we will be interested in those cases in which S and E are initially
uncorrelated, so that the initial state of the complete system S + E is

ρ(0) = ρS(0)⊗ ρE(0). (11)

The state at any time t is thus

ρ(t) = e−iHt[ρS(0)⊗ ρE(0)
]
eiHt, (12)

and hence the (reduced) subsystem S evolves as

ρS(t) = TrE
(
e−iHt[ρS(0)⊗ ρE(0)

]
eiHt), (13)

where TrE denotes the partial trace over the degrees of freedom of E.
In particular, following Privman [35], we will assume that the environment is

represented by a bosonic bath, whose modes {k} are characterized by creation (a†
k)

and annihilation (ak) operators satisfying [ak, a†
k ] = 1. Further, we will consider a

paradigmatic Hamiltonian of the form

H = HS + ∑
k

ωka†
k ak + ΛS ∑

k
(g∗k ak + gka†

k). (14)

Here HE = ∑k ωka†
k ak stands for the internal Hamiltonian of the bath, with ωk

the frequency of the corresponding bath oscillator. The interaction Hamiltonian is
HI = ΛS ∑k(g∗k ak + gka†

k), where gk is a coupling constant and ΛS represents the
pointer observable of the system S. This latter operator represents a quantum non-
demolition variable, which satisfies

[HS, ΛS] = 0 (15)

Page 6 of 19AUTHOR SUBMITTED MANUSCRIPT - JPhysA-114022.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Sudden death of entanglement in fermionic systems under collective decoherence 7

by virtue of Eq. (10), hence remains conserved whenever S evolves freely (with HS
only). The expression (15) determines the basis of HS that will be used in what
follows, given by the common eigenstates of HS and ΛS, denoted as {|n〉} and
satisfying

HS |n〉 = En |n〉 , ΛS |n〉 = Ln |n〉 . (16)

Notice that for HS = ω0σz/2 and ΛS = σz/2, the Hamiltonian (14) correspond to
the well-known spin-boson model.

With the aid of the above equations, we get for the matrix elements of ρS(t) in
this basis [35]:

ρS
mn(t) ≡ 〈m|ρS(t)|n〉

= ρS
mn(0)e

i(En−Em)t Tr
[
e−iHmtρE(0)eiHnt], (17)

where Hl is defined as the operator

Hl = ∑
k

hlk, hlk = ωka†
k ak + Ll(g∗k ak + gka†

k). (18)

In order to go further with Eq. (17), we assume that all the modes of the bath
are initially uncorrelated, so that ρE(0) factorizes into

ρE(0) = Πkρk, (19)

with ρk the density matrix of the k-th mode. If, for example, ρE(0) were a thermal
state we would have

ρk = Z−1
k e−βωka†

k ak , Zk = (1− e−βωk)−1, (20)

where β = (kBT)−1 = 1/T (in what follows we put Boltzmann constant kB equal
to 1). Moreover, since the creation and annihilation operators for different modes
commute, the trace term in Eq. (17) rewrites as

Tr
[
e−iHmtρE(0)eiHnt] = Tr

(
Πke−ihmktρkeihnkt) (21)

= ∑
α

〈α|
(
Πke−ihmktρkeihnkt)|α〉,

with {|α〉} an arbitrary orthonormal basis of HE. Taking |α〉 = Πk |αk〉 with {|αk〉}
a basis of the k-th mode subsystem, we get

Tr
[
e−iHmtρE(0)eiHnt] = Πk

[
Trk (e−ihmktρkeihnkt)

]
. (22)

Resorting to the coherent-state representation, the trace over the (single) k-th
mode in the right-hand-side of this equation has been calculated (for ρk given by Eq.
(19)) in [35], obtaining

Trk (e−ihmktρkeihnkt) = exp(−ω−2
k |gk|2Pmn,k), (23)
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Sudden death of entanglement in fermionic systems under collective decoherence 8

with

Pmn,k = 2(Lm − Ln)
2 sin2 ωkt

2
coth

βωk
2

+

+ i(L2
m − L2

n)(sin ωkt−ωkt). (24)

Gathering results, Eq. (17) becomes

ρS
mn(t) = ρS

mn(0)e
i(En−Em)t fmn(t)

= ρS
mn(t)|gk=0 fmn(t), (25)

where the function
fmn(t) = exp(−∑

k
ω−2

k |gk|2Pmn,k) (26)

bears the information regarding the decoherence effects. Substituting Eq. (24) into
(26) we get

fmn(t) = e−(Lm−Ln)2Γ(t)e−i(L2
m−L2

n)r(t), (27)

where r(t) = ∆(t)−Θ(t), and

Γ(t) = 2 ∑
k

ω−2
k |gk|2 sin2 ωkt

2
coth

βωk
2

, (28a)

∆(t) = ∑
k

ω−2
k |gk|2 sin ωkt, (28b)

Θ(t) = ∑
k

ω−2
k |gk|2ωkt. (28c)

Equations (25) and (27) allow us to disclose some general properties of the
evolution, regardless of the specific nature of S. The most immediate one is that the
diagonal elements ρS

nn are not affected by the interaction, as expected for a model
of decoherence without dissipation. Off-diagonal matrix elements corresponding to
degenerate states with respect to ΛS (that is, such that Lm = Ln with n 6= m) are also
immune to the presence of the bath.

Off-diagonal elements for which Lm = −Ln are only affected by the exponential
decay e−(Lm−Ln)2Γ(t) = e−4L2

nΓ(t), and those matrix terms for which Lm 6= ±Ln

exhibit oscillations, in addition to exponential decay, determined by e−i(L2
m−L2

n)r(t).
In particular, in the spin-boson model (ΛS = σz/2) the two eigenvalues {Ln} are
±(1/2), whence the decoherence factor in such system corresponds to exponential
decay only. In fact, for any d-level system with d > 2 the condition Lm = −Ln cannot
hold for all n 6= m, and consequently all d-level systems (d > 2) evolve (according
to the present model) in such a way that at least one of the off-diagonal matrix
elements ρnm(t) is affected by the oscillating factor.

Now, coherence measures, such as

C = ∑
nm(n 6=m)

|ρS
nm|, (29)

typically involve the modulus |ρnm| [36], so the oscillating term of fmn does not
play any role, and decoherence is thus manifested only through the exponencial
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Sudden death of entanglement in fermionic systems under collective decoherence 9

decaying term. The oscillations that distinguish the dynamics between qubits and
higher dimensional systems manifest via the (relative) phases of all ρS

nm.
Now, coming back to Eqs. (28) we will assume, as is customarily done, that the

bath is sufficiently large so that the density of its modes can be taken as continuous.
We can thus pass from the discrete sums to the continuum, with the prescription

∑
k
|gk|2 →

∫ ∞

0
dω J(ω), (30)

with J(ω) the spectral density. Its particular form will be assumed to be

J(ω) = 4 J0 ω e−(ω/ωc), (31)

with J0 a dimensionless constant and ωc the cutoff frequency, which defines the
characteristic temperature Tc = ωc. Note that this choice of spectral density gives
rise to a Markovian evolution, in which there are no reservoir memory effects
present during the evolution [26]. With these assumptions Eqs. (28) become

Γ(t) =
J0

2

∫ ∞

0
e−

ω
ωc

sin2(ωt
2 )

ω
coth

(ωβ

2

)
dω, (32a)

∆(t) =
∫ ∞

0
e−

ω
ωc

sin(ωt)
ω

dω, (32b)

Θ(t) = t
∫ ∞

0
e−

ω
ωc dω, (32c)

which simplify in the low-temperature regime, i.e., whenever ωc � β−1 (Tc � T),
as follows

Γ(t) =
J0

8
ln(1 + ω2

c t2) +
J0

4
ln
[sinh(πβ−1t)

πβ−1t

]
, (33a)

∆(t) = arctan(ωct), (33b)

Θ(t) = ωct. (33c)

4. Dynamics of entanglement. Fermions vs qubits

4.1. Decoherence-free subspaces

We consider first an open system consisting of two identical fermions with a single-
particle Hilbert space of dimension 4 (equivalent to 3/2-spin fermions), initially in
the state ρS(0) = ρ f f (0) = |ψ f f (0)〉〈ψ f f (0)|, with |ψ f f (0)〉 a coherent superposition
of the states {|ψ−n 〉}. Since these are eigenstates of the total momentum operator Jz,
by taking HS = ω0 Jz and ΛS = Jz we can identify the basis {|ψ−n 〉} with the basis
{|n〉} satisfying Eq. (16), and the eigenvalue Ln with the corresponding projection
eigenvalue m in the angular-momentum representation (see Table 1). Therefore we
have

L1 = −L5 = 2; L2 = −L4 = 1; L3 = L6 = 0. (34)
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Sudden death of entanglement in fermionic systems under collective decoherence 10

According to the statements below Eqs. (28), this implies that the matrix
elements ρnm with n, m ∈ {3, 6}will be constant during the evolution. Consequently,
by varying the coefficients in the superposition

|ψ f f (0)〉inv = α
∣∣ψ−3 〉+ β

∣∣ψ−6 〉 , (35)

with |α|2 + |β|2 = 1, a subspace of states that are unaffected by the bath is generated.
In particular, the states in the subspace maintain invariant their entanglement
and their coherence, and thus constitute a DFS. For larger systems, with higher-
dimensional single-particle Hilbert spaces, the decoherence-free subspace will in
general become larger.

Notice that the DFS is precisely the subspace with m = 0. This can be
understood from Eq. (18), which shows that for Ll = 0 (in this case m = 0) the
operator Hl that determines the evolution of ρS via Eq. (17), is the same as that in
absence of interaction (observe that this is a general result, which requires only the
Hamiltonian form (14), and is independent of the specificities of the initial state of
the bath).

Moreover, any state that is equivalent to (35) under local and exchange-
symmetry-preserving transformations in H f ⊗ H f , with H f the single-fermion
Hilbert space, will exhibit the same amount of entanglement as (35) (when
discussing the entanglement properties of systems of identical fermions, the relevant
group of local transformations is isomorphic to the group SU(d) of (special) unitary
transformations acting on the d-dimensional single-particle Hilbert space [27]). If the
transformation operator commutes with Jz, then the transformed state will also be
eigenstate of Jz with null eigenvalue, and therefore it will also be an entanglement-
invariant state.

Note that the invariant subspace includes maximally entangled states,
particularly,

∣∣ψ−3 〉 and
∣∣ψ−6 〉. All other amounts of entanglement are attained by

varying α, as shown in the left panel of Fig. 1.
The two-(4-level)-fermion system studied above is, as stated in Sec. 2, the

smallest system in which (fermionic) entanglement can exist. Therefore, for
comparison purposes, we will also analyze the corresponding smaller system of
distinguishable parties in which (usual) entanglement can exist, namely a pair of
qubits. These are assumed to be in the initial state ρS(0) = ρqq(0) = |ψqq(0)〉〈ψqq(0)|,
with |ψqq(0)〉 a coherent superposition of the elements of the computational basis
(8). As before, we take HS = ω0 Jz and ΛS = Jz, and identify the computational basis
with the basis {|n〉} whose elements satisfy Eq. (16). Defining

|1〉 = |00〉 , |2〉 = |01〉 , |3〉 = |10〉 , |4〉 = |11〉 , (36)

we thus get
L1 = −L4 = 1; L2 = L3 = 0. (37)

For the same reasons explained above, also in this (qubit) case the decoherence-free
subspace is spanned by the states |2〉 and |3〉 (states with null eigenvalues), i.e. (c.f.
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Figure 1: Left panel: C f of the state (35) as a function of α (assuming
real coefficients). For α = 0 and α = 1 the states are maximally entangled
(corresponding, respectively, to

∣∣ψ−6 〉 and
∣∣ψ−3 〉), whereas for α = 1/

√
2 the state

is a Slater determinant, with zero entanglement. Right panel: Cq of the state (38)
as a function of α (assuming real coefficients). For α = 0 and α = 1 the states are
separable (non-entangled), corresponding, respectively, to |2〉 and |3〉, whereas for
α = 1/

√
2 the state is the (maximally entangled) Bell state (39).

Eq. (35)),
|ψqq(0)〉inv = α |2〉+ β |3〉 . (38)

Notice that the (maximally entangled) Bell state

|φ〉 = 1√
2
(|01〉+ |10〉) (39)

pertains to the invariant subspace, whence two maximally entangled qubits in the
state |φ〉 can maintain their correlation in spite of the presence of the bath. Other
entanglement amounts exhibited by elements of the DFS (Eq. (38)) are presented in
the right panel of Fig. 1.

4.2. Exponential decay

As follows from the previous paragraphs, if the initial state |ψS(0)〉 does not pertain
to the corresponding (fermionic or qubit) DFS, the state will in general suffer the
effects of the bath exhibiting some degree of decoherence. In order to see the
concomitant entanglement and coherence evolution, in this section we thus consider
initial states that are orthogonal to the DFS.

In the fermionic case we will focus on

|ψ f f (0)〉24 =
1√
2
(
∣∣ψ−2 〉+ ∣∣ψ−4 〉), (40)
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Sudden death of entanglement in fermionic systems under collective decoherence 12

which is a maximally entangled superposition of states with m = 1 and m = −1,
and also on

|ψ f f (0)〉15 =
1√
2
(
∣∣ψ−1 〉+ ∣∣ψ−5 〉), (41)

which is a maximally entangled superposition of states with m = 2 and m = −2.
Notice that neither (40) nor (41) are eigenstates of ΛS. From the corresponding
ρ f f (0) we determine the evolved matrix and calculate the fermionic concurrence
according to Eq. (5), and the coherence as measured by (29). In addition, since for
T = 0 the joint fermionic system plus environment is in a pure state, the increase in
their entanglement can be easily verified by inspection of the linear entropy SL[ρS],
quantifying the degree of mixedness in the S subsystem, and given by [37]

SL[ρS] = 1− Tr ρ2
S. (42)

The dynamics of C f , C and SL[ρS] for the states (40) and (41) is analyzed in
the low temperature regime, using the expressions (33). The results are shown and
discussed in the Figures below.

As for the qubit system, the state (orthogonal to its corresponding DFS) that
will be considered is the (maximally entangled) Bell state

|ψqq(0)〉14 =
1√
2
(|00〉+ |11〉) = 1√

2
(|1〉+ |4〉). (43)

The entanglement between the qubits is obtained resorting to the usual concurrence
(7), whereas the coherence and the linear entropy of the qubits’ density matrix are
calculated using (29) and (42), respectively.

Figure 2 shows (left panel) the concurrences C f (orange curve), and Cq (purple
curve) for the initial states |ψ f f (0)〉24 and |ψqq(0)〉14, respectively, with T = 0 (top)
and T/Tc = 1/60 (bottom). The inset (in the zero-temperature case) shows the
corresponding linear entropies SL[ρS]. In the right panel we show the corresponding
evolution of the coherence as measured by C. In all the four plots the curves
superpose; consequently in this case both the fermionic and the qubit system
provide the same entanglement and coherence resources throughout the evolution.
This results goes in line with that stating that fermionic entanglement between
indistinguishable fermions, as measured by Eq. (5), is necessary to perform the
same tasks that a pair of distinguishable entangled qubits with the same amount
of entanglement [38]. Moreover, comparison of the upper and lower panels of
the Figure indicates that the behaviour at T = 0 differs only slightly from that
at T = Tc/60, which here has been taken as T = 600/60 = 10.

The panels in Figure 3 show the same quantities as in Fig. 2 but now referred
to the fermion state |ψ f f (0)〉15 (the qubit state is again |ψqq(0)〉14). Clearly the
entanglement and the coherence of the fermionic system are more fragile (when
compared with the qubit system) under the influence of the environment in this
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Figure 2: (Color online) Left panel: C f (orange curve), and Cq (purple curve) for
the initial fermion state (40) and the initial qubit state (43), with T = 0 (top) and
T/Tc = 1/60 (bottom), as a function of the dimensionless time t/ωc. Inset: the linear
entropy SL[ρS]. Right panel: Corresponding coherence measure for the fermionic
(orange) and qubit (purple) case with T = 0 (top) and T/Tc = 1/60 (bottom).

case. Again, there is no appreciable difference in the dynamics for T = 0 and
T = 10.

The inset in Figures 2 and 3 verifies that as the entanglement between the pair
of qubits/fermions decreases, information (as measured by the linear entropy SL)
is being loss to the environment (assumed to be in the vacuum, pure, state), or
equivalently, the pair as a whole gets entangled with the bath. Notice, however,
that the loss of information is not maximal, since SL saturates before reaching its
maximum allowed value, SL[ρS]max = 1− 1/(rank ρS).

4.3. Fermionic entanglement sudden death

Figures 2 and 3 involve initial states that are orthogonal to the corresponding
(qubit/fermion) DFS, and reflect an asymptotic, monotonous decay both in the
entanglement and in the coherence. In order to look for a more varied evolution, we
will now consider initial states that have some nonzero overlap with the DFS (notice
that when considering an arbitrary initial state this is the more likely situation). We
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Figure 3: (Color online) Left panel: C f (orange curve), and Cq (purple curve)
for the initial fermion state (41) and the initial qubit state (43), with T = 0 (top)
and T/Tc = 1/60 (bottom), as a function of the dimensionless time t/ωc. Inset:
the corresponding linear entropy SL[ρS]. Right panel: Corresponding coherence
measure for the fermionic (orange) and qubit (purple) case with T = 0 (top) and
T/Tc = 1/60 (bottom).

therefore focus now on the initial state

|ψ f f (0)〉1234 =
1
2
(
∣∣ψ−1 〉+ ∣∣ψ−2 〉+ ∣∣ψ−3 〉+ ∣∣ψ−4 〉) (44)

for the fermions, and on the state

|ψqq(0)〉1234 =
1
2
(|1〉+ |2〉+ |3〉+ |4〉) (45)

for the qubits. Notably, with these initial conditions the fermionic entanglement
rapidly decreases from being maximal, and vanishes abruptly at a finite tesd —long
before the coherence disappears— therefore exhibiting the phenomenon of fermionic
entanglement sudden death (see Fig. 4). As follows from the upper-left panel of the
figure, at T = 0 and t > tesd each fermion is disentangled from the other fermion,
yet the fermionic pair is entangled with the bath.

As for the qubit system, notice that the initial state (45) is nonentangled.
However, as a result of the global interaction, entanglement between the qubits is
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Sudden death of entanglement in fermionic systems under collective decoherence 15

created until it reaches its maximum value, and from that point on exhibits damped
oscillations, vanishing at certain finite times but reviving (or rather, exhibiting
entanglement sudden birth) until it eventually becomes zero. This type of evolution
were pointed out previously for qubits under collective decoherence in [26, 39–41].
For T = 0, we observe that the oscillating behaviour of the qubit-qubit entanglement
does not affect the monotonous increasing entanglement between the pair of qubits
and the environment, indicated by the increase in the linear entropy (see inset),
which saturates approximately after the first time Cq vanishes.

As happened in the previous example (Fig. 3), the coherence is more robust in
the qubit system, yet in this case C does not vanishes but tends to a constant value
(this is due to the presence of the matrix element ρ23, which belongs to the DFS). In
its turn, the fermionic coherence decreases more slowly than that shown in Fig. 3.
Again, no appreciable differences are found in the behaviour for T = 0 and T = 10.
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Figure 4: (Color online) Left-panel: C f (orange curve), and Cq (purple curve) for
the initial fermion state (44) and the initial qubit state (45), with T = 0 (top) and
T/Tc = 1/60 (bottom), as a function of the dimensionless time t/ωc. Inset: the linear
entropy SL[ρS]. Right-panel: Corresponding coherence measure for the fermionic
(orange) and qubit (purple) case.

As a final example, we will consider the fermionic initial state (44) and the
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Figure 5: (Color online) Left: C f (orange curve), and Cq (purple curve) for the
initial fermion state (44) and the initial qubit state (46), with T = 10, as a function
of the dimensionless time t/ωc. Right: Corresponding coherence measure for the
fermionic (orange) and qubit (purple) case.

initial qubit (entangled) state

|ψqq(0)〉123−4 =
√

0.2(|1〉+ |2〉+ |3〉) +
√

0.4 |4〉 , (46)

and compare the dynamics of the corresponding concurrences and coherences for
T = 10. The resulting curves (indistinguishable from those at T = 0) are depicted
in Fig. 5. Interestingly, in this case the qubit-qubit system exhibits entanglement
sudden death and entanglement sudden birth, while its coherence decreases and
tends to a constant value.

5. Concluding remarks

A better understanding of the entanglement and coherence evolution under
different quantum channels is a suitable way to reach a more complete view
of the potentialities of a quantum system in quantum information processing.
Considering, on one hand, the relevance of identical-particle systems in many
quantum information tasks, and the reduced understanding of the dynamics
of useful quantum resources in such systems (reduced when compared with
the advances involving systems of distinguishable parties) on the other, we
have investigated the non-dissipative Markovian evolution of entanglement and
coherence in the simplest fermionic system that exhibits the phenomenon of
fermionic entanglement. We explored whether interesting phenomena that arise
in distinguishable-party systems can be also present in identical-fermion systems.
To this aim we compared the evolution of the two-indistinguishable-fermion
system with that of a two-distinguishable-qubit system collectively coupled to the
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environment. As for the latter, we have considered a thermal bosonic reservoir
coupled to the central (fermionic/qubit) system.

In spite of the simplicity of the fermionic system (equivalent to two 3/2-spin
fermions), we have found interesting results regarding the existence of decoherence-
free subspaces, and the emergence of entanglement sudden death.

If the initial fermionic state belongs to the DFS, the state will remain unaffected
by the interaction with the bath throughout the evolution. The identification of these
kind of subspaces, generated by collective coupling, constitutes a possible solution
to the decoherence problem in QIP [6–8]. Thus, the previous results indicate a
possible way to avoid decoherence in the indistinguishable-party case via collective
coupling.

If the initial fermionic state does not belong to the invariant subspace, the
entanglement and coherence evolve in time. To contrast their evolution with that
corresponding to the pair of distinguishable parties, we have considered a 2-qubit
system subject to the same environment. Figs. 2 and 3 indicate that both the
entanglement and the coherence in the fermionic system are no more robust under
collective decoherence that those in the qubit system, when the initial states are
orthogonal to the corresponding (fermion or qubit) DFS.

On the other hand, by considering initial states that have non-zero overlap with
the elements of the corresponding DFS, we find a much richer evolution for both the
qubit-qubit and the fermion-fermion entanglement. In particular, we showed that
the fermionic entanglement exhibits entanglement sudden death, and no revival
is observed, whereas the qubit entanglement can exhibit a damped oscillating
behaviour, and also entanglement sudden death and entanglement sudden birth.
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