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We study the entanglement dynamics between two cavities when one of them is harmonically shaken in
the context of quantum information theory. We find four different regimes depending on the frequency of
the motion and the spectrum of the moving cavity. If the moving cavity is three dimensional only two
modes inside get coupled and the entanglement can either degrade asymptotically with time or oscillate
depending on the driving. On the other hand, if the cavity has an equidistant spectrum the entanglement can
either vanish asymptotically if it is driven with its fundamental frequency or have a sudden death if it is

driven with an uneven harmonic frequency.
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I. INTRODUCTION

In the last decade a growing interest has arisen in the field
of relativistic quantum information (RQI) since a number of
interesting novel effects on entanglement between moving
observers have been reported [1]. Hence, this area of research
has addressed questions related to the relativistic aspects of
quantum physics, in particular submerging into the relation
between the physics of quantum field theories and quantum
information theory [2]. As an example, black holes, once
believed to be only mathematical artifacts, are today an
established part of the universe and one of the greatest
mysteries of modern physics. They are very well defined in
terms of general relativity but very little is known about their
quantum nature. The discovery by Hawking [3] that they
emit thermal radiation and the information paradox that this
fact had led to is one of the many efforts done in order to get a
complete understanding of their relation with quantum
mechanics. Particularly, RQI has a crucial role in explaining
quantum effects around black hole’s physics.

An interesting approach taken by authors in Ref. [4]
investigates the possibility of transmitting signals between
inside and outside the event horizon of a black hole.
Therein, a pair of entangled particles is considered, each
one held by two different observers: one observer is inertial
going into free-fall inside the black hole while the other
accelerates away and hovers outside the event horizon on a
fixed distance. The authors noticed this study could be
approximately described by a scalar quantum field in
Minkowski spacetime with two entangled modes. In this
framework, they calculated the entanglement between two
free modes of the scalar field as seen by an inertial observer
detecting one of the modes and a uniformly accelerated
observer detecting the second mode. They therefore stated
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that as the acceleration of this observer increases, the
perceived entanglement between the two modes decreases
asymptotically to zero, hindering the possibility of signal
transmission [5]. This work led to multiple ramifications
and numerous investigations on the effect of relativistic
motion in quantum information [6—11]. For instance, in
Ref. [6], the entanglement shared between observers in
relative accelerated motion is analyzed finding that it
vanishes between the lowest-frequency modes. In a differ-
ent approach, authors in Ref. [10] showed that if the scalar
field is replaced with a Dirac field the entanglement does
not vanish in the infinite acceleration limit meaning that it
can be used for quantum information tasks. Sometimes,
results can be even more dramatic. In Ref. [11] it has been
shown that the entanglement shared between two Unruh-
DeWitt detectors (see Ref. [12]) that are being accelerated
can suddenly be lost in a finite amount of time. Similarly, in
Refs. [8,13] it has been stated that the entanglement shared
by two entangled cavities in accelerated motion oscillates
as time elapses, during the time period the motion lasts. In
this context, we can notice that the original motivation has
led to a more general question about how entanglement
changes for observers in relative motion. In particular,
entanglement degradation caused by relativistic accelera-
tion is a feature that has received great attention recently
and we aim to explore in this manuscript.

In this paper we will continue these investigations by
studying how the entanglement between two cavities
changes as one of them is rapidly shaken. In the previous
cases, the accelerated motion of the observer changed the
state of the field due to the Unruh effect [14]. Alternatively,
in this manuscript, the state of the field will be altered by
the dynamical Casimir effect (DCE) [15], known as being
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responsible for the creation of photons pairs from the
electromagnetic vacuum when mirrors are subjected to
ultra fast oscillations [16]. It is important to remark that,
from an experimental point of view, making use of the
Unruh effect requires either linearly unbounded motion
which leads to short integration times or complex rotating
setups [17]. On the other hand for the DCE the motion is
linear and bounded for arbitrarily long times of integration.
Also, while creation of photon pairs out of quantum
vacuum is close to being technologically accessible in
optomechanical experiments [18-22] (practical optome-
chanical structures have been created in which the mirror
can oscillate as fast as six billion times a second); it is
already accessible in superconducting quantum circuits,
where the DCE has been measured for the first time.
Therefore practical implementations of the kind can be
designed in order to get an insight into the consequences of
relativistic motion on quantum entanglement. This papers
is organized as follows: in Sec. II we review the physics of a
cavity with two oscillating boundaries. We shall show that,
in some cases, it can be reduced to the case of a cavity with
a single moving mirror, allowing for an analytical solution
for small times. Then, in Sec. IIl we examine some pro-
perties of Gaussian states in terms of the covariance matrix
and see how we can measure the entanglement between two
parts in that case. Section I'V explores the use of these tools
to analytically study the entanglement degradation between
two cavity modes due to the DCE. In Sec. V, we discuss the
entanglement redistribution. Finally, in Sec. VI we present
our conclusions.

II. DYNAMICAL CASIMIR EFFECT

We consider a rectangular cavity formed by perfectly
reflecting mirrors with dimensions L,, L, and L (we shall
consider only L, in the case of a one-dimensional cavity).
The mirrors oscillate together in the x-axis, maintaining the
distance among them fixed (we will refer to this cavity as a
“shaker”), while the two other pairs of mirrors in the y and
z-axis move so as to produce a rigid motion of the whole
cavity [23-25]. We shall consider the light as a scalar field
satisfying the wave equation

Odb(x,1) =0 (1)

subjected to time dependent boundary conditions on the
mirrors with displacement r(¢),
Sx=0+7r(1).y,2.1) =D(x =L+ r(t),y.z.1) =0
<i>(x,y =0,z,1) = Cﬁ(x,y =Ly z1)=0
Ci>(x,y, 7=0,1) = él(x,y, z=1L_t)=0. (2)

This comes from the fact that transverse electric (TE) and
transverse magnetic (TM) electromagnetic modes can be
described by scalar fields [26].

For t < 0 all mirrors are at rest (static cavity) and the
field can then be expanded as

d(x.1) =Y [alu(x.1) + Hel, (3)
k

where a" are the bosonic operators corresponding to
different photon modes and the functions u, are the
positive frequency solutions of the wave equation

u(x,1) = \/Lz sin(k,x) \/Lz sin(k,y) \/Lz sin(k.z)

e—ia)kt
AV 2wk

with k = (3%,3%.%%) and wy = |k|. The mirrors in the

x-axis start to move at ¢t = 0 and the original basis gets
continually deformed into a new one satisfying the boun-
dary conditions uy (X, 1) = vy (X, t). Expanding the field in
this new basis as

B(x.1) =Y [a"vy(x. 1) + Hel, (5)

n

X

(4)

we can define new bosonic operators 43" corresponding to
a new notion of particles. As the mirrors go back to their
original position and stop moving, the field can be ex-
pressed alternatively in any of the two basis, which means
that there exist coefficients a,) and S, such that

Up = Z[ankuk +ﬁnku]*(]' (6)

k

Replacing this in Eq. (5) and equating that to Eq. (3) we can
relate both sets of bosonic operators as

ag" = [oddd + By, (7)
k

which is known as a Bogoliubov transformation. In the
following, we shall obtain explicit analytic solutions for the
coefficients oy and S, as a function of time for a har-
monic oscillation of the cavity mirrors. This will give us the
complete time evolution of the field in the Heisenberg
picture.

It is important to remark that, for an initially vacuum
field’s state, the number of photons in mode k at a time
t > 0 can be computed as

(Na) = (a2"ag™) = | pukl> (8)
k

This means that for |f,c| # 0 photons in mode n are
created from vacuum. This is commonly known as the
dynamical Casimir effect (DCE).
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A. Bogoliubov coefficients

We shall focus on obtaining the Bogoliubov coefficients.
Hence, we begin by expanding solutions in the comoving
basis

= o

i (x, 1) )

where QE:l)(t) are time dependent coefficients and

m(x.1) = \Esinwx - r(r)))ﬁsin(kyw
X \/L?sin(kzz). (10)

To find the time dependent coefficients Qf(n)(t), we can
replace Eq. (9) in Eq. (5) and, then, this field decomposition
into the wave equation. Finally, using the orthogonality

of Pk
L+r(t) L, [L,
/U /o /o P (X)@j(x)dzdydx = &j - (11)
r(t

we find the following differential equation for the coef-
ficients

— 27 (t ZQ
ZQ

where we have defined

e [ [ [

{ )]x+k ) 2kx]x 5k j}ék . k., # j,
0 ky = Jx

ng —}’ ZQ ng

19k +kak ( ) =0, (12)

(x)dzdydx

(13)

We will consider a harmonic oscillation of the mirrors
displacement r(¢) = esin(€r) and search for solutions of
the form

e—t(ukt eiwkt
- ank( )m+ﬁnk \/j(l_);

in order to get analytical predictions about the particle
creation process (this is a standard procedure known as
multiple scale analysis [27]). Hence, if we introduce a slow
time 7:= iea)lt [with w; the fundamental frequency

o (v) (14)

defined after Eq. (4)], the functions a,, and S, are slowly
varying and contain the cumulative resonant effects. These

functions will have initial conditions oy (7 = 0) = &) and
Pax (7 = 0) = 0 so that the initial field is given by Eq. (3).
After substituting Eq. (14) in Eq. (12) and averaging
over fast oscillations we obtain the following differential
equations

2wy

(- g)m +oy-o)]
+Z ng< .+§22>anj6(9—wj - wy)

(15)

dp, Q Q
gfk = Z Ik jPnij K +§>5(Q + wj — wy)

dank

Q Q
J

n <a,j - %)5(—9 + wj - wk)]

Q Q
+ zj:ﬂgkj <—60J + §>ﬂnj5(9 - wj — wy),

(16)

where 6(0) = 1 and (x) = 0 for x # 0.

We can mention that by replacing Egs. (14) and (10) in
Eq. (9) and comparing the result with that of Eq. (6), it is
easy to note that these slowly changing a,, and S, will be
the Bogoliubov coefficients found in the previous section.

There are essentially two distinct cases in which we can
solve this set of coupled differential equations depending
on whether the cavity’s spectrum is equidistant or non-
equidistant. As for a nonequidistant spectrum, it can be
achieved for example by considering a three-dimensional
cavity or, in another case by considering a massive scalar
field. In such cases, only two modes will couple (except for
some exceptional cases described in [26]). Oppositely, if
the cavity is one-dimensional; the spectrum is equidistant
w, = nr/L, and then infinitely many modes will couple.
In the following, we shall briefly describe both situations.

1. 3D cavity and nonequidistant spectrum:
Two coupled modes

Let us consider the case in which we have a three
dimensional cavity. If we assume a driving (shaking)
frequency € that can be formed by two modes wg and
W, as Q = wg + w.; then, because the spectrum is non-
equidistant, there is (almost) never a third mode wy such
that Q = |og £ wq| or Q = |w. + wq|- In that case,
Egs. (15) and (16) reduce to
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dp,,  Q Q
d;_ls = 2605 Ise <_wc + E) Qe (17)

day, Q Q
= e[~ + =) B 18
(ot G ) (8)

This is a linear system with four coupled differential
equations that can be easily solved. When combined with
Eq. (7) we obtain

ad = cosh(y~7)a + sinh(y~7)ad”’ (19)
ad = cosh(y~7)a + sinh(y~7)al (20)
where
Q (ws - % (% B wc)
= . 21
=5 gsc\/ . (21)

This transformation generates a two-mode squeeze state
with squeezing parameter y~z, occurring when a driving
quanta is converted into a pair of photons in modes wg and
.. It is important to remark that this fact can also be seen
from our previous discussion. The number of photons
created from the vacuum is given by Eq. (8), and since, in
this case it is S, # O, there is creation of particles and it is
exponential in time [27,28].

The other possible coupling between two modes occurs

if Q= |ws— w.|. In that case, the system of Eq. (16)
becomes
day, Q Q
d—TS = Z_wsgsc <wc - 5) Qne (22)
dag, Q Q
dr = z—a)cgcs <ws + E) Qpg- (23)

This set of equations can be readily solved and yields

agt = cos(y*7)ay + sin(y*7)ay (24)
ag = cos(y r)al = sin(yieal,  (25)
where
Q g+ (0. -2
rt _zgsc\/ o (26)
W@,

It is worth mentioning that in this situation S, = 0 and no
new photons are created. This means that for an initially
vacuum state the dynamics is trivial. However, given an
initial state with some photons in one of the modes, the
number of photons in each mode will oscillate while
keeping the total number of photons constant.

2. 1D cavity and equidistant spectrum:
Infinite coupled modes

We now consider the case where the cavity is one
dimensional [29] and the resulting spectrum is equidistant.
Since the only relevant direction corresponds to the x-axis
we discard the bold face indices to keep only this
component. Then, using the coefficients described in
Eq. (13), the set of Egs. (15) and (16) reduces to

dﬂ nk Z

Q
) 8(g+j—k
Oddzwkgkjﬁnj |:<(A)/ + 2) (q +.] )

Jj+k  odd
(27)
da, Q Q .
d—k = e, ki%nj KCO, + 5) 8(qg+j—k)
Tk odd <%k
Q .
Q Q .
+ Z 30, Jki <—0)j +5>ﬁnj5(q —Jj=k),
j+kodd <k
(28)

where we have defined ¢ = Q/w, and used the fact that the
spectrum is given by w; = jw, and that g;; = 0 if k + j is
even. It is important to note that, since k + j is odd, k — j is
also odd. This means that if ¢ is not an odd number then the
right-hand side (rhs) of Egs. (27) and (28) is null and the
evolution is trivial.

In order to obtain an analytical solution for the system
of Egs. (27) and (28), we consider the situation in which
only one wall (let say the right one) of the cavity oscillates,
in the one dimensional case. In such a case, a derivation
similar to the one performed in the previous section leading

to Eqgs. (15)—(16), leads to the following system of
equations

g’ _ K

— == &, 8(2k —

dr 2a)kL,2€ ak ( q)

Q _ -; Q :
+ijgkjﬂ§' ) ij+5>5(61+]—k)
J
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d 2K ﬂ
dr wy L

5(2k — q+2:

ng J

with
N T Y
Gy = {kz_jz # J. (31)
0 k=j.

This set of equations is very similar to Eqs. (27) and (28),
the differences being only two. The first difference among
the systems of equations is that Egs. (29) and (30) have an
extra term proportional to §(2k — ¢) [which is not present
in Egs. (29) and (30)] [30]. This term creates pair of
photons in mode k and is only relevant when ¢ = 2k. The
second difference is that g;; # g;;. However, it is easy to
see that 2g,; = gy if k + j is odd, and this factor 2 can be
absorbed in the oscillation amplitude. Therefore, if we
excite a cavity with one moving wall at an odd frequency g,
we get that the first term of the rhs of Egs. (29) and (30)
vanishes. All others also disappear, except for the case of
k + j being odd (this is due to the o factors). This proves
that when ¢ is odd Egs. (27) and (28) are equivalent to
Eqgs. (29) and (30). Consequently, this means that a cavity
being shaken rigidly with an odd frequency behaves just as
an identical cavity with only one wall oscillating with the
same frequency and double amplitude. This result is very
important and, although a relationship had been noticed
[31], it had not been stated in this way in the existing
literature. We shall take advantage of this equivalence to get
analytical predictions on the particle creation process since
analytical solutions for the system with one moving wall
are well known [32]. In such a case the out operators are
given by

ap =3[ - @

where
(tng) _ _ LA +n+j/q)(ox)"™
mme 1+ m+ j/q)T(1 +n—m)
X F(n+j/q,—m—j/q;1+n—m;x*) (33)
forj=0,1,...,¢,n=1,2,3,... m = £1,£2,£3, ... and

Piimi =0 (34)

if j # k, where
c=(-1)4 (35)
k = tanh(q7). (36)

As it has been exposed above, these are also solutions of the
rigidly shaken cavity taking 7 = 27 = ew, ¢, that is dou-
bling the amplitude e.

Similarly to what we have noticed before in the three
dimensional case, there are two qualitatively different
regimes depending on the driving frequency. If Q = o, =
;.| —w; then no photons are created as a whole.
However, given an initial number they can “jump” between
adjacent modes. For long times, the number of photons on
any mode goes to zero as they are lost to higher frequency
modes. Alternatively, if Q = gw; with ¢ an odd number
greater than 1, pairs of photons are created from the vacuum
on any pair of modes j and k such that Q = w; + .

We have briefly analyzed DCE in different configura-
tions. In all cases, by shaking the cavity, we have altered the
state of the scalar field. In addition, we have shown that, in
some particular cases, we obtain creation of particles as a
further result. In the following we shall study the entan-
glement process between two of these cavities as one of
them is rapidly shaken.

III. ENTANGLEMENT MEASUREMENT

A particularly relevant set of states, from a theoretical
viewpoint, are Gaussian states which include coherent,
squeezed, and thermal states. Given a set of harmonic
oscillators, we can take a basis of quadrature operators

R =(q1,P1s---»qn> Pn), Where
1 T
q; = %(“j +aj) (37)
—l p
Pi="75 (a; —aj) (38)

and completely characterize a Gaussian state p with its
displacement vector

di=(Rj), (39)

and its covariance matrix

Vij == (RR;+RR), -

l\.)l'—‘

Some important properties of these states are that the
evolution of a Gaussian state under a quadratic hamiltonian
is also a Gaussian state. Further, given a system in a
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globally Gaussian state, any subsystem has a state thatis also
gaussian and its covariance matrix is given by the restriction
of the covariance matrix of the whole to that subsystem. In
addition, it is possible to quantify the entanglement in a
mixed state [33] by using the logarithmic negativity [34],
which is an entanglement monotone given by

N(p) = log,||p"

where ||p"]|, is the trace norm of the partial transpose of p
with respect to subsystem A.

Herein, we want to calculate the entanglement between
two modes in Gaussian states. In such case, the covariance
matrix is of the form

I (41)

V, Ve
VL Vg

Vs =] @)

and the logarithmic negativity can be calculated as [35]

N = max{0, —log2v_} (43)
where
> 1 /=
U_:\/E—E 22—4detVA|B (44)
and
Y =detV, +detVz—2detVe. (45)

In order to determine if there is still information shared
between subsystems when the entanglement vanishes, we
will use the mutual information [36,37]

I(paig) = Sy(pa) + Sv(pg) = Sv(pajs) (46)
which measures the total correlations (quantum and

classical), with Sy being the Von Neumann entropy. In
the case of a Gaussian state, it can be easily computed as

I(Vap) = f(\/det2V,) + f(1/det2Vp)

_f(’ﬁ\g) —f(nX\B) (47)

f<x):.x—;110g<x—;1>_Xg110g<.x;l) (48)

where Majp» njl p are the symplectic eigenvalues of 2V .

IV. ENTANGLEMENT DEGRADATION

In this section, we shall study the entanglement degra-
dation in two cavities. Initially, both cavities are in an
entangled two-mode squeezed state comprising mode s in
cavity 1 and p in cavity 2. At ¢ = ¢, we harmonically shake
cavity 1 (as seen in Sec. II), keeping the distance between
the mirrors fixed, and study how the entanglement between
both cavities evolves in time (Fig. 1). We can think of this
system in the context of RQI as mimicking two observers in
relative motion, one them static and the other moving back
and forth harmonically, and that can only access only one
mode (p and s respectively).

The initial state of the system can be written in terms of
the destruction operators as

a® = cosh(r)ag + sinh(r)aj,

ai = cosh(r)a, + sinh(r)al (49)

where a, and a] are the destruction operators of the uncor-
related modes, satisfying <a;aj> =0 and (a;a;) =0, for
j =s.,p. As has been mentioned before, there are two
qualitatively different behaviors for the evolution of the
field in the shaken cavity depending on whether the

spectrum is approximately equidistant or unevenly spaced.
We therefore analyze all cases separately.

Cavity 1 Cavity 2 tQ
mode ¢
modes % _* mode p modes  g-.| modep modes | modep
N (1) Y (1) N ()
r= to >
r>1

FIG. 1.

The two cavities are initially (at t = ;) static and modes s and p are entangled (thick gray line). As we start shaking cavity 1 at

time r = ¢ with frequency Q, the entanglement between these modes becomes weaker. (dashed gray line). Finally, at ¢ the shaking stops
but the entanglement (measured by negativity A), is much weaker than initially N (¢z) < N (fo) (dotted line).
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A. 3D case and nonequidistant spectrum:
Two coupled modes

In the case that the shaking cavity is considered as
three dimensional, the spectrum is not evenly spaced. The
excited mode s will then result coupled to at most one more
mode, which we hereafter call mode ¢. As explained in the
preceding Sec. II, the altered field state will result quali-
tatively different when the driving frequency is Q = w, +
W, Or Q = |wg — /.

First, we begin by analyzing the system when the cavity
1 is shaken with a frequency Q = w; + ®.. We further
assume these two modes do not couple to any other mode.
Shaking cavity 1 with this frequency creates pairs of
photons in modes ¢ and s. Accordingly to the derivations
of the previous section, the new operators ad" and a2 are
related to @l and al” by Egs. (19) and (20). By considering
the relation between creation operators and quadratures
(37)—(38) we are able to calculate the covariance matrix,
which in the basis (gp. pp. gs. Ps), i

cosh(2r) 0 cosh(yz) sinh(2r) 0
v 1 0 cosh(2r) 0 — cosh(yz) sinh(2r)
P2 cosh(yz) sinh(2r) 0 (cosh?(r) cosh(2yz) + sinh?(r)) 0
0 — cosh(yz) sinh(2r) 0 (cosh?(r) cosh(2yz) + sinh?(r))
(50)
|
We can further compute the long time properties of this det Vs 1
state. We note that N = —log2 3 T — 0. (53)
et(Vps )70

1 1
T = Z‘cosh(Zr)2 + (cosh?(r) cosh(2y7) + sinh?(r))?

+ = (cosh(yt) sinh(2r))? — oo. (51)

T—>00

N[ =

Before continuing, it is important to mention that the
following limit remains finite

det Vp‘s 1
—

—. 52
Z ‘L’—>004 ( )

Hence, it is easy to see that the negativity (N = —log2v_)
vanishes in the long time limit

In addition, we can also study the mutual information
between the cavities by calculating the symplectic eigen-

values of 2V . They are
n-=1,
n. = |cosh(r)? cosh(2yz) — sinh(r)?| (54)

and so the mutual information for long times is given by

10*

= 102

10°

—r=1 —r=1
--r=1.6 6 . --r=1.6
r=1.9 . N r=1.9
w4 .
= N\ T
2
O n
3 4 1 2 3 4
T T

FIG. 2. Three dimensional cavity and a nonequidistant spectrum with driving frequency Q = wg + w.. (a) The exponential creation of
pairs of particles, as a function of time, in mode s for different values of the squeezing parameter r. (b) Entanglement degradation
measured by the logarithmic negativity as time evolves, vanishing for long times. (c) Mutual information as function of time. Even
though quantum correlations disappear for long times, classical correlations among the modes persist in the long time limit.
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I = f(cosh(r)? cosh(2yz) + sinh(r)?) + f(cosh(2r))
— f(| cosh(r)? cosh(2yz) — sinh(r)?|)

— f(cosh(2r)). (55)
In Fig. 2 we compile all properties computed for this case. In
panel (a), we show the number of particles in mode s. As can
be seen, there is an exponential creation of pairs of photons
in modes s and ¢ as expected. In panel (b), we can see the
time evolution of the entanglement as measured by the
logarithmic negativity which is evidently degraded as time
evolves, vanishing for long times and destroying the initial
|

entanglement between both cavities. In panel (c), we plot the
mutual information that evidences that classical correlations
among the modes persist for long times. This means that
even though the entanglement vanishes, there are still
classical correlations contained in the mutual information
between the modes p and s in the long time limit.

We now consider the distinct case of the cavity 1 being
driven with a frequency Q = |ws — @.|. As mentioned
before, this frequency does not create new photons but
only redistributes the existing ones between the modes. In
that case, the out operators are given by the Eqgs. (24) and
(25) and the covariance matrix can then be written as

cosh(2r) 0 cos(y*r)sinh(2r) 0
v 1 0 cosh(2r) 0 —cos(y ") sinh(2r)
L) cos(y*7) sinh(2r) 0 (cos?(yz) cosh(2r) + sin?(y 7)) 0
0 —cos(y*r)sinh(2r) 0 (cos?(y*7)cosh(2r) + sin*(y 7))

The components of this matrix oscillate harmonically in

time and for y*z, = @ we obtain

L.
Vs = Edlag(cosh(Zr), cosh(2r), 1, 1) (56)
which means that the logarithmic negativity, the number of
photons in mode s and mutual information between s and p
all vanish. Contrarily, for y*z,, = % these magnitudes

oscillate returning to their initial maximum values, as can
be seen in Fig. 3. In Fig. 3(a) we show the number of
particles for mode s. As can be inferred, there is no creation
of new ones, but an oscillatory redistribution of the particles
already in the cavity mode. Particles get transferred from
mode s to mode ¢, until no photons remain in s at z,,. In
Fig. 3(b) we show the entanglement temporal evolution
which also results in a null entanglement at z,,,. In Fig. 3(c),

|
we show the temporal evolution of the mutual information
between s in the first cavity and mode p in the second.

B. 1D case and equidistant spectrum:
Infinite coupled modes

If the cavity is one-dimensional then the spectrum is
equidistant. This means that infinitely many modes get
coupled as the cavity is shaken (see Sec. II). In this situation
the out operators are described by a more general
Bogoliubov transformation Eq. (7). Similarly as with the
three dimensional cavities, we can see that there are two
distinctly interesting cases to consider as for the driving
frequency of cavity 1: Q = w; and Q = qw;.

First, we start by considering Q = ;. As it has already
been pointed out, in this case there is no particle creation in
cavity 1. Using Eq. (7), we can compute the covariance
matrix for this case as

4
10+ —r =1 —r=1 6 —r =1
--r=1.6 3h —-r=16 ,'\“ N --r=1.6 RAN
r=1.9 i r=1.9 v — r=1.9 P
o« C’J'\ 4 s ’ \
= = 5
~ .
5 .
0 N
1
T T T
(a) (b) ()
FIG. 3. Three dimensional cavity and a nonequidistant spectrum with driving frequency Q = |ws — @[ In (a) The system behaves

periodically with photons, originally in mode s, switching back and forth between modes s and c. This leads to an oscillatory behavior of the
entanglement (b) and the mutual information (c). They oscillate between a maximum, when the photons are in s and zero, when they are in c.
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4 6

[ —r =1 —r =1 —r =1

10 -7 =16 3h --r =16 | --r=16
r=1.9 ' r=1.9 r=1.9
Z 5 (N

0 T = ST —

0 1 2 3 2 3 3

T T T

FIG. 4. One dimensional cavity and an equidistant spectrum with driving frequency Q = w;. No creation of particles for this driving.
(a) The particle behavior decreases as the initial photons in mode s = 1 are lost to higher frequency modes for different values of the

squeezing parameter r. (b) This photon loss causes the entanglement and (c) mutual information to vanish for long times.

|ags|? cosh(2r) + Y- |a,[? 0 sinh(27)ay, 0
s
1 0 |lag|* cosh(2r) + 3 |ay;|? 0 —sinh(2r)ay,
Vs\p = z J#S )
sinh(2r)ay, 0 cosh(2r) 0
0 — sinh(2r)ag, 0 cosh(2r)

where we have already used that §;; = 0 and that a;;(7), is
areal function given by Eq. (33). In order to understand the
long time behavior of this state, we can use the Bogoliubov
relation

1= z; |asj|2 - |ﬂsj|2 = z; |asj|2 (57)
j= j=

to reduce the problem in terms of a unique Bogoliubov
coefficient:

] o0
(Vp) = 3 <|ocss|2 cosh(2r) + Z |aSj2>

J#s

(Vs\p)ll =

(|ag|*(cosh(2r) = 1) +1).  (58)

N[ =

As a matter of fact, the explicit expression for this
coefficient |aj,| is already known to be [38]

s

ay(1) =Y [(s = 1)!(s +j = 1D(=1)"7]
=1
x [(s = 1)1j!(s = j)!]' (cosh7)~% — 0.

T—00

All in all, the covariance matrix can be easily seen to
converge to

1
Vs|pr—> Ediag(l, 1, cosh(2r), cosh(2r)). (59)

— 0

|
This means that not only the entanglement but the mutual
information as well vanish in the long time limit. In Fig. 4, we
compile the results obtained when 2 = w; in a one dimen-
sional cavity behavior. In Fig. 4(a), we show the particle
redistribution process for different initial values of the r
parameter. The number of particles in mode s = 1 is lost to
higher frequency modes since all cavity modes are coupled.
The smaller the initial value of r, the sooner the particles are
spread into other modes. In Fig. 4(b), we show that the
entanglement evolution behaves accordingly to the number
of particles N,: the entanglement is lost very rapidly as time
goes on and decrease asymptotically to zero. In Fig. 4(c), the
mutual information exhibits a similar behavior in concord-
ance to the rest of the quantities considered. It is important to
note that the entanglement degradation in a one dimensional
cavity is qualitatively different to that occurring in a three
dimensional cavity. In the former case, the loss of entangle-
ment is due to the many cavity modes available after shaking
the cavity. This implies a redistribution of the existing
particles in the cavity since no creation process takes place
for this case. We can even think of a big environment to which
information is lost. This is in contrast with the case of a three
dimensional cavity where the entanglement is not lost
asymptotically but rather oscillates following the particles.
Finally, we consider cavity 1 to be driven with a frequency
Q = gw,. This excites a parametric creation of photon pairs
which is then redistributed along higher frequency modes. In
this case the out operators are given by Eq. (32), from which
we can calculate the covariance matrix as

125008-9



DEL GROSSO, LOMBARDO, and VILLAR

PHYS. REV. D 102, 125008 (2020)

|ags|? cosh(2r) + 3 |ay; + By 0 sinh(2r)a,, 0
J#s
1 0 |ags|? cosh(2r) + X |ag; — B 0 —sinh(2r)ay,
Vip =5 % :
sinh(2r)ag, 0 cosh(2r) 0
0 —sinh(2r)a 0 cosh(2r)
We can simplify this expression by noticing that V', = V. This is because f; y.,, = —/1/(k + np)p(_kf”"p ) =0 for

k# p—1 while ay,, = /T/(k + np)p{ ™" = 0 for k # 1 and 50 a1, 1.,,, = O, from which we conclude that
1 feinp £ B kinpl® = |1 kinpl” + B11snp|*- By writing explicitly the covariance elements with Eq. (40), we can see that

Vll + V22 — 1 + 2N.w (60)
where N, = (a2""a®") is the number of photons in mode s
and so V;; = Ny + 1/2. The covariance matrix is then
reduced to only 3 independent components Vi, Vi3, Voq.
Therefore, we proceed to study the asymptotic behavior of
the state for long times. We must note that

limV13 = —limV24 < 00, (61)
t—0o t—o0

since V3,V « F(a,b,c;x*) and for t - co we have
x — 1 and F(a,b,c;k*) = F(a,b,c;1) < co.

At this point, it is important to mention the fact that in
Ref. [32], authors have already proved that when a cavity
with one oscillating mirror is driven with this frequency the
number of photons from the vacuum N,(r =0) grows
linearly with time." Then using the equivalence between
this setup and the shaken cavity, we see that

1 1
Vi = 5 |ags|*(cosh(2r) — 1) + 5 +Ny(r=0)xt. (62)
The previous simplifications allows us to write the explicit
expressions as
|

|
detV = Vi,V3, = V11 Vi3V = Vi1 V3,V + Vi Vi,

= Vi —2Vi3Va + V3, (63)

Combining with Eq. (61) the long time limit yields

det v 1 2
ez = Vi = (zcosh(Zr)> . (64)

This latter result implies that

detV 1

—log2v_ = —log2 (65)

— —1log(cosh(2r)) < 0, (66)

t—o0

leading to a surprising result: the logarithmic negativity
N = max{0, —log 2v_} manifests a sudden death at some
finite time. As for the long time behavior of the mutual
information, we can use the symplectic eigenvalues
given by

1
Ny = 7 \/v%1 + V3 +2V3Vy £ \/v‘l‘] + Vi + 4V V3V, —2V3 (V3 =2V 3Vay) + 4V Va3 (V3 V3. (67)

By use of Egs. (61) and (62), we have

for > 1
for 7> 1 (68)

ny= Vi,
n-= Vs,

'An exception for this behavior occurs when the frequency of
the initially excited mode s coincides with the shaking frequency
w, = gw;. In this case the solutions behave as for Q = w,, which
we have already analyzed.

from which we conclude that the mutual information also
vanishes in the long-time limit

I=f(Vi1)+f(Vs3) = f(n-) —f<’1+)7j000' (69)

In Fig. 5 we present the numerical results for ¢ = 3. In
Fig. 5(a), we compute the numerical evolution of N, while
in Fig. 5(b), we show the entanglement degradation as time
evolves. It is easy to note that the entanglement is
qualitatively different from the previous cases as it dies
suddenly in a finite time. This is due to the fact that two
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8
—r =1 —r =1
--r=1.6 --r=1.6
r=1.9 6
1 2 3
T T T

FIG. 5. One dimensional cavity and an equidistant spectrum with driving frequency Q = gw;. (a) The number of photons initially
decreases since a redistribution between the available modes takes place. As this case implies particle production, some time later the
number of particles grow linearly as photon pairs are produced in modes s and c. (b) The entanglement evidences a sudden death while
(c) the mutual information behavior implies that classical correlations remain in the system but approach zero for long times. In this case

we have assumed g = 3.

different effects are now combined and affect the entangle-
ment: photon redistribution and pair creation. In Fig. 5(c),
we can note that the mutual information, however, decreases
slowly and asymptotically to zero. This last case is com-
pletely different to all others. It implies many infinite modes
coupled in a cavity in addition to particle creation process.
Initially, it can be seen that the number of particles N
decreases because they are redistributed to higher modes
available. This is much evident for > 1. For a critical time
the particle creation rate starts to gain importance and the
number of particles in mode s starts increasing. Surprisingly,
this critical time is similar to the time the entanglement
suddenly dies (or becomes zero). This combination of
factors in not present in the other cases described above.

V. ENTANGLEMENT REDISTRIBUTION

In this section, we shall study where the initial entan-
glement N ¢ (between cavity modes p and s) goes after

4f _-/V’pCA
—N,
3» sc (A
Nos
=2
1t
0 :
1 2 3 4

FIG. 6.

having altered the state of the field inside the cavity by
means of the dynamical Casimir effect. It is important to
note that in this manuscript we are studying a situation in
which entanglement degradation exhibits different behav-
iors depending mainly on the spectrum of the cavity and the
frequency of oscillation in consideration. As we have
already seen that degradation takes place in significative
different ways depending mainly on the cavity considered,
in the following we shall study the entanglement dynamics
among different cavity pairs available in the cavity.

For the three dimensional cavity, we have already
mentioned that only two modes will couple. The external
excitation can then be considered as Q = |wg + @], lead-
ing to considerably different behaviors regarding creation
of particles and entanglement degradation. In the case that
Q = ws + o, we have shown particle production is expo-
nential in time. As the external frequency Q excites
modes s and ¢, particles of these modes are created in

2 4
—N,,

1.5 — N
N,

= 1 =
0 ; ; :
0 1 2 3 4
T

(b)

(a) Three dimensional cavity and a nonequidistant spectrum with driving frequency Q = w, + @, and r = 1. Entanglement N/

between modes p and ¢, s and ¢, p and s measured by the logarithmic negativity as time evolves. The creation of photons pairs entangles
modes s and ¢ (NV.), but it does not generate entanglement between p and ¢ (N pe); instead it degrades the entanglement N, ps- (b) Three
dimensional cavity and a nonequidistant spectrum with driving frequency Q = oy — w.| The system behaves periodically with
photons, originally in mode s, switching back and forth between modes s and c. This oscillatory behavior also manifests in the
entanglement dynamics N between modes of the first cavity with the second.

125008-11



DEL GROSSO, LOMBARDO, and VILLAR PHYS. REV. D 102, 125008 (2020)

1657 ' ' ' ' 2 ' '
—N; —Np
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FIG. 7. One dimensional cavity and an equidistant spectrum with driving frequency Q = w;, assuming s = 1 and r = 1. (a) Under
these conditions no particles are produced but instead the initial particles in mode 1 are redistributed toward higher frequency modes
2,3, .... This leads to an entanglement flow to other higher cavities modes in detriment of the initial entanglement between the modes of

the moving and static cavities.

entangled pairs. The particles generated in mode ¢ are
never entangled with those of mode p but as time evolves
they increase their entanglement with mode s while
degrading the entanglement between p and s [see Fig. 6(a)].

On the other hand, if Q = |wg — .|, we have shown that
there is no particle creation inside the cavity. This means
that, as the cavity is shaken, the number of particles initially
in mode s are transferred to mode ¢ and then back to mode
s, exhibiting an oscillatory behavior. This is due to the fact
that no extra photons are created, but only a redistribu-
tion of particles in the cavity takes place. Entanglement
dynamics behaves similarly with information being trans-
ferred between the two modes. Initial entanglement N ps
decreases as N, increases, showing an oscillatory behav-
ior out of phase [Fig. 6(b)]. It is important to note that for
both cases considered of the three-dimensional cavity,
entanglement dynamics takes place between only two

8 v
—N,
6|V
N7
z 4|
—N;
2,
O n
0 1 2 3 4

FIG. 8.

modes, due to the nonequidistant distribution of the cavity
modes.

In the case of a one-dimensional cavity, the resulting
spectrum is equidistant, and cavity mode coupling takes
place between many cavity modes. This implies a more
complex dynamics, in which photon- and entanglement-
transfer into higher frequency modes take place. When
external driving is Q = @;, we have shown that there is no
particle production inside the cavity. In Fig. 7(a), we see the
number of particles in different allowed cavity modes. As it
can be noted, initially there are only particles in mode
s = 1. As time evolves, the number of particles in mode
s = 1 decreases, as photons are transferred to higher cavity
modes (N, temporarily increases). In Fig. 7(b), we can
note that as the number of particles in higher frequency
modes increases, the initial entanglement is transferred to
other pairs of cavity modes, leading to an increase of V5,

2
— N1
1.5 —JVp4 |4
Nog
‘Z 1 —JVp2|1
— N5
0.5
0 \
0 1 2 3 4

One dimensional cavity and an equidistant spectrum with driving frequency Q = gw;. In this case we have assumed g = 3,

s = 1 and r = 1. (a) The number of photons in mode 1 initially decreases since a redistribution toward higher modes 4, 7, 10, ... takes
place. As this case also implies particle production, some time later the number of particles grows linearly as photon pairs are produced
in modes 1 and 2. (b) The photons produced in modes 2, 5, 8, ... are entangled with modes 1,4, 7, ... but not with mode p in the static
cavity, analogously to the three dimensional case Fig. 6(a). However, entanglement that was originally between 1 and p is redistributed
into higher frequency modes of the form 1 + 3n with n a natural number and have a sudden death at finite time.
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N »3 and so on. In this case, all cavity modes are allowed.
The higher the frequency mode, the less degree of entan-
glement it receives. In the long time regime, the entangle-
ment degradation is complete.

Finally, we must mention the case where 2 = gw;. Under
this condition, there is particle production inside the cavity
between pairs of modes whose frequency add up to Q as can
be seen in Fig. 8(a). However, it is not the only consequence
that we must take into the consideration. As the spectrum is
equidistant, infinitely many modes can couple. Therefore, we
have shown that in this particular case, there is particle
redistribution and creation inside the cavity. This leads to an
entanglement dynamics different to all cases considered
before. Initial entanglement between modes s and p is
redistributed toward higher frequency modes of the form:
mod ,(s) + gn with n a natural number and mod ,(s) the
remainder of s when divided by ¢ but eventually have a
sudden death. However, the pairs produced between mod , (s)
and ¢ — mod ,(s) donotentangle g — mod ,(s) with p and
therefore none of the higher frequency modes along which
they are distributed (of the form ¢ — mod ,(s) + g n) get
entangled with p (see Fig. 8(b) for an example). The loss of
entanglement is precisely explained as a redistribution of the
inertial entanglement and the generation of multipartite
quantum correlations among accessible and inaccessible
modes inside the cavity.

VI. CONCLUSIONS

In this work we have studied how the entanglement and
classical correlations between modes s and p in two
different cavities are modified when one of them is in
relative oscillatory motion. In achieving so, we have firstly
reviewed the dynamical Casimir effect. We have presented
the reigning equations for a two-moving wall (“shaker”)
cavity and computed the Bogoliubov transformation.
Further, we have analyzed the particle creation process
for a nonequidistant and an equidistant spectrum and
stressed their similitudes and differences. It is important
to mention that even though the analysis of the DCE has
been performed previously, the equivalence between a rigid
translational movement of a two-wall moving cavity and a
single moving one with twice the amplitude of movement is
a new contribution which allowed to achieve a complete
analytical description of the system.

We have found that there are four qualitatively different
behaviors for the system, depending on whether the
spectrum is equidistant or not. The other feature that
determines the behavior is whether the driving frequency
Q is able to create new photons or just redistribute the initial
existing ones. If the spectrum is unevenly spaced and there
is an additional mode ¢ such that Q = |wy — w.| then
photons oscillate between s and e¢. This causes the
entanglement and the mutual information among the
cavities to oscillate in time. However, if ¢ has a frequency
such that Q = |ws + @, | then pairs of photons are created in

these modes, this degrades the entanglement between the
cavities which goes asymptotically to zero. In spite of this,
classical correlations persist as the mutual information
converges to a positive value in the long-time limit. This
result is analogous to the one found in [4,6] where the
entanglement between two observers is degraded as one
them accelerates but classical correlations persist. Our results
show that the situation becomes qualitatively different when
the spectrum of the cavity is evenly spaced, since this causes
infinitely many modes that get coupled. In this case, if the
moving cavity is shaken with its fundamental frequency, no
photons are produced. However, as time goes on the photons
in the initially excited mode are eventually lost which causes
the entanglement and mutual information between the
cavities to vanish as well. On the other hand, if the cavity
oscillates with a frequency that is an uneven harmonic, there
is also production of photons that forces the entanglement
to have a sudden death in a finite time, while the mutual
information goes asymptotically to zero. This situation
produces a similar result to what was found in [12] where
the entanglement between two harmonic oscillators was
suddenly completely lost as one of them was accelerated.
Finally, by looking at what happens to other cavity
modes, we have seen how this degradation occurs as a
consequence of essentially two different processes which
are the redistribution and pair creation of particles inside
the moving cavity. In the case of an unevenly spaced
spectrum and Q = @y + @, the degradation is caused by
particle creation and increases with time, while for Q =
|wg — w¢| it is caused by photon redistribution to a second
mode and oscillates in time. On the other hand, for a cavity
with an evenly spaced spectrum and shaken with its
fundamental frequency the entanglement degradation stems
solely from particle redistribution to higher frequency
modes, while if it is shaken with an uneven harmonic of
the fundamental frequency the degradation occurs as a
combination of both effects. Finally, we have studied the
entanglement redistribution so as to get an insight into
where the entanglement is gone after altering the initial
state of the system. We have shown that the answer relies
on the particular particle creation process and coupling
modes available in the cavity under each case considered.
This setup captures many of the results previously found
for observers and cavities in accelerated motion. In both
cases we have a Bogoliubov transformations that generate
photon pairs. However, in previous results of the existing
literature, the alteration of the field state was due to the
Unruh effect. In this work we exploit the nontrivial
structure of quantum vacuum and the effects derived
from time dependent boundaries conditions. The result
obtained is an apparent entanglement degradation and
information loss for mostly cases considered. We believe
that this setup has more promising experimental qualities
since it relies on a bounded motion in an optomechanical
system. While, there are still technological challenges that
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must be overcome for it to be tested in this exact setting, as
the frequency of nanoresonators is not high enough, a
simulation in a superconducting cavity is within exper-
imental reach, since DCE has already been tested there.
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