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We study the entanglement dynamics between two cavities when one of them is harmonically shaken in
the context of quantum information theory. We find four different regimes depending on the frequency of
the motion and the spectrum of the moving cavity. If the moving cavity is three dimensional only two
modes inside get coupled and the entanglement can either degrade asymptotically with time or oscillate
depending on the driving. On the other hand, if the cavity has an equidistant spectrum the entanglement can
either vanish asymptotically if it is driven with its fundamental frequency or have a sudden death if it is
driven with an uneven harmonic frequency.
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I. INTRODUCTION

In the last decade a growing interest has arisen in the field
of relativistic quantum information (RQI) since a number of
interesting novel effects on entanglement between moving
observers have been reported [1]. Hence, this area of research
has addressed questions related to the relativistic aspects of
quantum physics, in particular submerging into the relation
between the physics of quantum field theories and quantum
information theory [2]. As an example, black holes, once
believed to be only mathematical artifacts, are today an
established part of the universe and one of the greatest
mysteries of modern physics. They are very well defined in
terms of general relativity but very little is known about their
quantum nature. The discovery by Hawking [3] that they
emit thermal radiation and the information paradox that this
fact had led to is one of themany efforts done in order to get a
complete understanding of their relation with quantum
mechanics. Particularly, RQI has a crucial role in explaining
quantum effects around black hole’s physics.
An interesting approach taken by authors in Ref. [4]

investigates the possibility of transmitting signals between
inside and outside the event horizon of a black hole.
Therein, a pair of entangled particles is considered, each
one held by two different observers: one observer is inertial
going into free-fall inside the black hole while the other
accelerates away and hovers outside the event horizon on a
fixed distance. The authors noticed this study could be
approximately described by a scalar quantum field in
Minkowski spacetime with two entangled modes. In this
framework, they calculated the entanglement between two
free modes of the scalar field as seen by an inertial observer
detecting one of the modes and a uniformly accelerated
observer detecting the second mode. They therefore stated

that as the acceleration of this observer increases, the
perceived entanglement between the two modes decreases
asymptotically to zero, hindering the possibility of signal
transmission [5]. This work led to multiple ramifications
and numerous investigations on the effect of relativistic
motion in quantum information [6–11]. For instance, in
Ref. [6], the entanglement shared between observers in
relative accelerated motion is analyzed finding that it
vanishes between the lowest-frequency modes. In a differ-
ent approach, authors in Ref. [10] showed that if the scalar
field is replaced with a Dirac field the entanglement does
not vanish in the infinite acceleration limit meaning that it
can be used for quantum information tasks. Sometimes,
results can be even more dramatic. In Ref. [11] it has been
shown that the entanglement shared between two Unruh-
DeWitt detectors (see Ref. [12]) that are being accelerated
can suddenly be lost in a finite amount of time. Similarly, in
Refs. [8,13] it has been stated that the entanglement shared
by two entangled cavities in accelerated motion oscillates
as time elapses, during the time period the motion lasts. In
this context, we can notice that the original motivation has
led to a more general question about how entanglement
changes for observers in relative motion. In particular,
entanglement degradation caused by relativistic accelera-
tion is a feature that has received great attention recently
and we aim to explore in this manuscript.
In this paper we will continue these investigations by

studying how the entanglement between two cavities
changes as one of them is rapidly shaken. In the previous
cases, the accelerated motion of the observer changed the
state of the field due to the Unruh effect [14]. Alternatively,
in this manuscript, the state of the field will be altered by
the dynamical Casimir effect (DCE) [15], known as being
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responsible for the creation of photons pairs from the
electromagnetic vacuum when mirrors are subjected to
ultra fast oscillations [16]. It is important to remark that,
from an experimental point of view, making use of the
Unruh effect requires either linearly unbounded motion
which leads to short integration times or complex rotating
setups [17]. On the other hand for the DCE the motion is
linear and bounded for arbitrarily long times of integration.
Also, while creation of photon pairs out of quantum
vacuum is close to being technologically accessible in
optomechanical experiments [18–22] (practical optome-
chanical structures have been created in which the mirror
can oscillate as fast as six billion times a second); it is
already accessible in superconducting quantum circuits,
where the DCE has been measured for the first time.
Therefore practical implementations of the kind can be
designed in order to get an insight into the consequences of
relativistic motion on quantum entanglement. This papers
is organized as follows: in Sec. II we review the physics of a
cavity with two oscillating boundaries. We shall show that,
in some cases, it can be reduced to the case of a cavity with
a single moving mirror, allowing for an analytical solution
for small times. Then, in Sec. III we examine some pro-
perties of Gaussian states in terms of the covariance matrix
and see how we can measure the entanglement between two
parts in that case. Section IVexplores the use of these tools
to analytically study the entanglement degradation between
two cavity modes due to the DCE. In Sec. V, we discuss the
entanglement redistribution. Finally, in Sec. VI we present
our conclusions.

II. DYNAMICAL CASIMIR EFFECT

We consider a rectangular cavity formed by perfectly
reflecting mirrors with dimensions Lx, Ly, and Lz (we shall
consider only Lx in the case of a one-dimensional cavity).
The mirrors oscillate together in the x-axis, maintaining the
distance among them fixed (we will refer to this cavity as a
“shaker”), while the two other pairs of mirrors in the y and
z-axis move so as to produce a rigid motion of the whole
cavity [23–25]. We shall consider the light as a scalar field
satisfying the wave equation

□Φ̂ðx; tÞ ¼ 0 ð1Þ

subjected to time dependent boundary conditions on the
mirrors with displacement rðtÞ,

Φ̂ðx ¼ 0þ rðtÞ; y; z; tÞ ¼ Φ̂ðx ¼ Lx þ rðtÞ; y; z; tÞ ¼ 0

Φ̂ðx; y ¼ 0; z; tÞ ¼ Φ̂ðx; y ¼ Ly; z; tÞ ¼ 0

Φ̂ðx; y; z ¼ 0; tÞ ¼ Φ̂ðx; y; z ¼ Lz; tÞ ¼ 0: ð2Þ

This comes from the fact that transverse electric (TE) and
transverse magnetic (TM) electromagnetic modes can be
described by scalar fields [26].

For t < 0 all mirrors are at rest (static cavity) and the
field can then be expanded as

Φ̂ðx; tÞ ¼
X
k

½âink ukðx; tÞ þ H:c:�; ð3Þ

where âinn are the bosonic operators corresponding to
different photon modes and the functions un are the
positive frequency solutions of the wave equation

ukðx; tÞ ¼
ffiffiffiffiffi
2

Lx

s
sinðkxxÞ

ffiffiffiffiffi
2

Ly

s
sinðkyyÞ

ffiffiffiffiffi
2

Lz

s
sinðkzzÞ

×
e−iωktffiffiffiffiffiffiffiffiffi
2ωk

p ð4Þ

with k ¼ ðnxπLx
; nyπLy

; nzπLz
Þ and ωk ¼ jkj. The mirrors in the

x-axis start to move at t ¼ 0 and the original basis gets
continually deformed into a new one satisfying the boun-
dary conditions ukðx; tÞ → vkðx; tÞ. Expanding the field in
this new basis as

Φ̂ðx; tÞ ¼
X
n

½âoutn vnðx; tÞ þ H:c:�; ð5Þ

we can define new bosonic operators âoutn corresponding to
a new notion of particles. As the mirrors go back to their
original position and stop moving, the field can be ex-
pressed alternatively in any of the two basis, which means
that there exist coefficients αnk and βnk such that

vn ¼
X
k

½αnkuk þ βnku�k�: ð6Þ

Replacing this in Eq. (5) and equating that to Eq. (3) we can
relate both sets of bosonic operators as

âoutn ¼
X
k

½αnkâink þ β�nkâ
in†
k �; ð7Þ

which is known as a Bogoliubov transformation. In the
following, we shall obtain explicit analytic solutions for the
coefficients αnk and βnk as a function of time for a har-
monic oscillation of the cavity mirrors. This will give us the
complete time evolution of the field in the Heisenberg
picture.
It is important to remark that, for an initially vacuum

field’s state, the number of photons in mode k at a time
t > 0 can be computed as

hN̂ni ¼ hâout†n âoutn i ¼
X
k

jβnkj2: ð8Þ

This means that for jβnkj ≠ 0 photons in mode n are
created from vacuum. This is commonly known as the
dynamical Casimir effect (DCE).
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A. Bogoliubov coefficients

We shall focus on obtaining the Bogoliubov coefficients.
Hence, we begin by expanding solutions in the comoving
basis

vnðx; tÞ ¼
X
k

QðnÞ
k ðtÞφkðx; tÞ ð9Þ

where QðnÞ
k ðtÞ are time dependent coefficients and

φkðx; tÞ ¼
ffiffiffiffiffi
2

Lx

s
sinðkxðx − rðtÞÞÞ

ffiffiffiffiffi
2

Ly

s
sinðkyyÞ

×

ffiffiffiffiffi
2

Lz

s
sinðkzzÞ: ð10Þ

To find the time dependent coefficients QðnÞ
k ðtÞ, we can

replace Eq. (9) in Eq. (5) and, then, this field decomposition
into the wave equation. Finally, using the orthogonality
of φk

Z
LþrðtÞ

rðtÞ

Z
Ly

0

Z
Lz

0

φkðxÞφjðxÞdzdydx ¼ δkj ð11Þ

we find the following differential equation for the coef-
ficients

Q̈ðnÞ
k ðtÞ − 2_rðtÞ

X
j

_QðnÞ
j ðtÞgkj − ̈rðtÞ

X
j

QðnÞ
j ðtÞgkj

− _r2ðtÞ
X
jl

QðnÞ
j ðtÞgljglk þ ω2

kQ
ðnÞ
k ðtÞ ¼ 0; ð12Þ

where we have defined

gkj ¼
Z

LþrðtÞ

rðtÞ

Z
Ly

0

Z
Lz

0

∂ φkðxÞ
∂Lx

φjðxÞdzdydx

¼
� ðð−1Þjxþkx − 1Þ 2kxjx

k2x−j2x
δkyjyδkzjz kx ≠ jx

0 kx ¼ jx
: ð13Þ

We will consider a harmonic oscillation of the mirrors
displacement rðtÞ ¼ ϵ sinðΩtÞ and search for solutions of
the form

QðnÞ
k ¼ αnkðτÞ

e−iωktffiffiffiffiffiffiffiffiffi
2ωk

p þ βnkðτÞ
eiωktffiffiffiffiffiffiffiffiffi
2ωk

p ð14Þ

in order to get analytical predictions about the particle
creation process (this is a standard procedure known as
multiple scale analysis [27]). Hence, if we introduce a slow
time τ ≔ 1

2Lx
ϵω1t [with ω1 the fundamental frequency

defined after Eq. (4)], the functions αnk and βnk are slowly
varying and contain the cumulative resonant effects. These

functions will have initial conditions αnkðτ ¼ 0Þ ¼ δnk and
βnkðτ ¼ 0Þ ¼ 0 so that the initial field is given by Eq. (3).
After substituting Eq. (14) in Eq. (12) and averaging
over fast oscillations we obtain the following differential
equations

dβnk
dτ

¼
X
j

Ω
2ωk

gkjβnj

��
ωj þ

Ω
2

�
δðΩþ ωj − ωkÞ

þ
�
ωj −

Ω
2

�
δð−Ωþ ωj − ωkÞ

�

þ
X
j

Ω
2ωk

gkj

�
−ωj þ

Ω
2

�
αnjδðΩ − ωj − ωkÞ

ð15Þ

dαnk
dτ

¼
X
j

Ω
2ωk

gkjαnj

��
ωj þ

Ω
2

�
δðΩþ ωj − ωkÞ

þ
�
ωj −

Ω
2

�
δð−Ωþ ωj − ωkÞ

�

þ
X
j

Ω
2ωk

gkj

�
−ωj þ

Ω
2

�
βnjδðΩ − ωj − ωkÞ;

ð16Þ

where δð0Þ ¼ 1 and δðxÞ ¼ 0 for x ≠ 0.
We can mention that by replacing Eqs. (14) and (10) in

Eq. (9) and comparing the result with that of Eq. (6), it is
easy to note that these slowly changing αnk and βnk will be
the Bogoliubov coefficients found in the previous section.
There are essentially two distinct cases in which we can

solve this set of coupled differential equations depending
on whether the cavity’s spectrum is equidistant or non-
equidistant. As for a nonequidistant spectrum, it can be
achieved for example by considering a three-dimensional
cavity or, in another case by considering a massive scalar
field. In such cases, only two modes will couple (except for
some exceptional cases described in [26]). Oppositely, if
the cavity is one-dimensional; the spectrum is equidistant
ωn ¼ nπ=Lx and then infinitely many modes will couple.
In the following, we shall briefly describe both situations.

1. 3D cavity and nonequidistant spectrum:
Two coupled modes

Let us consider the case in which we have a three
dimensional cavity. If we assume a driving (shaking)
frequency Ω that can be formed by two modes ωs and
ωc, as Ω ¼ ωs þ ωc; then, because the spectrum is non-
equidistant, there is (almost) never a third mode ωd such
that Ω ¼ jωs � ωdj or Ω ¼ jωc � ωdj. In that case,
Eqs. (15) and (16) reduce to

ENTANGLEMENT DEGRADATION OF CAVITY MODES DUE TO … PHYS. REV. D 102, 125008 (2020)

125008-3



dβns
dτ

¼ Ω
2ωs

gsc

�
−ωc þ

Ω
2

�
αnc ð17Þ

dαnc
dτ

¼ Ω
2ωc

gcs

�
−ωs þ

Ω
2

�
βns: ð18Þ

This is a linear system with four coupled differential
equations that can be easily solved. When combined with
Eq. (7) we obtain

aouts ¼ coshðγ−τÞains þ sinhðγ−τÞain†c ð19Þ

aoutc ¼ coshðγ−τÞainc þ sinhðγ−τÞain†s ð20Þ

where

γ− ¼ Ω
2
gsc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωs − Ω

2
ÞðΩ

2
− ωcÞ

ωsωc

s
: ð21Þ

This transformation generates a two-mode squeeze state
with squeezing parameter γ−τ, occurring when a driving
quanta is converted into a pair of photons in modes ωs and
ωc. It is important to remark that this fact can also be seen
from our previous discussion. The number of photons
created from the vacuum is given by Eq. (8), and since, in
this case it is βnk ≠ 0, there is creation of particles and it is
exponential in time [27,28].
The other possible coupling between two modes occurs

if Ω ¼ jωs − ωcj. In that case, the system of Eq. (16)
becomes

dαns
dτ

¼ Ω
2ωs

gsc

�
ωc −

Ω
2

�
αnc ð22Þ

dαnc
dτ

¼ Ω
2ωc

gcs

�
ωs þ

Ω
2

�
αns: ð23Þ

This set of equations can be readily solved and yields

aouts ¼ cosðγþτÞains þ sinðγþτÞainc ð24Þ

aoutc ¼ cosðγþτÞainc − sinðγþτÞains ; ð25Þ

where

γþ ¼ Ω
2
gsc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωs þ Ω

2
Þðωc − Ω

2
Þ

ωsωc

s
: ð26Þ

It is worth mentioning that in this situation βnk ¼ 0 and no
new photons are created. This means that for an initially
vacuum state the dynamics is trivial. However, given an
initial state with some photons in one of the modes, the
number of photons in each mode will oscillate while
keeping the total number of photons constant.

2. 1D cavity and equidistant spectrum:
Infinite coupled modes

We now consider the case where the cavity is one
dimensional [29] and the resulting spectrum is equidistant.
Since the only relevant direction corresponds to the x-axis
we discard the bold face indices to keep only this
component. Then, using the coefficients described in
Eq. (13), the set of Eqs. (15) and (16) reduces to

dβnk
dτ

¼
X

jþk odd

Ω
2ωk

gkjβnj

��
ωj þ

Ω
2

�
δðqþ j − kÞ

þ
�
ωj −

Ω
2

�
δð−qþ j − kÞ

�

þ
X

jþk odd

Ω
2ωk

gkj

�
−ωj þ

Ω
2

�
αnjδðq − j − kÞ

ð27Þ

dαnk
dτ

¼
X

jþk odd

Ω
2ωk

gkjαnj

��
ωj þ

Ω
2

�
δðqþ j − kÞ

þ
�
ωj −

Ω
2

�
δð−qþ j − kÞ

�

þ
X

jþk odd

Ω
2ωk

gkj

�
−ωj þ

Ω
2

�
βnjδðq − j − kÞ;

ð28Þ

where we have defined q ¼ Ω=ω1 and used the fact that the
spectrum is given by ωj ¼ jω1 and that gkj ¼ 0 if kþ j is
even. It is important to note that, since kþ j is odd, k − j is
also odd. This means that if q is not an odd number then the
right-hand side (rhs) of Eqs. (27) and (28) is null and the
evolution is trivial.
In order to obtain an analytical solution for the system

of Eqs. (27) and (28), we consider the situation in which
only one wall (let say the right one) of the cavity oscillates,
in the one dimensional case. In such a case, a derivation
similar to the one performed in the previous section leading
to Eqs. (15)–(16), leads to the following system of
equations

dβ̃ðnÞk

dτ
¼ −

π2k2

2ωkL2
x
α̃ðnÞk δð2k − qÞ

þ
X
j

Ω
2ωk

g̃kjβ̃
ðnÞ
j

��
ωj þ

Ω
2

�
δðqþ j − kÞ

þ
�
ωj −

Ω
2

�
δð−qþ j − kÞ

�

þ
X
j

Ω
2ωk

g̃kj

�
−ωj þ

Ω
2

�
α̃ðnÞj δðq − j − kÞ ð29Þ
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dα̃ðnÞk

dτ
¼ −

π2k2

2ωkL2
x
β̃ðnÞk δð2k − qÞ þ

X
j

Ω
2ωk

g̃kjα̃
ðnÞ
j

×

��
ωj þ

Ω
2

�
δðqþ j − kÞ

þ
�
ωj −

Ω
2

�
δð−qþ j − kÞ

�

þ
X
j

Ω
2ωk

g̃kj

�
−ωj þ

Ω
2

�
β̃ðnÞj δðq − j − kÞ; ð30Þ

with

g̃kj ¼
� 2kj

k2−j2 k ≠ j

0 k ¼ j:
ð31Þ

This set of equations is very similar to Eqs. (27) and (28),
the differences being only two. The first difference among
the systems of equations is that Eqs. (29) and (30) have an
extra term proportional to δð2k − qÞ [which is not present
in Eqs. (29) and (30)] [30]. This term creates pair of
photons in mode k and is only relevant when q ¼ 2k. The
second difference is that g̃kj ≠ gkj. However, it is easy to
see that 2g̃kj ¼ gkj if kþ j is odd, and this factor 2 can be
absorbed in the oscillation amplitude. Therefore, if we
excite a cavity with one moving wall at an odd frequency q,
we get that the first term of the rhs of Eqs. (29) and (30)
vanishes. All others also disappear, except for the case of
kþ j being odd (this is due to the δ factors). This proves
that when q is odd Eqs. (27) and (28) are equivalent to
Eqs. (29) and (30). Consequently, this means that a cavity
being shaken rigidly with an odd frequency behaves just as
an identical cavity with only one wall oscillating with the
same frequency and double amplitude. This result is very
important and, although a relationship had been noticed
[31], it had not been stated in this way in the existing
literature. We shall take advantage of this equivalence to get
analytical predictions on the particle creation process since
analytical solutions for the system with one moving wall
are well known [32]. In such a case the out operators are
given by

aoutm ¼
X∞
n¼1

ffiffiffiffi
m
n

r
½ρðnÞm ainm − ρðnÞ�−m ain†m �; ð32Þ

where

ρðjþnqÞ
jþmq ¼ Γð1þ nþ j=qÞðσκÞn−m

Γð1þmþ j=qÞΓð1þ n −mÞ
× Fðnþ j=q;−m − j=q; 1þ n −m; κ2Þ ð33Þ

for j ¼ 0; 1;…; q, n ¼ 1; 2; 3;… m ¼ �1;�2;�3;… and

ρðkþnqÞ
jþmq ¼ 0 ð34Þ

if j ≠ k, where

σ ¼ ð−1Þq ð35Þ

κ ¼ tanhðqτ̃Þ: ð36Þ

As it has been exposed above, these are also solutions of the
rigidly shaken cavity taking τ̃ ¼ 2τ ¼ ϵω1t, that is dou-
bling the amplitude ϵ.
Similarly to what we have noticed before in the three

dimensional case, there are two qualitatively different
regimes depending on the driving frequency. If Ω ¼ ω1 ¼
ωjþ1 − ωj then no photons are created as a whole.
However, given an initial number they can “jump” between
adjacent modes. For long times, the number of photons on
any mode goes to zero as they are lost to higher frequency
modes. Alternatively, if Ω ¼ qω1 with q an odd number
greater than 1, pairs of photons are created from the vacuum
on any pair of modes j and k such that Ω ¼ ωj þ ωk.
We have briefly analyzed DCE in different configura-

tions. In all cases, by shaking the cavity, we have altered the
state of the scalar field. In addition, we have shown that, in
some particular cases, we obtain creation of particles as a
further result. In the following we shall study the entan-
glement process between two of these cavities as one of
them is rapidly shaken.

III. ENTANGLEMENT MEASUREMENT

A particularly relevant set of states, from a theoretical
viewpoint, are Gaussian states which include coherent,
squeezed, and thermal states. Given a set of harmonic
oscillators, we can take a basis of quadrature operators
R ¼ ðq1; p1;…; qn; pnÞ, where

qj ¼
1ffiffiffi
2

p ðaj þ a†jÞ ð37Þ

pj ¼
−iffiffiffi
2

p ðaj − a†jÞ ð38Þ

and completely characterize a Gaussian state ρ with its
displacement vector

dj ¼ hRjiρ ð39Þ

and its covariance matrix

Vij ¼
1

2
hRiRj þ RjRiiρ − hRiiρhRjiρ: ð40Þ

Some important properties of these states are that the
evolution of a Gaussian state under a quadratic hamiltonian
is also a Gaussian state. Further, given a system in a
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globally Gaussian state, any subsystemhas a state that is also
gaussian and its covariance matrix is given by the restriction
of the covariance matrix of the whole to that subsystem. In
addition, it is possible to quantify the entanglement in a
mixed state [33] by using the logarithmic negativity [34],
which is an entanglement monotone given by

N ðρÞ ¼ log2kρΓAk1; ð41Þ

where kρΓAk1 is the trace norm of the partial transpose of ρ
with respect to subsystem A.
Herein, we want to calculate the entanglement between

two modes in Gaussian states. In such case, the covariance
matrix is of the form

VAjB ¼
����VA VC

VT
C VB

���� ð42Þ

and the logarithmic negativity can be calculated as [35]

N ¼ maxf0;− log 2ν−g ð43Þ

where

ν− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ
2
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ2 − 4 detVAjB

qr
ð44Þ

and

Σ ¼ detVA þ detVB − 2 detVC: ð45Þ

In order to determine if there is still information shared
between subsystems when the entanglement vanishes, we
will use the mutual information [36,37]

IðρAjBÞ ¼ SVðρAÞ þ SVðρBÞ − SVðρAjBÞ; ð46Þ

which measures the total correlations (quantum and
classical), with SV being the Von Neumann entropy. In
the case of a Gaussian state, it can be easily computed as

IðVAjBÞ ¼ fð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det 2VA

p
Þ þ fð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det 2VB

p
Þ

− fðη−AjBÞ − fðηþAjBÞ ð47Þ

with

fðxÞ ¼ xþ 1

2
log

�
xþ 1

2

�
−
x − 1

2
log

�
x − 1

2

�
ð48Þ

where η−AjB; η
þ
AjB are the symplectic eigenvalues of 2VAjB.

IV. ENTANGLEMENT DEGRADATION

In this section, we shall study the entanglement degra-
dation in two cavities. Initially, both cavities are in an
entangled two-mode squeezed state comprising mode s in
cavity 1 and p in cavity 2. At t ¼ t0, we harmonically shake
cavity 1 (as seen in Sec. II), keeping the distance between
the mirrors fixed, and study how the entanglement between
both cavities evolves in time (Fig. 1). We can think of this
system in the context of RQI as mimicking two observers in
relative motion, one them static and the other moving back
and forth harmonically, and that can only access only one
mode (p and s respectively).
The initial state of the system can be written in terms of

the destruction operators as

ains ¼ coshðrÞas þ sinhðrÞa†p
ainp ¼ coshðrÞap þ sinhðrÞa†s ð49Þ

where as and a†s are the destruction operators of the uncor-
related modes, satisfying ha†jaji ¼ 0 and hajaji ¼ 0, for
j ¼ s;p. As has been mentioned before, there are two
qualitatively different behaviors for the evolution of the
field in the shaken cavity depending on whether the
spectrum is approximately equidistant or unevenly spaced.
We therefore analyze all cases separately.

Cavity 1 Cavity 2

mode s mode p
mode s mode p

mode s mode p

mode c

FIG. 1. The two cavities are initially (at t ¼ t0) static and modes s and p are entangled (thick gray line). As we start shaking cavity 1 at
time t ¼ t0 with frequencyΩ, the entanglement between these modes becomes weaker. (dashed gray line). Finally, at tF the shaking stops
but the entanglement (measured by negativity N s), is much weaker than initially N sðtFÞ < N sðt0Þ (dotted line).
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A. 3D case and nonequidistant spectrum:
Two coupled modes

In the case that the shaking cavity is considered as
three dimensional, the spectrum is not evenly spaced. The
excited mode swill then result coupled to at most one more
mode, which we hereafter call mode c. As explained in the
preceding Sec. II, the altered field state will result quali-
tatively different when the driving frequency is Ω ¼ ωs þ
ωc or Ω ¼ jωs − ωcj.

First, we begin by analyzing the system when the cavity
1 is shaken with a frequency Ω ¼ ωs þ ωc. We further
assume these two modes do not couple to any other mode.
Shaking cavity 1 with this frequency creates pairs of
photons in modes c and s. Accordingly to the derivations
of the previous section, the new operators aouts and aoutc are
related to ains and ainc by Eqs. (19) and (20). By considering
the relation between creation operators and quadratures
(37)–(38) we are able to calculate the covariance matrix,
which in the basis ðqp; pp; qs; psÞ, is

Vpjs ¼
1

2

������������

coshð2rÞ 0 coshðγτÞ sinhð2rÞ 0

0 coshð2rÞ 0 − coshðγτÞ sinhð2rÞ
coshðγτÞ sinhð2rÞ 0 ðcosh2ðrÞ coshð2γτÞ þ sinh2ðrÞÞ 0

0 − coshðγτÞ sinhð2rÞ 0 ðcosh2ðrÞ coshð2γτÞ þ sinh2ðrÞÞ

������������
:

ð50Þ

We can further compute the long time properties of this
state. We note that

Σ ¼ 1

4
coshð2rÞ2 þ 1

4
ðcosh2ðrÞ coshð2γτÞ þ sinh2ðrÞÞ2

þ 1

2
ðcoshðγτÞ sinhð2rÞÞ2 !

τ→∞
∞: ð51Þ

Before continuing, it is important to mention that the
following limit remains finite

detVpjs
Σ

!
τ→∞

1

4
: ð52Þ

Hence, it is easy to see that the negativity (N ¼ − log 2ν−)
vanishes in the long time limit

N ¼ − log 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detVpjs

Σ
1

1
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
− 1

Σ
detðVpjsÞ

Σ

q
vuut !

τ→∞
0: ð53Þ

In addition, we can also study the mutual information
between the cavities by calculating the symplectic eigen-
values of 2Vpjs. They are

η− ¼ 1;

ηþ ¼ j coshðrÞ2 coshð2γτÞ − sinhðrÞ2j ð54Þ

and so the mutual information for long times is given by

0 2 4
100

102

104

(a)

0 1 2 3 4
0

1

2

3

4

(b)

1 2 3 4
0

2

4

6

(c)

FIG. 2. Three dimensional cavity and a nonequidistant spectrum with driving frequencyΩ ¼ ωs þ ωc. (a) The exponential creation of
pairs of particles, as a function of time, in mode s for different values of the squeezing parameter r. (b) Entanglement degradation
measured by the logarithmic negativity as time evolves, vanishing for long times. (c) Mutual information as function of time. Even
though quantum correlations disappear for long times, classical correlations among the modes persist in the long time limit.
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I ¼ fðcoshðrÞ2 coshð2γτÞ þ sinhðrÞ2Þ þ fðcoshð2rÞÞ
− fðj coshðrÞ2 coshð2γτÞ − sinhðrÞ2jÞ

!
τ→∞

fðcoshð2rÞÞ: ð55Þ

In Fig. 2 we compile all properties computed for this case. In
panel (a), we show the number of particles inmode s. As can
be seen, there is an exponential creation of pairs of photons
in modes s and c as expected. In panel (b), we can see the
time evolution of the entanglement as measured by the
logarithmic negativity which is evidently degraded as time
evolves, vanishing for long times and destroying the initial

entanglement between both cavities. In panel (c), we plot the
mutual information that evidences that classical correlations
among the modes persist for long times. This means that
even though the entanglement vanishes, there are still
classical correlations contained in the mutual information
between the modes p and s in the long time limit.
We now consider the distinct case of the cavity 1 being

driven with a frequency Ω ¼ jωs − ωcj. As mentioned
before, this frequency does not create new photons but
only redistributes the existing ones between the modes. In
that case, the out operators are given by the Eqs. (24) and
(25) and the covariance matrix can then be written as

Vpjs ¼
1

2

�����������

coshð2rÞ 0 cosðγþτÞ sinhð2rÞ 0

0 coshð2rÞ 0 − cosðγþτÞ sinhð2rÞ
cosðγþτÞ sinhð2rÞ 0 ðcos2ðγτÞcoshð2rÞ þ sin2ðγþτÞÞ 0

0 − cosðγþτÞ sinhð2rÞ 0 ðcos2ðγþτÞ coshð2rÞ þ sin2ðγþτÞÞ

�����������
:

The components of this matrix oscillate harmonically in

time and for γþτn ¼ πð2nþ1Þ
2

we obtain

Vpjs ¼
1

2
diagðcoshð2rÞ; coshð2rÞ; 1; 1Þ ð56Þ

which means that the logarithmic negativity, the number of
photons in mode s and mutual information between s and p
all vanish. Contrarily, for γþτm ¼ mπ

γ , these magnitudes
oscillate returning to their initial maximum values, as can
be seen in Fig. 3. In Fig. 3(a) we show the number of
particles for mode s. As can be inferred, there is no creation
of new ones, but an oscillatory redistribution of the particles
already in the cavity mode. Particles get transferred from
mode s to mode c, until no photons remain in s at τm. In
Fig. 3(b) we show the entanglement temporal evolution
which also results in a null entanglement at τm. In Fig. 3(c),

we show the temporal evolution of the mutual information
between s in the first cavity and mode p in the second.

B. 1D case and equidistant spectrum:
Infinite coupled modes

If the cavity is one-dimensional then the spectrum is
equidistant. This means that infinitely many modes get
coupled as the cavity is shaken (see Sec. II). In this situation
the out operators are described by a more general
Bogoliubov transformation Eq. (7). Similarly as with the
three dimensional cavities, we can see that there are two
distinctly interesting cases to consider as for the driving
frequency of cavity 1: Ω ¼ ω1 and Ω ¼ qω1.
First, we start by considering Ω ¼ ω1. As it has already

been pointed out, in this case there is no particle creation in
cavity 1. Using Eq. (7), we can compute the covariance
matrix for this case as

1 2 3 4
0

5

10

(a)

0 1 2 3 4
0

1

2

3

4

(b)

1 2 3 4
0

2

4

6

(c)

FIG. 3. Three dimensional cavity and a nonequidistant spectrum with driving frequency Ω ¼ jωs − ωcj. In (a) The system behaves
periodically with photons, originally inmode s, switching back and forth betweenmodes s and c. This leads to an oscillatory behavior of the
entanglement (b) and themutual information (c). They oscillate between amaximum,when the photons are in s and zero, when they are in c.
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Vsjp ¼ 1

2

������������

jαssj2 coshð2rÞ þ
P
j≠s

jαsjj2 0 sinhð2rÞαss 0

0 jαssj2 coshð2rÞ þ
P
j≠s

jαsjj2 0 − sinhð2rÞαss
sinhð2rÞαss 0 coshð2rÞ 0

0 − sinhð2rÞαss 0 coshð2rÞ

������������
;

where we have already used that βsj ¼ 0 and that αsjðτÞ, is
a real function given by Eq. (33). In order to understand the
long time behavior of this state, we can use the Bogoliubov
relation

1 ¼
X∞
j¼0

jαsjj2 − jβsjj2 ¼
X∞
j¼0

jαsjj2 ð57Þ

to reduce the problem in terms of a unique Bogoliubov
coefficient:

ðVsjpÞ11 ¼ ðVsjpÞ22 ¼
1

2

�
jαssj2 coshð2rÞ þ

X∞
j≠s

jαsjj2
�

¼ 1

2
ðjαssj2ðcoshð2rÞ − 1Þ þ 1Þ: ð58Þ

As a matter of fact, the explicit expression for this
coefficient jαssj is already known to be [38]

αssðτÞ ¼
Xs
j¼1

½ðs − 1Þ!ðsþ j − 1Þ!ð−1Þs−j�

× ½ðs − 1Þ!j!ðs − jÞ!�−1ðcosh τÞ−2j !
τ→∞

0:

All in all, the covariance matrix can be easily seen to
converge to

Vsjp !
τ→∞

1

2
diagð1; 1; coshð2rÞ; coshð2rÞÞ: ð59Þ

This means that not only the entanglement but the mutual
information as well vanish in the long time limit. In Fig. 4, we
compile the results obtained when Ω ¼ ω1 in a one dimen-
sional cavity behavior. In Fig. 4(a), we show the particle
redistribution process for different initial values of the r
parameter. The number of particles in mode s ¼ 1 is lost to
higher frequency modes since all cavity modes are coupled.
The smaller the initial value of r, the sooner the particles are
spread into other modes. In Fig. 4(b), we show that the
entanglement evolution behaves accordingly to the number
of particles Ns: the entanglement is lost very rapidly as time
goes on and decrease asymptotically to zero. In Fig. 4(c), the
mutual information exhibits a similar behavior in concord-
ance to the rest of the quantities considered. It is important to
note that the entanglement degradation in a one dimensional
cavity is qualitatively different to that occurring in a three
dimensional cavity. In the former case, the loss of entangle-
ment is due to the many cavity modes available after shaking
the cavity. This implies a redistribution of the existing
particles in the cavity since no creation process takes place
for this case.We can even think of a big environment towhich
information is lost. This is in contrast with the case of a three
dimensional cavity where the entanglement is not lost
asymptotically but rather oscillates following the particles.
Finally, we consider cavity 1 to be driven with a frequency

Ω ¼ qω1. This excites a parametric creation of photon pairs
which is then redistributed along higher frequency modes. In
this case the out operators are given by Eq. (32), from which
we can calculate the covariance matrix as

0 1 2 3
0

5

10

(a)

0 1 2 3
0

1

2

3

4

(b)

0 1 2 3
0

2

4

6

(c)

FIG. 4. One dimensional cavity and an equidistant spectrum with driving frequency Ω ¼ ω1. No creation of particles for this driving.
(a) The particle behavior decreases as the initial photons in mode s ¼ 1 are lost to higher frequency modes for different values of the
squeezing parameter r. (b) This photon loss causes the entanglement and (c) mutual information to vanish for long times.
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Vsjp ¼ 1

2

������������

jαssj2 coshð2rÞ þ
P
j≠s

jαsj þ βsjj2 0 sinhð2rÞαss 0

0 jαssj2 coshð2rÞ þ
P
j≠s

jαsj − βsjj2 0 − sinhð2rÞαss
sinhð2rÞαss 0 coshð2rÞ 0

0 − sinhð2rÞαss 0 coshð2rÞ

������������
:

We can simplify this expression by noticing that V11 ¼ V22. This is because β1;kþnp ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðkþ npÞp

ρðkþnpÞ
−1 ¼ 0 for

k ≠ p − 1 while α1;kþnp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðkþ npÞp

ρðkþnpÞ
1 ¼ 0 for k ≠ 1 and so α1;kþnpβ

�
1;kþnp ¼ 0, from which we conclude that

jα1;kþnp � β1;kþnpj2 ¼ jα1;kþnpj2 þ jβ1;kþnpj2. By writing explicitly the covariance elements with Eq. (40), we can see that

V11 þ V22 ¼ 1þ 2Ns; ð60Þ

where Ns ¼ haout†s aouts i is the number of photons in mode s
and so V11 ¼ Ns þ 1=2. The covariance matrix is then
reduced to only 3 independent components V11, V33, V24.
Therefore, we proceed to study the asymptotic behavior of
the state for long times. We must note that

lim
t→∞

V13 ¼ − lim
t→∞

V24 < ∞; ð61Þ

since V13; V24 ∝ Fða; b; c; κ2Þ and for t → ∞ we have
κ → 1 and Fða; b; c; κ2Þ → Fða; b; c; 1Þ < ∞.
At this point, it is important to mention the fact that in

Ref. [32], authors have already proved that when a cavity
with one oscillating mirror is driven with this frequency the
number of photons from the vacuum Nsðr ¼ 0Þ grows
linearly with time.1 Then using the equivalence between
this setup and the shaken cavity, we see that

V11 ¼
1

2
jαssj2ðcoshð2rÞ − 1Þ þ 1

2
þ Nsðr ¼ 0Þ ∝ t: ð62Þ

The previous simplifications allows us to write the explicit
expressions as

detV ¼ V2
13V

2
24 − V11V2

13V33 − V11V2
24V33 þ V2

11V
2
33

Σ ¼ V2
11 − 2V13V24 þ V2

33: ð63Þ

Combining with Eq. (61) the long time limit yields

detV
Σ

!
t→∞

V2
33 ¼

�
1

2
coshð2rÞ

�
2

: ð64Þ

This latter result implies that

− log 2ν− ¼ − log 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detV
Σ

1

1
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
− 1

Σ
detðVÞ

Σ

q
vuut ð65Þ

!
t→∞

− logðcoshð2rÞÞ < 0; ð66Þ

leading to a surprising result: the logarithmic negativity
N ¼ maxf0;− log 2ν−g manifests a sudden death at some
finite time. As for the long time behavior of the mutual
information, we can use the symplectic eigenvalues
given by

η� ¼ 1ffiffiffi
2

p

V2
11 þ V2

33 þ 2V13V24 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V4
11 þ V4

33 þ 4V2
33V13V24 − 2V2

11ðV2
33 − 2V13V24Þ þ 4V11V33ðV2

13V
2
24Þ

qr
: ð67Þ

By use of Eqs. (61) and (62), we have

ηþ ≈ V11; for τ ≫ 1

η− ≈ V33; for τ ≫ 1 ð68Þ

from which we conclude that the mutual information also
vanishes in the long-time limit

I ¼ fðV11Þ þ fðV33Þ − fðη−Þ − fðηþÞ !
τ→∞

0: ð69Þ

In Fig. 5 we present the numerical results for q ¼ 3. In
Fig. 5(a), we compute the numerical evolution of Ns, while
in Fig. 5(b), we show the entanglement degradation as time
evolves. It is easy to note that the entanglement is
qualitatively different from the previous cases as it dies
suddenly in a finite time. This is due to the fact that two

1An exception for this behavior occurs when the frequency of
the initially excited mode s coincides with the shaking frequency
ωs ¼ qω1. In this case the solutions behave as for Ω ¼ ω1, which
we have already analyzed.
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different effects are now combined and affect the entangle-
ment: photon redistribution and pair creation. In Fig. 5(c),
we can note that the mutual information, however, decreases
slowly and asymptotically to zero. This last case is com-
pletely different to all others. It implies many infinite modes
coupled in a cavity in addition to particle creation process.
Initially, it can be seen that the number of particles Ns
decreases because they are redistributed to higher modes
available. This is much evident for r > 1. For a critical time
the particle creation rate starts to gain importance and the
number of particles inmode s starts increasing. Surprisingly,
this critical time is similar to the time the entanglement
suddenly dies (or becomes zero). This combination of
factors in not present in the other cases described above.

V. ENTANGLEMENT REDISTRIBUTION

In this section, we shall study where the initial entan-
glement N ps (between cavity modes p and s) goes after

having altered the state of the field inside the cavity by
means of the dynamical Casimir effect. It is important to
note that in this manuscript we are studying a situation in
which entanglement degradation exhibits different behav-
iors depending mainly on the spectrum of the cavity and the
frequency of oscillation in consideration. As we have
already seen that degradation takes place in significative
different ways depending mainly on the cavity considered,
in the following we shall study the entanglement dynamics
among different cavity pairs available in the cavity.
For the three dimensional cavity, we have already

mentioned that only two modes will couple. The external
excitation can then be considered as Ω ¼ jωs � ωcj, lead-
ing to considerably different behaviors regarding creation
of particles and entanglement degradation. In the case that
Ω ¼ ωs þ ωc we have shown particle production is expo-
nential in time. As the external frequency Ω excites
modes s and c, particles of these modes are created in
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FIG. 5. One dimensional cavity and an equidistant spectrum with driving frequency Ω ¼ qω1. (a) The number of photons initially
decreases since a redistribution between the available modes takes place. As this case implies particle production, some time later the
number of particles grow linearly as photon pairs are produced in modes s and c. (b) The entanglement evidences a sudden death while
(c) the mutual information behavior implies that classical correlations remain in the system but approach zero for long times. In this case
we have assumed q ¼ 3.
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FIG. 6. (a) Three dimensional cavity and a nonequidistant spectrum with driving frequencyΩ ¼ ωs þ ωc and r ¼ 1. EntanglementN
between modes p and c, s and c, p and smeasured by the logarithmic negativity as time evolves. The creation of photons pairs entangles
modes s and c (N sc), but it does not generate entanglement between p and c (N pc); instead it degrades the entanglementN ps. (b) Three
dimensional cavity and a nonequidistant spectrum with driving frequency Ω ¼ jωs − ωcj. The system behaves periodically with
photons, originally in mode s, switching back and forth between modes s and c. This oscillatory behavior also manifests in the
entanglement dynamics N between modes of the first cavity with the second.
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entangled pairs. The particles generated in mode c are
never entangled with those of mode p but as time evolves
they increase their entanglement with mode s while
degrading the entanglement between p and s [see Fig. 6(a)].
On the other hand, if Ω ¼ jωs − ωcj, we have shown that

there is no particle creation inside the cavity. This means
that, as the cavity is shaken, the number of particles initially
in mode s are transferred to mode c and then back to mode
s, exhibiting an oscillatory behavior. This is due to the fact
that no extra photons are created, but only a redistribu-
tion of particles in the cavity takes place. Entanglement
dynamics behaves similarly with information being trans-
ferred between the two modes. Initial entanglement N ps

decreases as N sc increases, showing an oscillatory behav-
ior out of phase [Fig. 6(b)]. It is important to note that for
both cases considered of the three-dimensional cavity,
entanglement dynamics takes place between only two

modes, due to the nonequidistant distribution of the cavity
modes.
In the case of a one-dimensional cavity, the resulting

spectrum is equidistant, and cavity mode coupling takes
place between many cavity modes. This implies a more
complex dynamics, in which photon- and entanglement-
transfer into higher frequency modes take place. When
external driving is Ω ¼ ω1, we have shown that there is no
particle production inside the cavity. In Fig. 7(a), we see the
number of particles in different allowed cavity modes. As it
can be noted, initially there are only particles in mode
s ¼ 1. As time evolves, the number of particles in mode
s ¼ 1 decreases, as photons are transferred to higher cavity
modes (Ns>1 temporarily increases). In Fig. 7(b), we can
note that as the number of particles in higher frequency
modes increases, the initial entanglement is transferred to
other pairs of cavity modes, leading to an increase of N p2,
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FIG. 7. One dimensional cavity and an equidistant spectrum with driving frequency Ω ¼ ω1, assuming s ¼ 1 and r ¼ 1. (a) Under
these conditions no particles are produced but instead the initial particles in mode 1 are redistributed toward higher frequency modes
2; 3;…. This leads to an entanglement flow to other higher cavities modes in detriment of the initial entanglement between the modes of
the moving and static cavities.
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FIG. 8. One dimensional cavity and an equidistant spectrum with driving frequency Ω ¼ qω1. In this case we have assumed q ¼ 3,
s ¼ 1 and r ¼ 1. (a) The number of photons in mode 1 initially decreases since a redistribution toward higher modes 4; 7; 10;… takes
place. As this case also implies particle production, some time later the number of particles grows linearly as photon pairs are produced
in modes 1 and 2. (b) The photons produced in modes 2; 5; 8;… are entangled with modes 1; 4; 7;… but not with mode p in the static
cavity, analogously to the three dimensional case Fig. 6(a). However, entanglement that was originally between 1 and p is redistributed
into higher frequency modes of the form 1þ 3n with n a natural number and have a sudden death at finite time.
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N p3 and so on. In this case, all cavity modes are allowed.
The higher the frequency mode, the less degree of entan-
glement it receives. In the long time regime, the entangle-
ment degradation is complete.
Finally, we must mention the casewhereΩ ¼ qω1. Under

this condition, there is particle production inside the cavity
between pairs of modes whose frequency add up toΩ as can
be seen in Fig. 8(a). However, it is not the only consequence
that we must take into the consideration. As the spectrum is
equidistant, infinitelymanymodes can couple. Therefore,we
have shown that in this particular case, there is particle
redistribution and creation inside the cavity. This leads to an
entanglement dynamics different to all cases considered
before. Initial entanglement between modes s and p is
redistributed toward higher frequency modes of the form:
mod qðsÞ þ qn with n a natural number and mod qðsÞ the
remainder of s when divided by q but eventually have a
sudden death.However, thepairs produced betweenmod qðsÞ
and q − mod qðsÞ do not entangle q − mod qðsÞwithp and
therefore none of the higher frequency modes along which
they are distributed (of the form q − mod qðsÞ þ q n) get
entangled with p (see Fig. 8(b) for an example). The loss of
entanglement is precisely explained as a redistribution of the
inertial entanglement and the generation of multipartite
quantum correlations among accessible and inaccessible
modes inside the cavity.

VI. CONCLUSIONS

In this work we have studied how the entanglement and
classical correlations between modes s and p in two
different cavities are modified when one of them is in
relative oscillatory motion. In achieving so, we have firstly
reviewed the dynamical Casimir effect. We have presented
the reigning equations for a two-moving wall (“shaker”)
cavity and computed the Bogoliubov transformation.
Further, we have analyzed the particle creation process
for a nonequidistant and an equidistant spectrum and
stressed their similitudes and differences. It is important
to mention that even though the analysis of the DCE has
been performed previously, the equivalence between a rigid
translational movement of a two-wall moving cavity and a
single moving one with twice the amplitude of movement is
a new contribution which allowed to achieve a complete
analytical description of the system.
We have found that there are four qualitatively different

behaviors for the system, depending on whether the
spectrum is equidistant or not. The other feature that
determines the behavior is whether the driving frequency
Ω is able to create new photons or just redistribute the initial
existing ones. If the spectrum is unevenly spaced and there
is an additional mode c such that Ω ¼ jωs − ωcj then
photons oscillate between s and c. This causes the
entanglement and the mutual information among the
cavities to oscillate in time. However, if c has a frequency
such thatΩ ¼ jωs þ ωcj then pairs of photons are created in

these modes, this degrades the entanglement between the
cavities which goes asymptotically to zero. In spite of this,
classical correlations persist as the mutual information
converges to a positive value in the long-time limit. This
result is analogous to the one found in [4,6] where the
entanglement between two observers is degraded as one
them accelerates but classical correlations persist. Our results
show that the situation becomes qualitatively different when
the spectrum of the cavity is evenly spaced, since this causes
infinitely many modes that get coupled. In this case, if the
moving cavity is shaken with its fundamental frequency, no
photons are produced. However, as time goes on the photons
in the initially excited mode are eventually lost which causes
the entanglement and mutual information between the
cavities to vanish as well. On the other hand, if the cavity
oscillates with a frequency that is an uneven harmonic, there
is also production of photons that forces the entanglement
to have a sudden death in a finite time, while the mutual
information goes asymptotically to zero. This situation
produces a similar result to what was found in [12] where
the entanglement between two harmonic oscillators was
suddenly completely lost as one of them was accelerated.
Finally, by looking at what happens to other cavity

modes, we have seen how this degradation occurs as a
consequence of essentially two different processes which
are the redistribution and pair creation of particles inside
the moving cavity. In the case of an unevenly spaced
spectrum and Ω ¼ ωs þ ωc the degradation is caused by
particle creation and increases with time, while for Ω ¼
jωs − ωcj it is caused by photon redistribution to a second
mode and oscillates in time. On the other hand, for a cavity
with an evenly spaced spectrum and shaken with its
fundamental frequency the entanglement degradation stems
solely from particle redistribution to higher frequency
modes, while if it is shaken with an uneven harmonic of
the fundamental frequency the degradation occurs as a
combination of both effects. Finally, we have studied the
entanglement redistribution so as to get an insight into
where the entanglement is gone after altering the initial
state of the system. We have shown that the answer relies
on the particular particle creation process and coupling
modes available in the cavity under each case considered.
This setup captures many of the results previously found

for observers and cavities in accelerated motion. In both
cases we have a Bogoliubov transformations that generate
photon pairs. However, in previous results of the existing
literature, the alteration of the field state was due to the
Unruh effect. In this work we exploit the nontrivial
structure of quantum vacuum and the effects derived
from time dependent boundaries conditions. The result
obtained is an apparent entanglement degradation and
information loss for mostly cases considered. We believe
that this setup has more promising experimental qualities
since it relies on a bounded motion in an optomechanical
system. While, there are still technological challenges that
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must be overcome for it to be tested in this exact setting, as
the frequency of nanoresonators is not high enough, a
simulation in a superconducting cavity is within exper-
imental reach, since DCE has already been tested there.
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