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Quantum metrology in a non-Markovian quantum evolution
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The problem of quantum metrology in the context of a particular non-Markovian quantum evolution is
explored. We study the dynamics of the quantum Fisher information (QFI) of a composite quantum probe
coupled to a Lorentzian environment, for a full variety of different classes of parameters. We are able to find
the best metrological state, which is not maximally entangled but is the one which evolves the most rapidly. This
is shown by demonstrating a connection between QFI and different quantum speed limits. At the same time, by
optimizing a control field acting on the probes, we show how the total information flow is actively manipulated by
the control so as to enhance the parameter estimation at a given final evolution time. Finally, under this controlled
scenario, a sharp interplay between the dynamics of QFI, non-Markovianity, and entanglement is revealed within
different control schemes.
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I. INTRODUCTION

One of the most developed areas within the advent of
quantum information technologies during the last two decades
of quantum revolution has undoubtedly been quantum metrol-
ogy. This field is responsible for the development of high-
resolution and highly sensitive measurements of physical pa-
rameters, which is a central task for the prosperous evolution
of technology [1,2]. In this context, the question of whether
the powerful resources of nature that have been revealed by
quantum mechanics can be exploited to improve the precision
in the estimation of unknown parameters associated with
a quantum system has been widely studied in the litera-
ture [3–8].

Since any realistic quantum system interacts and ex-
changes information with an environment, the main chal-
lenge resides in tackling the problem of quantum metrology
within the presence of decoherence and non-Markovianity
(NM) [9–22]. Because both phenomena are related to the loss
and gain of information, respectively, the question of how the
dynamics of estimation is affected by the presence of both
decoherence and NM is of paramount interest and worthy of
study. In that sense, as memory effects—usually associated
with non-Markovian quantum processes—allow us to recover
information from the environment that otherwise would be
lost [23,24], this has opened a new door for applications in
quantum metrology.

A natural question then arises: Is it possible to exploit some
particular feature of the environment in order to enhance the
precision of estimation of different classes of parameters? For
instance, it has recently been shown that NM can be actively
manipulated to generate a controlled degree of entanglement
between two noninteracting subsystems coupled to the same
non-Markovian reservoir [25,26] and, also, that dissipation
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can be engineered to be a fully fledged resource for universal
quantum computation [27]. So the possibility of engineering
some particular feature of the environment to improve the
process of estimating different classes of parameters certainly
seems plausible [28].

In this work, we analyze a quantum metrology scenario
within a particular non-Markovian quantum evolution. By
using two noninteracting subsystems, we focus on the capa-
bility of this composite quantum system to act as a probe
and to extract relevant information on parameters character-
izing a common structured environment to which they are
coupled. Seeking universality, we also focus on the process
of estimation of parameters characterizing the interaction and
the quantum probe itself. By exploring the role of initial
entanglement within the composite probe in all the cases just
mentioned, we find that the best metrological candidates are
not the maximally entangled states but the ones that evolve
the most rapidly. This is shown using the quantum speed limit
(QSL), a tool that characterizes the minimum time a quantum
system needs in order to travel a predetermined distance in
Hilbert space [29–33]. Thus, while demonstrating that the
speed of evolution and the accuracy of the estimation are
deeply connected in all the metrological situations covered,
we also show that entanglement is not decisive to accelerate
a non-Markovian evolution or truly useful for improving the
estimation of the parameter of interest.

Another important key point of our work resides in the im-
plementation of optimal control tools, allowing us to achieve
a controlled degree of precision in the estimation of the
unknown parameter at a given final evolution time. Therefore,
after identifying the best metrological candidates, we show
how by optimizing a control field over the composite probe,
the total information flowing throughout the evolution can be
actively accommodated by the control so as to maximize the
precision of the estimation at this given final evolution time.
Finally, by exploring different control schemes, we reveal
a direct dynamical relation between the information flows
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regarding the precision of estimation, NM, and entanglement
in some specific circumstances.

The paper is organized as follows. Section II reviews the
main concepts of quantum metrology theory. Section III sum-
marizes the concept of the QSL for nonunitary dynamics by
presenting two of the most well-known bounds that have been
previously derived in the literature. Section IV analyzes the
main features characterizing NM together with a measure able
to quantify it. Section V provides the physical model on which
we based our study and in Sec. VI the main results obtained
with this model are presented. Finally, Sec. VII concludes
with some final remarks.

II. QUANTUM METROLOGY THEORY

In this section, we provide a brief summary of the most
relevant features of quantum metrology theory. The purpose
of quantum metrology is to deal with estimation processes
within quantum systems, pursuing the best precision that
is physically allowed [1,2]. For instance, let us consider a
situation in which the quantum evolution of a certain system
is known except for a certain parameter λ̃. This λ̃ may be
estimated from the knowledge of the initial and final states
of a given probe that undergoes the process of interest. The
metrological procedure is usually the following: a quantum
probe is first initialized in a particular input state and, as it
evolves, is transformed into a mixed state encoding infor-
mation on the unknown parameter λ̃. After the evolution, a
suitable measurement must be done over the probe so as to
extract information about it. Finally, each experimental result
should be associated with some estimator of the parameter
of interest. In this context, any measurement of a certain
observable X is associated with an outcome x that occurs
with a conditional probability distribution pX (x|λ̃), which is
defined by [17,34,35]

pX (x|λ̃) = Tr(Pxρλ̃). (1)

Above, ρλ̃ refers to the quantum state of the probe and Px

to positive operator-valued measures, satisfying the relation∑
x Px = 1, usually known in the literature as POVMs. There-

fore, in order to estimate the value of our unknown parameter
λ̃ from the outcome measurements, an estimator is needed.
This estimator must be a function of the measurement out-
comes, i.e., ˆ̃λ = ˆ̃λ(x1, x2, . . . ), and also should satisfy certain
properties, such as being unbiased,

E [ ˆ̃λ − λ̃] =
∏

i

∑
xi

ˆ̃λ(x1, . . . , xn) − λ̃ = 0 ∀λ̃, (2)

where E [·] corresponds to the mean with respect to the n
outcomes xi and λ̃ denotes the true value of the parameter.
Moreover, it is also important to require a small variance
for the estimator, i.e., Var(λ̃, ˆ̃λ) = E [ ˆ̃λ2] − E [λ̃]2, consider-
ing that this quantity measures the overall precision of the
inference process [35]. With regard to this quantity, it is well
known that a lower bound for the variance of any estimator is
imposed by the Cramér-Rao theorem [36,37],

Var(λ̃, ˆ̃λ) � 1

MGλ̃

, (3)

where M denotes the number of independent measurements
and Gλ̃ is known as the Fisher information (FI) and is
defined by

Gλ̃ =
∑

x

[∂λ̃ pX (x|λ̃)]2

pX (x|λ̃)
. (4)

The challenge is then to choose the best estimator so as
to achieve an optimal inference and saturate the Cramér-
Rao bound. The fact that different observables will lead to
different probability distributions is intuitive, which means
that each one will be associated with a particular FI and hence
to different precisions for the estimation of the unknown
parameter λ̃ [8]. The ultimate bound is traditionally obtained
upon maximizing the FI over the set of all possible POVMs.
The best measurement that provides the maximum precision is
quantified with what is called the quantum Fisher information
(QFI), which is given by

Fλ̃ =
∑

n

(∂λ̃ωn)2

ωn
+ 2

∑
n �=m

(ωn − ωm)2

ωn + ωm
|| 〈ψn| ∂λ̃ψm〉||2,

(5)

where {ωn} are the eigenvalues of the reduced density matrix
of the probe and {|ψn〉} its eigenvectors. In this way, the
QFI is lower bounded by the FI, i.e., Gλ̃ � Fλ̃. Note that
λ̃ can be any parameter characterizing either the probe, the
interaction, or even the environment. Let us, finally, stress that
since Fλ̃(t ) is truly a dynamical quantity, in this work we will
sometimes work with the total QFI throughout a particular
given evolution, i.e.,

F (tot)
λ̃

=
∫ T

0
Fλ̃(t ′)dt ′, (6)

with T referring to some fixed evolution time. This total QFI
gives us an average of the information that could be obtained
throughout the whole dynamics. A higher F (tot)

λ̃
implies a

greater possibility of achieving a better degree of precision
at some particular time and thus it is an indicator of how well
an initial state could potentially act as a metrological state.
Of course, we emphasize that what is really important in the
end is the QFI at a fixed evolution time [i.e., Fλ̃(T )] and not
throughout the whole evolution, but we will show with opti-
mal control tools that these two quantities are strongly related.
In fact, by addressing the system with an external control
field, the optimal QFI achieved for a specific final evolution
time T will coincide with the global maximum reached at an
arbitrary time throughout the whole noncontrolled evolution
(i.e., F (opt)

λ̃
(T ) = max (Fλ̃(t )) ∀ t ∈ [0, T ]).

III. QUANTUM SPEED LIMITS FOR OPEN
QUANTUM EVOLUTIONS

In this section, we review two of the most well-known
QSLs derived in the literature for nonunitary quantum evolu-
tions. The QSL time τ is defined as the minimal time a quan-
tum system needs in order to evolve from an initial to a final
state, separated by a given predetermined distance [29–33].
The first approach to the correct formulation of the QSL we
present is based on the definition of the Bures fidelity between
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an initial and a final state, i.e. [31,32],

FB(ρ0, ρt ) = Tr(
√√

ρ0ρt
√

ρ0). (7)

It can be proven that the tightest lower bound for the actual
path length of the evolution is given by the Bures angle,

L(ρ0, ρt ) ≡ arccos (FB(ρ0, ρt )) �
∫ t

0

√
Ft (t ′)

4
dt ′, (8)

where Ft (t ) corresponds to the QFI for time estimation
and L(ρ0, ρt ) to the Bures angle, which is a predetermined
distance [i.e., between orthogonal states L(ρ0, ρt ) = π/2].

Therefore, since
√

Ft (t )
4 is commonly regarded as the instan-

taneous speed of evolution [31], the time that saturates that
fixed predetermined distance defines the minimum time of
evolution, the QSL, which we call τF :

L(ρ0, ρt ) =
∫ τF

0

√
Ft (t ′)

4
dt ′. (9)

In other words, τF reflects the time that the system takes
to travel—along the actual evolution path—the same length
as the geodesic’s length between two predetermined states.
Moreover, as already proven in Ref. [32], this expression for
the QSL is the only one that sticks close to the essence of
the QSL theory [38–40] since it is always possible to find an
evolutionary path that, for every time, saturates the bound.
This will occur whenever the system evolution equals the
geodesic path.

Another very popular approach used in the literature to
derive an expression for the QSL is the one proposed by
Deffner and Lutz [29], based on the von Neumann trace
inequality for Hilbert-Schmidt class operators. The tightest
QSL they found can be consistently defined as

sin2 (L(ρ0, ρt )) =
∫ τop

0
||ρ̇(t ′)||op dt ′, (10)

where ||A||op is the operator norm of A. Similarly, the time that
saturates the distance fixed by the left-hand side of Eq. (10)
corresponds to the QSL time and we denote it τop. However, as
also demonstrated in Ref. [32], with this approach it becomes
impossible to find an evolutionary path where Eq. (10) is
saturated at all times.

Let us remark that both expressions presented above for
the QSL are used in Sec. VI to illustrate how the speed of evo-
lution and the accuracy of the estimation are closely related
within our non-Markovian quantum metrology scenario.

IV. NON-MARKOVIANITY MEASURE

There are many ways to quantify NM, one of the most
popular approaches being related to the revivals of distin-
guishability and originally proposed by Breuer, Laine, and
Piilo (BLP) [23]. The distinguishability can be quantified
by the derivative of the trace distance, which is defined as

D(ρ1, ρ2) = 1

2
||ρ1 − ρ2|| and where ||A|| = tr(

√
A†A). Un-

der a Markovian regime, quantum states become less and
less distinguishable; there is a continuous loss of information
to the environment. But on a non-Markovian regime, distin-
guishability between states can increase and this is equivalent

to saying that information is flowing from the environment
back to the system. Therefore, BLP state that a quantum map
is non-Markovian if there exists at least a pair of initial states
ρ1(0) and ρ2(0) such that the distinguishability between them
increases during some interval of time, i.e.,

σ (ρ1(0), ρ2(0), t ) = d

dt
D(ρ1(t ), ρ2(t )) > 0. (11)

This idea can also be extended to define a measure of the
degree of NM in a quantum process via

NBLP = max
{ρ1(0),ρ2(0)}

∫ T

0,σ>0
σ ł(ρ1(0), ρ2(0), t ′)dt ′, (12)

where T refers to the final evolution time of the process under
consideration. In general, Eq. (12) is integrated to ∞, but
since here we consider control protocols with a certain finite
duration, we quantify NM for a restricted time interval.

V. PHYSICAL MODEL

The system we use as a platform to study different aspects
of quantum metrology within a non-Markovian quantum evo-
lution consists of two noninteracting two-level atoms, acting
as a composite probe, coupled to a common zero-temperature
bosonic reservoir composed of a set of M-harmonic oscilla-
tors [25,41,42]. The total microscopic Hamiltonian describing
the model is given by

H = HS + HE + Hint

=
2∑

i=1

ωi(t )σ (i)
+ σ

(i)
− +

M∑
k=1

νkb†
kbk

+
2∑

i=1

(
aiσ

(i)
+ ⊗

M∑
k=1

gkbk + H.c.

)
, (13)

where σ
(i)
j ( j = x, y, z) correspond to the Pauli matrices of

each atom (i = 1, 2), σ
(i)
± = 1

2
(σ (i)

x ± iσ (i)
y ), b†

k and bk to the

creation and annihilation operators, gk is the coupling constant
to the kth mode of the bath and νk its frequency, ai is a
dimensionless coupling constant measuring the interaction
with the reservoir, and, finally, ωi(t ) refers to the energy
difference between the ground |0〉 and the excited |1〉 state
of atom i, which we assume to be time dependent and of
the form

ωi(t ) = ω0 + εi(t ). (14)

In principle, εi(t ) is an arbitrary driving field over atom i,
but for simplicity we work under the framework of global
addressing, where ε1(t ) = ε2(t ) = ε(t ). We emphasize that
other types of control can also be implemented in our model,
such as single addressing [ε2(t ) = 0 ∀ t] and double address-
ing [ε1(t ) �= ε2(t ) ∀ t], rendering similar results [25]. Assum-
ing that initially the environment has no excitations (|0B〉) and
that the dynamics is restricted to one excitation in the kth
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mode, the whole initial state of the total system is

|ψ (0)〉 = (C01 |10〉 + C02 |01〉) ⊗k |0B〉 , (15)

and therefore its dynamics is given by

|ψ (t )〉 = C1(t ) |10〉 |0B〉 + C2(t ) |01〉 |0B〉
+

∑
k

Ck (t ) |00〉 |kB〉 , (16)

|kB〉 being the state of the reservoir with only one excitation
in the kth mode ( |kB〉 = b†

k |0B〉 ). The next step is to take
the continuum limit for the environment, by assuming a
Lorentzian spectral density of the form

J (ν) = R2

πa2
t

λ

(ν − ω0)2 + λ2
, (17)

where R is the vacuum Rabi frequency, at an effective cou-

pling constant defined as at =
√

a2
1 + a2

2, and λ the width of
the spectral density of the bath. Finally, it is straightforward
to follow the procedure put forward in Ref. [25] and derive
these two coupled differential equations for C1(t ) and C2(t ),
respectively:

C̈1 + (λ − iε(t ))Ċ1 +
(

a1R
at

)2

C1 + a1a2

(R
at

)2

C2 = 0,

(18)

C̈2 + (λ − iε(t ))Ċ2 +
(

a2R
at

)2

C2 + a1a2

(R
at

)2

C1 = 0.

(19)

The density matrix can be written as [41,42]

ρ(t ) =

⎛
⎜⎜⎝

0 0 0 0
0 |C1(t )|2 C1(t )C∗

2 (t ) 0
0 C∗

1 (t )C2(t ) |C2(t )|2 0
0 0 0 1 − |C1(t )|2 − |C2(t )|2

⎞
⎟⎟⎠. (20)

Before proceeding with the Results, we accentuate two
important details. First, it is important to stress that since we
are considering initial states of the form |ψ (0)〉 = C01 |10〉 +
C02 |01〉, it is possible to parametrize the initial coefficients

as C01 =
√

1−s
2 and C02 =

√
1+s

2 eiφ , where −1 � s � 1 and
0 � φ � π . Note that in the case where s = 0, the initial state
is entangled, and if |s| = 1, it is separable, so we refer to the
parameter s as the initial separability. Second, it is critical
to mention that there exist some very specific initial states.
For instance, if |ψ (0)〉 = (a2/at ) |10〉 − (a1/at ) |01〉, the state
is called subradiant and is a constant solution of Eqs. (18)
and (19) that does not decay with time. On the contrary, if
|ψ (0)〉 = (a1/at ) |10〉 + (a2/at ) |01〉, the state is orthogonal
to the previous one, is called superradiant, and is the one that
evolves the most rapidly, as shown later.

VI. RESULTS

A. Quantum metrology: QSL, entanglement,
and optimal control

In the first part of this section, we focus on the potentiality
of all initial states to act as metrological probes, in order
to then identify our best candidate. To do so, we consider
the best metrological candidate as the state that achieves
the greatest F (tot)

λ̃
throughout an evolution, where λ̃ can be

characterizing either the environment, the interaction, or even
the quantum probe itself. As stated before, a higher F (tot)

λ̃
implies a greater possibility of achieving a better degree of
precision at some particular time. In this framework, a natural
question arises: Is there a common feature characterizing the
best metrological state for estimating each different subset
of parameters? For instance, is entanglement truly useful for
improving the estimation or is there a more fundamental
physical reason that can be exploited? With this question in

mind, in Fig. 1 we study the F (tot)
λ̃

for different classes of
parameters, characterizing either the interaction (time t and
vacuum Rabi frequency R), the environment (width λ of
the Lorentzian spectral density), or the quantum probe itself
(initial phase φ). All these quantities are plotted as a function
of the initial separability s, fixing the interaction parameters
at a1 = 0.4, a2 = 0.6, R = 5, and T = 2. We point out that
the same results were obtained by fixing other interaction
parameters and final evolution times.

It is clear in Fig. 1 that the best metrological candidate
is the superradiant state since it is the one that maximizes
the F (tot)

λ̃
, for estimating either a parameter of the interac-

tion [Figs. 1(a) and 1(b)], a parameter of the environment
[Fig. 1(c)], or even a parameter describing the initial state of
the quantum probe itself [Fig. 1(d)]. On the other hand, as
can be intuitively deduced from what is expressed in Sec. V,
considering that the subradiant state does not decay with time,
it is not surprising that this state cannot extract information
from the interaction or from the environment. This is the rea-
son why F (tot)

λ̃
is 0 for the situations covered in Figs. 1(a)–1(c).

Nevertheless, when a parameter of the initial state of the probe
is being estimated, such as the initial phase φ, no interaction
with the environment is needed and so F (tot)

φ is not 0 for this
particular initial state, as shown by the asterisk on the dotted
blue curve in Fig. 1(d).

In summary, we point out that our best metrological can-
didate is not the maximally entangled one. This is consistent
with the fact that not all entangled quantum states are useful
for quantum metrology and they often suffer more from
certain nonunitary processes [43–45]. Thus, the question of
what is the physical reason underlying the best precision of
estimation in our system remains unanswered. As an approach
to this problem, we return to what has been pointed out in
Sec. III, regarding that there is a relation between the QSL
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FIG. 1. (a) F (tot)
t for time estimation; (b) F (tot)

R for estimation of
the interaction parameter R; (c) F (tot)

λ for environment estimation;
(d) F (tot)

φ for phase estimation. In all panels, the black asterisk
corresponds to the subradiant state (s∗  −0.38, φ = π ), while the
black circle corresponds to the superradiant state (s∗  0.38, φ = 0).
Interaction parameters are fixed at a1 = 0.4, a2 = 0.6, R = 5, and
T = 2 (h̄ = 1; in units of 1/ω0), while λ is set equal to 1. Any
other initial state with a different φ will reside inside the topological
structures found above.

given by Eq. (9) and the total QFI for time estimation F (tot)
t .

This relation implies that the QFI for time estimation can be
interpreted as a measure of the speed of evolution. Therefore,
it is obvious that the initial state that maximizes F (tot)

t will at
the same time minimize the QSL defined by Eq. (9). However,
while this is true for the QFI for time estimation, this is
certainly not obvious in cases where other parameters are
being estimated, such as R, λ, and φ. For example, while the
speed of evolution of the subradiant state is 0 for all time,
we still have a nonzero F (tot)

φ for phase estimation, as shown
by the dotted blue curve in Fig. 1(d). For this reason, since
these other quantities are not related (in principle) to the speed
of evolution, to explore thoroughly the interplay between the
accuracy of estimation of different parameters and the speed
of evolution seems worthwhile. As a consequence, in Fig. 2
we plot τF but also τop, which is a QSL of a different nature
(i.e., not based on the QFI), for the same set of parameters as
in Fig. 1. We remark that the same results were obtained by
fixing different interaction parameters and distances.

The first remarkable thing to note in Fig. 2 is that the two
QSLs have a similar behavior, despite their different natures.
The two quantities are able to identify both the subradiant
and the superradiant states. While the subradiant state takes
an infinite time to travel a given predetermined distance since
it does not decay with time, the superradiant state is the one
that evolves the most rapidly. As can be seen, the QSL given

FIG. 2. All quantities are plotted as a function of the initial sep-
arability s and for two initial φ values. (a) ln (τop) given by Eq. (10)
and fixing L = π/4. Inset: The actual distance L [quantified by the
right-hand side of Eq. (10)] traveled by the system within the region
near the subradiant state, where the evolution is too slow to reach
the predetermined distance given by the geodesic. (b) ln (τF ) given
by Eq. (9) and fixing L = π/4. In both panels, the black asterisk
corresponds to the subradiant state (s∗  −0.38, φ = π ), while the
black circle corresponds to the superradiant state (s∗  0.38, φ = 0).
Parameters are the same as in Fig. 1. The same results were obtained
by fixing different interaction parameters and Bures distance L.

by τop proves to be more sensitive for identifying the slow
states such as the ones near the subradiant state. In this region,
states are so slow that although they are allowed to evolve
during a long time, they cannot reach the predetermined
distance established by the geodesic, as illustrated in the inset
in Fig. 2(a). For this reason, we can use the τop as a tool to
explore in more detail the speed of evolution of all possible
initial states and then identify more precisely the subradiant
state, as shown in Fig. 3.

FIG. 3. The τop on a logarithmic scale, having previously sub-
tracted the minimum value from all values so that the regions are well
contrasted. The black asterisk corresponds to the subradiant state; the
black circle, to the superradiant state. Parameters are the same as in
Fig. 1. The same results were obtained by fixing different interaction
parameters and Bures distance L.
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As is clear from all the foregoing figures, the best metro-
logical candidate is the superradiant state, since it is not only
the fastest but also maximizes the F (tot)

λ̃
, for estimating a

parameter characterizing either the interaction, the environ-
ment, or even the quantum probe itself. However, imagine you
are an experimental physicist and you have to measure your
observable at a given particular time T . Therefore, the fact
that Fλ̃(t ) shows a dynamical behavior implies that if F (tot)

λ̃
is

huge along the whole evolution this will be absolutely useless
unless, at the particular time T , Fλ̃(T ) reaches its maximum.
In this sense, a possible strategy would be to implement some
sort of control field so as to maximize the final value Fλ̃(T )
and consequently achieve a better degree of precision in the
estimation of your parameter λ̃ at that particular final time
at which the measurement is done [46]. In this context, an
interesting question is that the fact that one has a higher F (tot)

λ̃
along a certain total evolution necessarily implies that if one
implements an optimization over the final value Fλ̃(T ), this
final value will be accordingly large. In other words, is the
total information flow somehow accommodated by the control
field? If this is true, then we should be able to reconstruct the
same qualitative topology in some panels in Fig. 1, by plotting
the optimal final value Fλ̃(T ) obtained by the optimization
as a function of the initial separability s and for different φ

values.
In order to study this, we have numerically optimized the

coupled differential Eqs. (18) and (19) to find an optimal field
ε(t ) that maximizes the functional Fλ̃(T ). We have resorted
to finite-length piecewise constant controls, where the control
function ε(t ) was taken as a vector of control variables ε(t ) →
{εk} ≡ �ε, a field with constant amplitude εk for each time
step [47]. The optimization was done by dividing the driving
time T into eight equidistant time steps (k = 1, 2, . . . , 8),
exploring several random initial seeds and using standard
optimization tools from the PYTHON SCIPY library [48].
We stress that high-fidelity controls can now be routinely
implemented on several different physical systems, such as
cold atoms, nitrogen-vacancy centers in diamond, and nuclear
magnetic resonance [49–54]. The optimal results obtained by
numerical optimization, to estimate both the parameter R of
the interaction and the width λ of the Lorentzian spectral
density of the environment for a given evolution time T , are
shown in Fig. 4.

As shown in Fig. 4 and intuitively suggested previously, the
fact that we have a certain degree of total QFI F (tot)

λ̃
through-

out a whole process (see light dotted-dashed lines in Fig. 4)
allows us to manipulate that total flow of information with
a control field so as to have a maximum for Fλ̃(T ) at some
particular fixed evolution time T which is of experimental
interest (see dashed lines in Fig. 4). Let us note that this
evolution time T is a completely arbitrary time that we had
to set for the optimization, but identical results are obtained
by setting other evolution times T . However, we point out
that in realistic experiments the evolution time should not
be long enough to avoid the destructive effects generated by
decoherence, but also cannot be arbitrarily short considering
the fundamental limit imposed by the theory of the QSL [52].
As can be noted, the maximum value achievable with optimal
control of Fλ̃(T ) depends exclusively on the total degree of
information that we had previously within the noncontrolled

FIG. 4. (a) QFI of the parameter R characterizing the interaction.
(b) QFI of the width λ of the spectral density of the environment.
In both panels, all green curves correspond to the case with φ = 0;
blue ones, to φ = π . At the same time, the dashed line refers to the
optimal final value Fλ̃(T ) obtained by the optimization; the dark
solid line, to the global maximum of Fλ̃(t ) reached throughout the
noncontrolled evolution; and, finally, the light dotted-dashed line, to
F (tot)

λ̃
[given by Eq. (6)], also throughout the noncontrolled evolution.

Interaction parameters are fixed at a1 = 0.4, a2 = 0.6, R = 10, and
T = 2 (h̄ = 1; in units of 1/ω0). The same results were obtained by
fixing other interaction parameters and final evolution times T .

scenario. In addition, this maximum value achieved for Fλ̃(T )
by optimizing the control field for a specific final time T
coincides with the global maximum of Fλ̃(t ) reached at an
arbitrary time throughout the whole noncontrolled evolution
(F (opt)

λ̃
(T ) = max (Fλ̃(t )) ∀ t ∈ [0, T ]), as is clear upon com-

paring the dark solid lines with the dashed ones in Fig. 4.
Note that this last statement is consistent with the way in
which we are controlling the system, i.e., instead of adding an
extra interaction term in the Hamiltonian we are controlling it
by tuning its frequency with finite-length piecewise constant
controls, as we discuss following Eq. (14). Therefore, even
though the optimization itself is a complicated method of
finding optimal solutions for the maximization of a given
functional, it makes sense that exploring the multidimensional
control landscape in frequency space addresses the system
towards the global maximum that was reached at an arbitrary
time during the noncontrolled dynamics for any of the param-
eters of interest [47,55]. This is a numerical sample of the
information flows being actively manipulated by the control
field, a statement that is explored in more detail in the next
subsection.

B. Exploiting information flows for quantum control

An interesting point to note is based on the fact that the
concept of information flow may be applied to an entire set of
different physical quantities, for instance, QFI, NM, and also
entanglement. So a natural question can be formulated: How
are these information flows related to each other? In order to
address this question, we use the control method presented
previously as a way to dive through the subspace of the best
solutions and try to extract unknown relations from them.
For simplicity, we focus our attention just on the incoming
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FIG. 5. Incoming flows for Fλ(t ), Gλ(t ), D(t ), and C(t ) as a function of time for the following set of situations: (a) no control; (b) with
control maximizing Fλ(T ); and (c) with control maximizing C(T ). Interaction parameters are fixed at a1 = 0.4, a2 = 0.6, R = 10, and T = 2
(h̄ = 1; in units of 1/ω0), while λ is set equal to 1 and the initial state is maximally entangled (s = 0 and φ = 0). The POVM used for
computing Gλ from Eq. (4) was Px = {E1, E2, E3}, where E1 = √

2/(1 + √
2) |10〉 〈10|, E2 = √

2/(1 + √
2) |01〉 〈01|, and E3 = 1 − E1 − E2.

Analogous results were obtained by fixing different interaction parameters and final evolution times T .

flows, i.e., the time intervals in which these quantities are
an increasing function of time, and analyze whether or not
they are related in different controlled situations. With this
purpose, we define the incoming flow IF (t ) as

IF (t ) = dA(t )

dt
> 0, (21)

where A(t ) = {Fλ̃(t ), Gλ̃(t ),D(t ), C(t )}, Fλ̃(t ) being the QFI
for some specific parameter λ̃, Gλ̃(t ) the Fisher information
for a given POVM estimating the same specific parameter λ̃,
D(t ) the distinguishability between the two initial states that
maximize the BLP measure in Eq. (12), and, finally, C(t ) the
concurrence between both atoms. Let us remark that all the
above quantities are time dependent and it is their dynamics
that we intend to relate. As an illustrative and representa-
tive example, in Fig. 5 we plot all these incoming flows as
a function of time for the case of environment estimation
(λ̃ = λ) and under the following set of different situations:
without any control field [Fig. 5(a)], with a control field
that maximizes Fλ(T ) [Fig. 5(b)], and, finally, for a control
protocol that maximally preserves C(T ) [Fig. 5(c)], where T
is a completely arbitrary final evolution time that is fixed.

Something we can especially note in all the panels in Fig. 5
is based on the fact that there is a univocal dynamical relation
between Fλ(t ) for estimating a parameter of the environment
and the revivals of distinguishability D(t ), which are a com-
mon feature of NM and normally interpreted as a backflow of
information that flows from the environment to the reduced
open system. In this way, one could intuitively think that
initially there is no information about the unknown parameter
of the spectral density since, to extract information about it,
an interaction with the degrees of freedom of the environment
must occur. But surprisingly, this interaction seems not to be a
sufficient requirement unless we are in a time interval in which
we are experiencing a backflow of information, something

that may only occur in a non-Markovian quantum evolution.
It is clear in all the panels in Fig. 5 that the only intervals in
which we are gaining information about the environment are
those during which a backflow of information is occurring.
Whenever the backflow stops and therefore we start to lose
information, Fλ(t ) decreases.

In a similar way, as shown in Fig. 6, the same dynamical
relation between the QFI and NM arises when the estimation
is for a parameter that characterizes the probe itself, such
as its initial phase φ. In this case, as the system starts to
interact with the environment the information about the initial

FIG. 6. Incoming flows for FR(t ), Fφ (t ), Fλ(t ), and D(t ) as a
function of time for the noncontrolled situation. Interaction parame-
ters are fixed at a1 = 0.25, a2 = 0.75, R = 15, and T = 1 (h̄ = 1;
in units of 1/ω0), while λ is set equal to 1 and the initial state
is maximally entangled (s = 0 and φ = 0). The same results were
obtained by fixing different interaction parameters, initial states, and
final evolution times T .
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phase is leaked into it and is only due to the revivals of
distinguishability and the backflow of information that the
QFI of this initial phase increases again. On the contrary, it
is not surprising that in a situation where the estimation is
for a parameter characterizing the interaction (such as R),
no backflow of information is needed and thus the QFI can
increase independently of being in a non-Markovian time
interval, as can be appreciated from the dotted green line
in Fig. 6. Here the probe just needs to interact (somehow)
with the environment so as to extract information about the
interaction, without the necessity of receiving any backflow
of information.

In summary, considering that QFI has a clear practical
meaning and that there is no discussion with respect to
whether or not it is useful for specific tasks (i.e., for quantum
metrology), the result linking QFI and NM in this specific
model gives the latter a clear and indisputable meaning as
a quantum resource, either to estimate a parameter of the
environment or even to maximally preserve the informa-
tion on a parameter characterizing the reduced open system
[25,26,56–59].1 We hope this numerical finding to motivate
further theoretical as well as experimental investigations.

Let us return now to Fig. 5 and focus on the controlled
scenarios that are being studied. For instance, Fig. 5(b) shows
the behavior of all the incoming flows when the functional
Fλ(T ) is being maximized. The main difference from the
noncontrolled scenario presented in Fig. 5(a) is that now the
information flows corresponding both to QFI and to NM are
accommodated by the control in order to exhibit a maximum
value for Fλ(T ) at the end of the protocol. Indeed, while
in Fig. 5(a) the last revival of both D(t ) and Fλ(t ) ends at
a time t < T , in Fig. 5(b) we can see that the control has
accommodated the dynamics so as to make the last revival
end at a time t  T and thus achieve a maximum for the QFI
at that final evolution time T .

Finally, with regard to entanglement and its interplay be-
tween QFI and NM, in the scenarios covered in Figs. 5(a)
and 5(b), it is clear that there is no relation at all between
these three quantities. For instance, what Fig. 5(a) shows us
is that the concurrence C(t ) between the atoms may increase
independently of being in a time interval in which a backflow
of information is being manifested. This is not surprising since
it is well known that a common Markovian environment may
induce some degree of noncontrolled entanglement between
two noninteracting parts coupled to it [25,60,61]. With respect
to Fig. 5(b), where the control task is to optimize the final
value of Fλ(T ), as shown in Figs. 1 and 4, entanglement is
not the crucial factor for enhancing the parameter estimation.
So it is not surprising not to have a clear correlation in this
particular situation. However, the most interesting point to
stress arises in Fig. 5(c), where the control task now consists
in the preservation of entanglement at time T . In this case,
all the quantities are clearly correlated. The best way that

1A minor comment, but important to highlight, is that considering
that the QFI is defined from a maximization over all possible mea-
surements, it is crucial to show that there exists at least one particular
POVM that exhibits the same dynamical behavior. This is shown for
Gλ in all panels in Fig. 5.

the control field finds to preserve entanglement is to take
advantage whenever a backflow of information is occurring,
so as to recover from this backflow the entanglement that was
previously washed out when the information was being lost to
the environment.

VII. FINAL REMARKS

In this work, we have studied the problem of quantum
metrology in the framework of an open quantum system
subject to a non-Markovian quantum evolution. The main
motivation was to deepen our understanding of the rela-
tionship between apparently disconnected physical quantities,
such as QFI, the QSL, NM, and entanglement. By addressing
this complicated problem in a particular but fully analytical
and controlled physical system, we have first shown that
the speed of evolution and the accuracy of estimation are
deeply connected. In this way, upon exploring the process of
estimation for a variety of different classes of parameters, the
best metrological candidate proved to be the state that evolved
the most rapidly, and not the maximally entangled one. This
was shown by the use of the QSL.

Another important key point of our work is based on the
possibility of controlling externally the composite quantum
system used as a probe. In this context, by maximizing the
value of the QFI at a given final evolution time, we have
shown how the total QFI flow throughout the evolution can be
exploited and accommodated by the control field in order to
achieve the best precision of estimation at that final evolution
time, which may be of experimental interest. This could
certainly be useful in current experiments [20].

Finally, by using the optimal control method not as an end
in itself, but as a tool to explore the best solutions and extract
unnoticed relations from them [25,26], we have focused on
the dynamics of QFI, NM, and entanglement to determine
whether or not these quantities are correlated under different
control schemes. In all the scenarios considered, we have
found a direct dynamical relation between the incoming flows
of QFI (for both environment and phase estimation) and the
revivals of distinguishability, which gives NM a concrete
use as a resource for quantum metrology. With regard to
entanglement and its dynamical interplay with QFI and NM,
we have shown that when we optimize a control field to
maximally preserve the initial entanglement at a fixed final
evolution time, the incoming flows of entanglement coincide
perfectly with the incoming flows of QFI and distinguishabil-
ity. In other words, as information is being recovered from the
environment, via the revivals of QFI and distinguishability,
this backflow is used here by the control to retrieve the entan-
glement that was previously washed out when the information
was being leaked into it.

With the results obtained, we sincerely expect this work to
shed light and clarity on the problem of quantum metrology
and its deep connection with QSL, NM, and entanglement.
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arXiv:1301.2585.
[57] D. M. Reich, N. Katz, and C. P. Koch, Sci. Rep. 5, 12430 (2015).
[58] N. Anand and T. A. Brun, arXiv:1903.03880.
[59] G. D. Berk, A. J. Garner, B. Yadin, K. Modi, and F. A. Pollock,

arXiv:1907.07003.
[60] F. Benatti, R. Floreanini, and M. Piani, Phys. Rev. Lett. 91,

070402 (2003).
[61] B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli, and

P. Zoller, Phys. Rev. A 78, 042307 (2008).

022618-9

https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1103/PhysRevA.54.R4649
https://doi.org/10.1103/PhysRevLett.79.3865
https://doi.org/10.1126/science.1104149
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1038/nature07332
https://doi.org/10.1142/S0219749909004839
https://doi.org/10.1103/PhysRevLett.102.040403
https://doi.org/10.1103/PhysRevLett.104.020401
https://doi.org/10.1103/PhysRevA.82.042103
https://doi.org/10.1103/PhysRevA.84.022302
https://doi.org/10.1103/PhysRevLett.109.233601
https://doi.org/10.1103/PhysRevA.87.022337
https://doi.org/10.1103/PhysRevLett.112.120405
https://doi.org/10.1103/PhysRevA.91.052105
https://doi.org/10.1103/PhysRevA.97.012126
https://doi.org/10.1007/s11128-019-2446-8
https://doi.org/10.1016/j.physleta.2019.126006
https://doi.org/10.1103/PhysRevA.100.032108
https://doi.org/10.1002/andp.201900307
https://doi.org/10.1103/PhysRevA.101.032112
https://doi.org/10.1103/PhysRevLett.103.210401
https://doi.org/10.1088/0034-4885/77/9/094001
https://doi.org/10.1103/PhysRevA.99.062327
https://doi.org/10.1103/PhysRevA.99.020301
https://doi.org/10.1038/nphys1342
https://doi.org/10.1209/0295-5075/128/30001
https://doi.org/10.1103/PhysRevLett.111.010402
https://doi.org/10.1103/PhysRevLett.110.050403
https://doi.org/10.1103/PhysRevLett.110.050402
https://doi.org/10.1103/PhysRevA.94.052125
https://doi.org/10.1103/PhysRevA.97.046101
https://doi.org/10.1038/nphys1958
https://doi.org/10.1103/PhysRevA.90.022111
https://doi.org/10.1016/S0167-2789(98)00054-2
https://doi.org/10.1103/PhysRevLett.103.160502
https://doi.org/10.1103/PhysRevLett.100.090503
https://doi.org/10.1142/S0217979213450537
https://doi.org/10.1103/PhysRevA.82.012337
https://doi.org/10.1088/1367-2630/16/8/083010
https://doi.org/10.1103/PhysRevA.94.052306
https://doi.org/10.1103/PhysRevA.96.012117
https://doi.org/10.1103/PhysRevA.101.023410
http://www.scipy.org
https://doi.org/10.1103/PhysRevLett.112.050503
https://doi.org/10.1038/ncomms4371
https://doi.org/10.1088/1367-2630/16/9/093022
https://doi.org/10.1038/srep34187
http://arxiv.org/abs/arXiv:2006.10133
https://doi.org/10.1103/PhysRevX.10.021058
https://doi.org/10.1126/science.1093649
http://arxiv.org/abs/arXiv:1301.2585
https://doi.org/10.1038/srep12430
http://arxiv.org/abs/arXiv:1903.03880
http://arxiv.org/abs/arXiv:1907.07003
https://doi.org/10.1103/PhysRevLett.91.070402
https://doi.org/10.1103/PhysRevA.78.042307

