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Abstract

We consider string probes in a traversable wormhole geometry that connects two locally AdS5
asymptotic regions. Holographically, this describes two interacting copies of a 4-dimensional
gauge theory. We consider string configurations whose endpoints are located either in the same
boundary or in the two different boundaries of the wormhole. A string with both endpoints in
the same boundary is dual to a quark-antiquark pair charged under the same gauge field, while
a string extending through the wormhole describes a pair of colored particles charged under
two different gauge fields. When one considers a quark-antiquark pair in each boundary, the
system undergoes a phase transition: While for small separation each pair of charges exhibits
Coulomb interaction, for large separation the charges in different field theories pair up. This
behavior had previously been observed in other geometric realizations such as locally AdS5
wormhole solutions with hyperbolic throats. The geometries we consider here, in contrast, are
stable thin-shell wormholes with flat codimension-one hypersurfaces at fixed radial coordinate.
They appear as electrovacuum solutions of higher-curvature gravity theories coupled to Abelian
gauge fields. The presence of the thin-shells produces a refraction of the string configurations
in the bulk, leading to the presence of cusps in the phase space diagram. We discuss these and
other features of the phase diagram, including the analogies and difference with other wormhole
solutions considered in related contexts.
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1 Introduction

AdS/CFT correspondence [1, 2, 3] provides a powerful framework to study the dynamics of
strongly coupled systems and, in particular, gauge theories. A very interesting scenario where
AdS/CFT has proven to be very useful is the so-called quark-gluon plasma (QGP). This state of
matter, for a brief period of time does not behave as a weakly coupled gas of quarks and gluons,
but rather as a strongly coupled fluid [4, 5]. Partly motivated by the idea of making contact with
experimental data obtained from RHIC and LHC [6, 7], and assuming that a real-world QCD can
be reasonably well approximated by at least one of the various ‘QCD-like’ gauge theories whose
dual description is known, a few years ago a new interesting field of research begun: Starting with
the seminal work [8], where the shear viscosity of the QGP was computed, it begun a long list of
different fruitful applications and a variety of techniques that allowed to explore different aspects
of such an interesting system. One such line of research, for example, focused on calculating the
drag force experienced by a heavy quark traversing an N = 4 super-Yang-Mills plasma via its dual
description as a string moving on an AdS-Schwarzschild background [9, 10, 11]. Closely related, the
dynamics of mesons moving through this plasma were studied in [12, 13], where the corresponding
quark-antiquark potential and screening length were obtained using the dual portrayal in terms of
a string that has both of its endpoints on the boundary. The standard description states that the
string endpoints represent the quark and antiquark, while the body of the string represents the color
‘flux tube’ in between, i.e. the gluonic field profile sourced by the fundamental color sources. The
particular case where the quark and antiquark were static in the thermal medium was previously
analyzed in [14, 15]. Another important line of research focused on studying the behavior of these
probes when the dual conformal field theory is at zero temperature. Such scenario is interesting on its
on right because, being a strongly coupled gauge theory, and assuming that some properties might
be universal among seemingly different gauge theories, learning from these complicated systems,
though different from QCD, could be very useful. For example, and closely related to what we
will study in this paper, the static potential for an infinitely heavy quark and antiquark pair was
first computed in [16], where, as expected, due to conformal invariance, for small separation of the
pair, the potential was found to be proportional to 1/L (where L represents such separation). In
a similar context, another important problem that has been addressed is the dynamics of a heavy
color-charged particle in vacuum. The first characterization of the radiation rate of an accelerating
quark was worked out in [17], where, remarkably, the author was able to solve the highly nonlinear
equation of motion for a string on an AdS5 background that follows a timelike trajectory of the
string endpoint dual to an infinitely massive quark. In [18, 19, 20], a careful analysis of different
dynamical physical situations were studied giving a nice and clear picture of energy loss in strongly
coupled CFT’s.

Partly motivated by recent developments in the AdS/CFT correspondence and its ramifications,
more precisely by the picture presented in [21], one could be interested in probing wormhole geome-
tries connecting two asymptotic AdS regions using fundamental strings as those described above.
Some work along these lines has been done in [22, 23, 24, 25, 26, 27], where different string config-
urations were considered on a two-sided AdS5 traversable wormhole. In that case, the holographic
dual is given by two copies of the gauge theory which are interacting. In [22], for example, the
authors studied the dynamics of open strings on a geometry with two asymptotic regions, each of
them being locally equivalent to AdS5 or, more precisely, to the universal covering of AdS5 with
constant-radius slices of negative constant curvature. This type of traversable wormhole geometry,
with a base manifold of the form Σ3 = H3/Γ3 or Σ3 = S1 × H2/Γ2, with Γ2,3 being a discrete
subgroup of H2,3, appears as solutions of higher-curvature theories such as Einstein-Gauss-Bonnet

2



(EGB) [28]. A string solution with both endpoints on the same side of the wormhole describes a pair
of colored charges within the same copy of the gauge theory, and exhibit Coulomb interaction for
small separation. A string extending through the wormhole, in contrast, describes a pair of charges
which live in different copies of the gauge theory, and they exhibit a spring-like potential. As shown
in [22, 23], a phase transition occurs when there is a pair of charges present within each field theory.
In that case, for small separation each pair of charges exhibits Coulomb interaction; however, for
large separation the charges in the different field theories pair up.

The purpose of this work is to analyze similar string configurations on two-sided wormhole ge-
ometries, but in a setup that is more natural from the holographic point of view; namely, considering
geometries with flat constant-radius slices instead of hyperbolic higher-genus ones. The reason being
that in the former case the gauge theory is formulated on a locally flat 4-dimensional spacetime. We
want to see whether the same features, such as the existence of phase transitions, are also possible
in the flat sliced AdS5 wormhole case. There is, however, an obvious obstruction to achieve this:
No-go theorems seem to forbid the existence of such wormhole configurations precisely in those grav-
ity theories in which, as in EGB, the problem is under control analytically. Even at the so-called
Chern-Simons point of the theory [29], where the Birkhoff-like no-go theorems can be evaded [30],
the space of solutions only contains differentiable static wormholes with hyperbolic slices [28]. This
compels us to get rid of differentiability condition and to consider thin-shell wormholes of the type
studied in [31]; that is, thin-shell electro-vacuum solutions of EGB theory [32].

EGB theory, also known as 5D Lovelock theory [33, 34], has shown to be the best suitable toy
model to investigate the effects of higher-curvature effects, especially in the context of AdS/CFT
[35, 36, 38, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47]. This was the model considered, for example,
in [35, 36] to investigate the shear viscosity to entropy density ratio in conformal field theories
dual to Einstein gravity with curvature square corrections. Yielding second-order field equations,
EGB theory enables to compute the shear viscosity non-perturbatively in the dimensionful coupling
constant of the higher-curvature terms. The possibility of performing such computation analytically
is what ultimately made possible for the authors of [35, 36] to show that the previously conjectured
Kovtun-Son-Starinet viscosity bound [51] was violated when higher-curvature terms were present.

Here, we will consider EGB theory and the wormhole solutions constructed in [32]. These ge-
ometries are electro-vacuum solutions to EGB gravity coupled to an Abelian gauge field, with an
electric flux that suffices to support the wormhole throat and to stabilize the geometry. In [32] we
presented a protection argument showing that, while stable traversable wormholes connecting two
asymptotically locally AdS5 regions do exist in EGB theory, the region of the parameter space where
such solutions are admitted lies outside the causality bounds coming from AdS/CFT [35]; see (2)
below. There exists, however, a special case: For a special relation between the coupling constant of
the higher-curvature terms (α) and the cosmological constant (Λ), which are defined in (3) below,
the argument used to exclude a point of the unitarity segment simply does not hold. To be more
precise, if the coupling constants satisfy the relation

αΛ = −3

4
, (1)

then the EGB gravity theory in vacuum reduces to the 5D Chern-Simons (CS) theory for the gauge
group SO(4, 2) [29] and, in that case, no graviton excitation exist around AdS5. As a consequence,
the argument leading to the unitarity bound

− 27

100
≤ αΛ ≤ 7

12
, (2)
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does not suffice to exclude the theory at (1), which stands as an isolated point outside the segment:
the Chern-Simons point. It is worth mentioning that this is exactly the same point where the
wormhole solutions considered in [22, 23] exist. Here, we will also study the theory at this point (1),
however, we will focused on geometries such as those constructed in [32]. The paper is organized
as follows: In section 2, we review the construction of the traversable thin-shell wormholes in 5D
CS gravity. The higher-curvature terms will suffice to satisfy the junction conditions on the thin-
shells with no induced energy-momentum tensor on the constant-radius codimension-1 separation
hypersurfaces. In section 3, we will solve the string equations of motion on such background.
Interestingly, as the the string probes the deep IR of the wormhole geometry, the latter, being
non-differentiable on the thin-shell, will manifest itself as a ‘lense’, changing the shape of the string
worldsheet and producing a refraction effect: a ‘string refraction’. The dynamics of the string
dioptrics is studied in section 4, where, in particular, the phase transition is discussed along with
the different possible string configurations. In section 5, we compare our string configurations with
those previously studied on traversable wormholes in a two-sided AdS5 space.

2 Traversable wormholes

2.1 The higher-curvature theory

Higher-curvature gravity models in 5 dimensions do allow for stable wormholes that connect
two asymptotically flat or asymptotically (Anti-)de Sitter regions without introducing extra exotic
matter, [32]: We consider the Einstein-Maxwell theory supplemented with the quadratic Gauss-
Bonnet higher-curvature terms; namely

S5 =
1

16π

∫
d5x
√
−G

(
R− 2Λ + α

(
RµνρσR

µνρσ − 4RµνR
µν +R2

)
− FµνF

µν
)

+B , (3)

where B stands for the boundary term that renders the variational problem well defined.

The static black hole solution of this theory can be written analytically in a closed form [48, 49],
namely

ds2 = Gµν dx
µdxν = −N2(r) f(r) dt2 +

dr2

f(r)
+ r2dΣ2

3 , (4)

where t ∈ R, r ∈ R≥0, and dΣ2
3 is the metric on a locally, maximally symmetric 3-space of constant

curvature k = 0,±1. The metric functions are given by

N2 = 1 , f(r) = k +
r2

4α

(
1 + ξ

√
1 +

16αM

r4
− 8αQ2

3r6
+

4αΛ

3

)
, (5)

where ξ = ±1. The electromagnetic field, on the other hand, is given by

F = Fµν dx
µ ∧ dxν =

Q

r3
dt ∧ dr , (6)

with Q being the electric charge.

For certain range of parameters, solution (4)-(6) represents a static, electrically charged black
hole with ADM mass proportional to M . Here, we will be interested in solutions with flat base
manifold, namely k = 0, and in the theory defined at the point (1). In that case, (5) reduces to

f(r) =
r2

4α
+ ξ

√
M

α
− Q2

6αr2
, dΣ2

3 = d~x · d~x = δijdx
idxj , (7)
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with i, j = 1, 2, 3. The radius of the black hole event horizon is given by the largest positive root of
the equation r6H − 16αMr2H + 8αQ2/3 = 0, for the solution with ξ = −1. When the radicand in (7)
vanishes, the solution exhibits a branch singularity. This singularity, which occurs at r2S = Q2/(6M),
may be shielded by the event horizon provided |Q| is smaller than a critical value Qc that guarantees
rH > rS . If there are no horizons, a naked singularity is present at the radius where the radicand in
(7) vanishes, i.e. at the hypersurface r = rS .

2.2 Thin-shell wormholes at the Chern-Simons point

We consider α > 0 and Λ < 0 obeying (1). In this theory, we will use solutions that, at large
r, asymptote the spherically symmetric geometry described above with ξ = −1 and k = 0, the
latter implying the constant-r slices being locally R1,3. More precisely, we will consider traversable
wormhole solutions of the type studied in [32], connecting two asymptotically locally AdS5 regions.
The geometric surgery procedure to construct the wormhole involves three different junctures, gluing
four different patches of the geometry (4) with Λ = −3/(4α) and different values of ξ and M in each
patch. The three different junctures describe vacuum thin-shells: The contribution of the higher-
curvature terms, which has its counterpart in the boundary action, makes it possible to satisfy the
junction conditions without induced matter on the shells.

Let us be more precise about the geometric construction: The spacetime consists of four bulk
pieces, four distinct patches separated by three 4-surfaces. Each piece will be equipped with a
metric of the form (4)-(7), cutting out part of the geometry on one side of some codimension-one
hypersurface defined at fixed coordinate r. The four bulk regions are then glued in such a way that
the entire spaceM results geodesically complete and describes a traversable wormhole, symmetric
with respect to one of the three thin-shells, the one that corresponds to the wormhole throat. We
denote the four regions as left-exteriorMe

L, right-exteriorMe
R, left-interiorMi

L, and right-interior
Mi

R, with coordinates xµL,R, where the subscripts L and R stand for Left and Right respectively.
The wormhole is symmetric across the throat that separates the region Mi

L from the region Mi
R;

nevertheless, the coordinates of the interior and exterior patches could be different a priori. Without
loss of generality, we will consider the same coordinates for the interior regions, and other coordinates
system for the exterior ones. Explicitly, these regions are

Me
L = {xµL / rL ≥ b}, Me

R = {xµR / b ≤ rR} ,

Mi
L = {xµL / b ≥ rL ≥ a}, Mi

R = {xµR / a ≤ rR ≤ b},
(8)

and the complete manifold gets defined by M = Me
L ∪Mi

L ∪Mi
R ∪Me

R. Each external region,
Me

L,R, is joined with its corresponding inner region, Mi
L,R, at the hypersurface of a vacuum thin-

shell (bubble) Σb
L,R. That is, Σb

L,R =Mi
L,R ∩Me

L,R. The Left bubble is placed at rL = b, while the
Right bubble is placed at rR = b. Inner regions are also glued to each other at the throat, located
at rL = a = rR, which implies that a < b; namely Σa = Mi

L ∩Mi
R. Summarizing, the junction

hypersurfaces are described as Σb
L ≡ ∂Me

L|r=b = ∂Mi
L|r=b and Σb

R ≡ ∂Me
R|r=b = ∂Mi

R|r=b, which
define bubbles, and Σa ≡ ∂Mi

L|r=a = ∂Mi
R|r=a, corresponding to the wormhole throat.

The metric functions fi(rL,R) and fe(rL,R) of the interior and exterior geometries, have mass
parameters Mi ≡MLi = MRi and M ≡MLe = MRe, respectively. As described above, the exterior
metrics have ξe = −1 and asymptote a locally AdS5 space at large r, with an effective AdS radius
given by ` ≡

√
4α. As analyzed previously in [31, 32], the juncture conditions on the hypersurface at

r = a determine that the inner regions must both have ξi = +1 branch to construct the symmetric
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wormhole. The radius of the throat has to be greater than the radius where the branch singularity
exist, namely a > rSi . Also, the radii rL,R = b of the bubbles have to be greater than the would be
horizons of the external metrics or their singularity surfaces, namely b > Max{rSe , rH}. The electric
flux traversing the wormhole, given by the charge Q ≡ −QL = QR, suffices to support the wormhole
throat and to stabilize the solution under scalar perturbations; see [32] for details; see also figure 1.

The general equations for the junctures at the shells of our construction are summarized in
equations (21)-(24) of [32]. These are four equations which determine the conditions to have vacuum
shells, i.e. a vanishing induced stress-tensor at the hypersurfaces. The conditions are radically
simplified for flat base manifold, k = 0, and by setting the CS point Λ = −3/`2. After applying the
junction conditions, four parameters of the metric functions are fixed, while other two remain free.
We can present the thin-shell wormhole explicitly, described in terms of the radius of the throat a
and of the AdS radius `; namely

ds2 = −f dt2 + f−1 dr2 + r2 d~x 2 , (9)

where

f =


fi(r) =

r2

`2
+

2 a2

`2

√
3− 2 a2

r2
inMi

L,R

fe(r) =
r2

`2
− 2 a2

`2

√
µ̄− 2 a2

r2
(µ̄ ' 1.81) inMe

L,R

(10)

with the corresponding coordinates on each patch. The parameters of the original metric functions,
obtained by the junction conditions, are

Mi =
3 a4

`2
Q =

2
√

3 a3

`
(11)

M =
µ̄ a4

`2
(µ̄ ' 1.81) , b =

√
δ a (

√
δ ' 1.40) (12)

with the exact value of δ given by the positive root of the polynomial P (δ) = 9δ7−21δ6 +4δ5 + δ4 +
16
(
δ3 − δ2 − δ − 1

)
, and with µ̄ = 10/δ− 3− 4/δ4. The mass parameter of the interior metric, and

the electric charge of the wormhole, given in (11), are obtained from the equations for the junction
at the throat (equations (21) and (22) in [32]). Plugging the latter parameters into the conditions
on the bubbles (equations (23) and (24) in [32]) we have the radius of bubbles and the external mass
parameter, as given in (12).

The solutions have supracritical values of Q for the outer geometries: The exterior function fe(r)
has a charge Q such that Qc/Q =

√
2 (µ̄/3)3/4 ' 0.97. We also notice that the branch singularities

of the metric functions are excluded from the wormhole geometry; the outer function fe(r) has
rSe/b =

√
2/
√
δµ̄ ' 0.75, while the inner function have rSi/a =

√
2/3 ' 0.81, as given by the

radicand in fi(r). We emphasize that the construction is stable under scalar perturbations. The
latter can be seen from the stability equations for the throat and bubbles found in [32]. There are
no horizons and the two asymptotic regions are causally connected: a radial null geodesic extends
from one boundary to the other in a finite time. In this way we have a traversable asymptotically
locally AdS5 wormhole spacetime with both boundaries being locally R1,3.
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Figure 1: Sketch of the wormhole geometry and strings probing it.

Notice also that one can re-scale the coordinates and define the new dimensionless coordinates
x̄µ = (t̄, z, ~̄x) for each patch, where t̄ = a t/`2, z = r/a, and x̄ = a x/`, and then write the metric as
follows:

ds2 = `2
(
−f̄ dt̄2 + f̄−1 dz2 + z2 d~̄x 2

)
, (13)

with
f̄i(z) = z2 + 2

√
3− 2/z2 , f̄e(z) = z2 − 2

√
µ̄− 2/z2 , (14)

having absorbed the dependence on a. In these coordinates, the throat of the wormhole is located
at z = 1. An adapted line element function defined by re-scaling f̄i(z) → N2

i f̄i(z) with N2
i =

f̄e(zb)/f̄i(zb) and zb =
√
δ, would be better suited to define a global time coordinate. This makes

evident that there is a single relevant scale ` in the problem, being the radius of AdS5.

3 String dioptrics

3.1 The strings going through the thin-shell

Let us first study the induced metric hmn on the timelike shell hypersurfaces; these are Σb
L and

Σb
R for the right and left bubbles and Σa for the throat. Each of them is described by some intrinsic

coordinates ξm = (ξ0, ξ1, ξ2, ξ3) given by the embedding equations xµ = xµ(ξm) on the hypersurface.
The induced metric can be defined by starting with the vectors eµm = ∂xµ/∂ξm, which are tangent
to the curves of such hypersurface; more concretely, hmn = eµmeνnGµν . For later use, we define the
projection tensor

hµν ≡ hmneµmeνn , (15)

useful to eliminate the normal components of an arbitrary tensor over the manifold. This is Gµν =
nµnν + hµν , with nµ being the unitary normal vector to the shell hypersurface. The line element of
the induced metric over a shell of radius r = υ is given by

dh2± = −f±(υ) dt2± + υ2d~x± , (16)

where f±(υ) represent the behavior of the metric functions on each side of the juncture, i.e. υ = a
for the throat, and υ = b for the bubbles. Notice also that, the induced metric on the hypersurface
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of a shell at r = υ is unique, and the tangential coordinates at both sides are related by the first
fundamental form which establishes the diagonal transformation

Λµ+µ− = diag
(
∂t+
∂t−

,
∂r+
∂r−

;
∂~x+
∂~x−

)
, (17)

with
∂t+
∂t−

=

√
f−(υ)

f+(υ)
,

∂~x+
∂~x−

= (1, 1, 1) , (18)

which was obtained from (16). Summarizing, given a vector U with components Uν in the bulk, its
projection onto the shell hypersurface is

P (U)µ = hµν Uν ; (19)

then, if we considered different coordinates, e.g., xµ+ and xµ− , on the same hypersurface, we have
that

P (U)µ+ = Λµ+µ− P (U)µ− . (20)

As mentioned in the Introduction, we are interested in probing the wormhole geometry with some
particular configurations of fundamental strings that, in the context of the AdS/CFT correspondence,
represent either an infinitely heavy meson, i.e. U-shaped strings with both of its endpoints on the
same boundary, or an infinitely heavy isolated charge on each of the field theories, i.e. fundamental
strings traversing the wormhole geometry from one asymptotic region to the other, to which we will
refer to as LR-strings. In order to study the string dynamics on this background, we consider the
Nambu-Goto action given by

S = −T0
∫
dτdσ

√
−det gαβ , (21)

where gαβ ≡ Gµν∂αXµ∂βX
ν is the induced worldsheet metric, with σα ≡ (τ, σ), Gµν is the spacetime

metric, and T0 = (2πα′)−1 is the tension of the fundamental string. The projection of the worldsheet
tangent vectors ∂αXµ ≡ ∂Xµ/∂σα onto a hypersurface with induced metric hmn, given by hµν ∂αXν ,
are unique. This projection must be the same as seen from both sides of the hypersurface that defines
the shell, so we have

(hµν ∂αXν)+− = 0 , (22)

where ± here means the difference of the quantity evaluated at both sides of the shell. Since a priori
different coordinates are to be used on each side, we can calculate the above expression using each
coordinate system, as in (20), to get

hµ+ν+∂αXν+ = Λµ+µ− h
µ−ν−∂αXν− , (23)

for a shell at r = υ. We will use a static gauge to describe the map Xµ(τ, σ) = (t(τ), r(σ), ~x(σ))
from the string worldsheet into spacetime –in each patch–, where we take ~x(σ) = (x(σ), 0, 0). For a
static string, the timelike and spacelike tangent vectors of the worldsheet are

Ẋµ ≡ ∂τXµ(σ, τ) = (ṫ, 0, 0, 0, 0) , (24)

X ′µ ≡ ∂σXµ(σ, τ) = (0, r′, x′, 0, 0) . (25)

Evaluating (23) for σ(1) ≡ τ we obtain the condition at r = υ for timelike projections of the
worldsheet, which in virtue of the diagonal metric tensors is

ht+ t+ ṫ+ = Λt+ t− h
t−
t− , ṫ− , (26)

8



where the subscripts ± refer to coordinates on either one side or the other of the shell. In particular,
for the wormhole geometry we would have√

f+(υ) ṫ+ =
√
f−(υ) ṫ− . (27)

Analogously, for σ(2) ≡ σ, the spacelike projections of the worldsheet at r = υ are

hx+x+x
′
+ = Λx+x− h

x−
x− x

′
− , (28)

which for the wormhole geometry becomes simply

x′+ = x′− . (29)

3.2 String refraction in the thin-shell wormhole

In a generic static gauge, where Xµ(τ, σ) = (t(τ), r(σ), x(σ), 0, 0), the induced worldsheet metric
is given by

gαβ =

(
−f(r) ṫ2 0

0 r′2

f(r) + r2 x′2

)
, (30)

and the corresponding Nambu-Goto action takes the form

S = −T0
∫
dτdσ

√
ṫ2 (r′2 + f(r) r2 x′2) , (31)

while the canonical momentum densities of the string are defined as Πτ
µ ≡ −T0 ∂

√
−g/∂Ẋµ, and

Πσ
µ ≡ −T0 ∂

√
−g/∂X ′µ, with det gαβ ≡ g. The string equations of motion supplemented with (17)–

(18), imply that the tangential component of Πσ
µ is continuous at its intersection with a shell at fixed

r(συ), i.e. Πσ
x|+− = 0 in our case. Expressed in terms of different coordinate systems on each side,

the latter condition reads
Πσ
x+ = Λx−x+Πσ

x− , (32)

with Λx−x+ = 1 = (Λx+x−)−1 for the spatial coordinates of the shells in the wormhole. The action
is time-independent and does not depend explicitly on the x–coordinate; the latter implies that Πσ

x

is a conserved quantity, and it can be written as

C = −Πσ
x

T0
=

|ṫ|f(r) r2 x′√
r′2 + f(r) r2 x′2

, (33)

with C an integration constant. Applying equation (32) at the throat, rL(σa) = rR(σa) = a, we
have

|ṫL|fi(a) a2 x′L√
r′2L + fi(a) a2 x′2L

∣∣∣∣∣
σa

=
|ṫR|fi(a) a2 x′R√
r′2R + fi(a) a2 x′2R

∣∣∣∣∣
σa

, (34)

where we have replaced ∓ subscripts by L or R, and, using (27) and (29) at the throat, we obtain

|r′L| = |r′R| . (35)

Analogously, situated at the position of the corresponding bubbles, rL,R(σb) = b, on the Left or the
Right hand side of the wormhole, we get

|ṫi|fi(b) b2 x′i√
r′2i + fi(b) b2 x′2i

∣∣∣∣∣
σb

=
|ṫe|fe(b) b2 x′e√
r′2e + fe(b) b2 x′2e

∣∣∣∣∣
σb

, (36)
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where we replaced ∓ by i or e subscripts, and, using (27) and (29), we obtain the refraction condition
on the thin-shell bubbles

r′e√
fe(b)

=
r′i√
fi(b)

. (37)

We note that the string refraction at the throat, (35), which is trivial in virtue of the Z2-symmetry of
the wormhole configuration, actually takes the sign adjustment r′L = −r′R due to the orientation of
the radial coordinates, bothMi

L,R are interiors, with r pointing toward the corresponding boundary.
On the other hand x′(σ) is given by (33), and using the coordinate patch for each of the four regions
in the wormhole spacetime, we have

x′(σ) =



∓ r′

r
√
fe(r)

C√
ṫ2 r2 fe(r)−C2

∣∣∣
L,e

forMe
L

∓ r′

r
√
fi(r)

C√
ṫ2 r2 fi(r)−C2

∣∣∣
L,i

forMi
L

± r′

r
√
fi(r)

C√
ṫ2 r2 fi(r)−C2

∣∣∣
R,i

forMi
R

± r′

r
√
fe(r)

C√
ṫ2 r2 fe(r)−C2

∣∣∣
R,e

forMe
R

(38)

which consistently satisfies (29). An explicit static gauge can be chosen for the time coordinates,
namely te(τ) = τ in the exterior regionsMe

L,R and ti(τ) = τ Λtite |r=b = τ
√
fe(b)/fi(b) for the inner

regionsMi
L,R; these, in agreement with (27).

4 Phase space

We are interested in probing the wormhole geometry we constructed in section 2 with different
static string configurations as those described in section 3. As explained before, these configurations
are dual to either an isolated infinitely heavy quark in each theory (i.e. a fundamental LR-string
with each of its endpoints on different boundaries) or to an infinitely heavy meson (i.e. a U-shaped
string with both of its endpoints on the same boundary). We will study a particular scenario where
a phase transition between these two configurations take place and try to shed some light on the
dynamics of the two gauge theories.

According to the standard recipe [50], in the large-Nc, large λ limit, the expectation value of a
quark-antiquark pair tracing a rectangular Wilson loop where the temporal side is infinite, is dual
to the on-shell Nambu-Goto action for a string worldsheet subject to the boundary condition of
meeting the curve C at the boundary, i.e.,

〈W (C)〉 = e−iS(C) . (39)

From (39) one can read off the energy of the corresponding quark-antiquark pair. This quantity is
usually divergent, as the proper area of the string worldsheet is infinite; however, it can be regularized
for example, by subtracting the proper area of two straight strings, cf. [15, 16]. Here, we will consider
the regularized energy of the quark-antiquark pair defined by

∆E(L) = −∆S(L)/T , (40)
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where T stands for the infinite time interval at the boundary, ∆E(L) = E −Ess, ∆S(L) = S − Sss,
with Ess and Sss being the energy and on-shell action of a straight LR-string, respectively, and
where L is the spatial distance on the Wilson loop or, equivalently, the separation between the
string endpoints. The latter is given by

L =

∫ L
2

−L
2

d(`x) , (41)

where we have incorporated the effective AdS radius `, in order to set the speed of light to 1
at the boundary theory. In what follows, we will compute the energy ∆E from different string
configurations refracted by the thin-shells of the wormhole. It is worth mentioning that the Euclidean
version of this computation, corresponds to determining which string configuration has the lowest
free energy F , i.e. which string configuration is thermodynamically favored.

Let us begin by consider a straight LR-string, this is a straight string which extends across the
wormhole with its endpoints at different boundaries. The bending constant of this configuration
is C = 0, so the string pierces the shells perpendicularly, with x′(σ) = 0, and there is no spatial
refraction. The area density of the straight string is given by |ṫ(τ) r′(σ)|, and the corresponding
on-shell action takes the form,

Sss = −T0
(

2

∫
i
dτ |ṫi| dσ|r′i|+ 2

∫
e
dτ |ṫe| dσ|r′e|

)
= −
√
λT

π`2

(
Ni

∫ b

a
dr +

∫ ∞
b

dr

)
, (42)

where the lapse factor Ni ≡ (∂ti/∂te)|b suffices to adapt the rate of coordinate time of the inner
regions with respect to that of the outer regions, and the exterior time coordinate is identified
with the boundary time, Te = T . For further convenience, hereafter, we will use a dimensionless
normalized energy

∆Ē ≡ −∆S/T

a T0
, (43)

with a being the radius of the throat, and T0 =
√
λ/(2π `2). The normalized energy Ēss associated

to the straight string configuration is then

Ēss = 2

(
Ni

∫ zb

1
dz +

∫ ∞
zb

dz

)
, (44)

with zb ≡ b/a ' 1.40 being the position of the outer shells in terms of the variable z = r/a. The
lapse factor is given by

Ni ≡
∂ti
∂te

∣∣∣
b

=

√
f̄e(zb)√
f̄i(zb)

' 0.20 , (45)

with
f̄i(z) ≡ z2 + 2

√
3− 2/z2 , f̄e(z) ≡ z2 − 2

√
µ̄− 2/z2 , (46)

and µ̄ ' 1.81, as given in (12). To analyze the behavior of the normalized dimensionless energy ∆Ē,
we will use a normalized dimensionless quantity L̄ defined as

L̄ ≡ aL

`2
, (47)

which represents the separation between the string endpoints. In the following subsections, we will
study the different possible configurations probing the wormhole spacetime and analyze the dynamics
of the string dioptrics.
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4.1 U-shaped strings

U-shaped strings have a turning point at ru = r(σu), which can be, in principle, either in an
exterior or an interior region of the wormhole geometry. To evaluate the value of the bending
constant C for these configurations we have to take into account that

lim
σ→σu

x′(σ) = ∓∞ , (48)

and consequently, using (38),

C = ru ṫ
√
f(ru) =

{
Ce = ru ṫe

√
fe(ru) if ru is inMe

Ci = ru ṫi
√
fi(ru) if ru is inMi (49)

where we have chosen C to be positive. The value of such constant depends on the position of the
turning point ru and determines how much the string bends. From inspection of the radicand given
in (38) we see that the U-shaped solutions must have r ≥ ru, this is because the product ṫ2r2f(r)
has a minimum at the throat and it grows with r, as given by the functions fi(r) and fe(r) in the
intervals a < r ≤ b and b ≤ r, respectively. The latter means that a U-shaped string with its
turning point at one side of the wormhole must have both of its endpoints on the same boundary.
We will eventually find three possible types of U-shaped string configurations. In what follows we
will compute the separation between endpoints L̄, given by

L̄ =
2 a

`

∫ ∞
σu

dσ x′(σ) , (50)

with a parameterization such that r(σ = ∞) = ∞, and the regularized energy ∆Ē, obtained by
subtracting Ēss to the corresponding normalized energy, written generically as

Ē =
1

a T

∫
dτdσ|ṫ|

√
r′2 + f(r) r2 x′2 . (51)

The values of L̄ and Ē will permit us to compare between different string configurations.

4.1.1 U-shaped strings in an exterior region

For U-shaped strings with turning point ru in an exterior region of the wormhole Me (left or
right), the radial coordinate in the static gauge can be chosen to be r(σ) = σ. Using the expression
for x′(σ) given in (38) and the bending constant Ce as in (49), the separation between the two
endpoints of the string is found to be

L̄ =
2

zu
√
f̄e(zu)

∫ ∞
zu

dz
β̄e√

1− β̄e
, (52)

where zu = ru/a can take values in the outer region, i.e. zu ∈ [zb;∞] with zb ≡ b/a ' 1.40, and
where the auxiliary function is

β̄e =
(zu
z

)2 f̄e(zu)

f̄e(z)
. (53)

Then, the energy ∆Ē(L̄) for a quark-antiquark pair dual to the U-shaped string with its turning
point at ru in an exterior region of the wormhole geometry is given by

∆Ē = 2

(∫ ∞
zu

dz
1−

√
1− β̄e√

1− β̄e
− (zu − zb)− Ni(zb − 1)

)
. (54)
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This configuration is similar to those studied in black hole backgrounds, however, here the outer
region corresponds to a metric with supracritical value of charge Q. Notice that, for small separa-
tions, corresponding to turning points zu � zb, we have β̄e ∼ (zu/z)

4 and, as expected, we recovered
the Coulomb behavior ∆Ē ∼ −1/L̄ dictated by the conformal invariance at the UV region of the
dual field theory. The energy ∆Ē as a function of L̄ for a quark-antiquark pair described by these
U-shaped strings whose turning point is in an exterior region is plotted with a blue curve in figure 3.
The expressions for these quantities, (54) and (52), are independent of the physical scales in virtue of
the auxiliary normalized bar functions. The maximum endpoints separation for these configurations
is found to be L̄bu ' 1.04, corresponding to a U-shaped string whose turning point barely stays
inside the outer region of the geometry, i.e. just above the bubble.

4.1.2 Refracted U-shaped strings: turning point in the interior region

If the turning point ru is in an interior regionMi (left or right), the string dioptrics is characterized
by the refraction law given by (37) at the bubble, and an explicit radial coordinate parameterization
in the static gauge can be written as

r(σ) =


−(b− ru)

√
fe(b)√
fi(b)

(σ + 1) + b σ ∈ (−∞;−1], forMe
L,R

−(b− ru) σ + ru σ ∈ [−1;σu = 0], forMi
L,R

(b− ru) σ + ru σ ∈ [σu = 0; 1], forMi
L,R

(b− ru)

√
fe(b)√
fi(b)

(σ − 1) + b σ ∈ [1; +∞), forMe
L,R

(55)

Using the corresponding expression for x′(σ) in each region, as in (38), and the bending constant Ci
from (49), the distance L̄ between endpoints of the refracted U-shaped string is

L̄ =
2

zuNi

√
f̄i(zu)

(
Ni

∫ zb

zu

dz
β̄i√

1− β̄i
+

∫ ∞
zb

dz
β̄ie√

1− β̄ie

)
, (56)

with the auxiliary functions defined as

β̄i =
(zu
z

)2 f̄i(zu)

f̄i(z)
, β̄ie =

(zu
z

)2 f̄i(zu)

f̄e(z)
N2
i , (57)

and zu = ru/a being the turning points in the interior region, taking values zu ∈ [1; zb]. Notice that
the presence of the lapse Ni in the above expressions makes clear the refractions when going through
the shell hypersurface at r = b. The corresponding energy ∆Ē for these string configuration is

∆Ē = 2

(
Ni

∫ zb

zu

dz
1−

√
1− β̄i√

1− β̄i
+

∫ ∞
zb

dz
1−

√
1− β̄ie√

1− β̄ie
−Ni(zu − 1)

)
. (58)

Figure 2 shows the distance L̄ and the energy ∆Ē as function of the ratio ru/a for U-shaped string
configurations with turning point in the outer and inner bulk regions. Notice that both the energy
∆Ē and the separation L̄ have a maximum if the turning point is at the position of the bubble’s shell
b ' 1.40 a. For refracted configurations, the separation L̄ decreases as the turning point is moved
in the inner region deeper into the wormhole, and the minimum endpoints separation of refracted
U-shaped strings is obtained for a turning point just above the throat, this value is L̄th ' 0.94.
A numerical plot of ∆Ē as a function of L̄ corresponding to U-shaped strings with turning point
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in the interior region is shown in figure 3 with a light blue curve. The segment between L̄th and
L̄bu depicted in figure 3 resembles the fishtail tip featured for string configurations in black hole
backgrounds: The refracted configurations, which extend deeper into the bulk, are energetically
disfavored with respect to exterior U-shaped strings that remain outside the bubble.

Figure 2: L̄ and ∆Ē as functions of the turning point ru/a.

4.1.3 U-shaped strings stretched at the throat

To complete the configuration space of U-shaped strings in the wormhole spacetime, we have to
consider a third type of solutions: These correspond to configurations which dip into the inner region
and have a finite length segment lying down on the throat at a fixed radius. Before constructing
these solutions, we will first show the existence of another kind of configuration (not U-shaped)
which corresponds to a string completely stretched at fixed r = a. We recall that the wormhole
spacetime has reflection symmetry around the throat’s shell and that gravity pulls towards this
hypersurface located at r = a, which thus become an accumulation surface. If it were the case of
a smooth geometry around the throat, when posing the equations of motion we would immediately
find that there exists a static solution corresponding to the aforementioned string at fixed r = a, i.e.
at the surface where the space opens up. The same happens in our case, in which the space opens
up at the infinitely thin throat’s shell where such a configuration also appears. To bear out this, we
can adopt a new radial coordinate y, which intersects the throat hypersurface at y = 0, and consider
the metric around this position, namely

ds2 = −V (y) dt2 + V −1(y) dy2 + r2(y) d~x · d~x , (59)

with r(y) = (y − a) Θ(y/a) + (a− y) Θ(−y/a), where Θ is the Heaviside step function, and V (y) =
fi(r(y)). Now, let us see that the equations of motion for a string at fixed y are satisfied at y = 0. For
concreteness, let us consider the string description with some static gauge in which the coordinates
are Xµ(τ, σ) = (t(τ), y(σ), x(σ), 0, 0), so the area density and momenta are given by

√
−g = ṫ

√
y′2 + V r2 x′2 , (60)

and

Πτ
t = −T0

√
y′2 + V r2 x′2 Πσ

y = −T0
ṫ y′√

y′2 + V r2 x′2
Πσ
x = −T0

ṫ V r2 x′√
y′2 + V r2 x′2

. (61)

To describe a string at a fixed radial coordinate y, we use a parameterization where σ = x. When
plugging x′ = 1 and y′ = 0 in (60) and (61), we see that the equations of motion for such configuration
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are satisfied if ∂
√
−g/∂y = 0. The latter reduces to the condition r′(y) = 0, and considering the

step functions involved in the metric coefficients, we have that it is achieved at the minimum radius
r = a, i.e at the throat.

We are not specifically interested in the solution described above; instead, we will consider it
just as a piece of the string solution, to complete the U-shaped string configuration: We are looking
for solutions with endpoints at the boundary; therefore, we take half of a U-shaped string, we cut
it at its turning point, which lies down tangentially just over r = a, and then attached to it one
end of a finite-length segment lying on the throat, with the momenta being continuous. The same
procedure is performed in the other end, so obtaining the U-shaped solution: a string with endpoints
at one boundary, refracted at the bubble’s shell, and stretched tangentially to the throat. For the
stretched part of the string, parameterized with σ = x, we have y′ = 0 and, consequently, the
momenta conservation and the density continuity condition at r = a are satisfied. In particular, for
the stretched part localized at r = a the area density is

√
−g|r=a = a ṫi

√
fi(a) . (62)

Note that this segment along the x direction can be stretched an arbitrary length xstr. In this
way, the endpoints separation of a U-shaped string which has a segment xstr lying stretched at the
throat’s position is

L̄ =
a

`

(∫ σa

−∞
dσ x′(σ) + xstr +

∫ ∞
σa

dσ x′(σ)

)
= L̄th + L̄str , (63)

where we have named L̄str ≡ a xstr/` in the last step, and

L̄th =
2√
3

(∫ zb

1
dz

β̄i√
1− β̄i

∣∣∣∣
zu=1

+
1

Ni

∫ ∞
zb

dz
β̄ie√

1− β̄ie

∣∣∣∣
zu=1

)
, (64)

is equivalent to the separation of a refracted U-shaped string with turning point just over the throat.
The energy ∆Ē associated to the stretched U-shaped string configuration is then

∆Ē = ∆Ēth + Ēstr , (65)

with
Ēstr =

1

a T

∫
dτ dσ

√
−g|r=a =

√
3Ni

(
L̄− L̄th

)
, (66)

where we used that
√
fi(a) = a

√
3/`, and with

∆Ēth = 2

(
Ni

∫ zb

1
dz

1−
√

1− β̄i√
1− β̄i

∣∣∣∣∣
zu=1

+

∫ ∞
zb

dz
1−

√
1− β̄ie√

1− β̄ie

∣∣∣∣∣
zu=1

)
, (67)

equivalent to the energy found for a refracted U-shaped string which almost touches the throat.

We emphasize that these stretched solutions are not an artifact of the thin-shell throat; as we will
see in section 5, analogous configurations appear in smooth wormholes geometries as well. The energy
∆Ē as a function of the endpoints separation L̄ for all physically allowed U-shaped configurations,
including those analyzed in previous sections, is shown in figure 3: exterior U-shaped strings are
plotted in blue, refracted U-shaped strings are represented in light blue, and stretched U-strings are
depicted in purple. The figure on the right is a zoomed version of the plot on the left for the region
where the different configurations share similar separation distance. Disfavored configurations are
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represented with dotted lines; among the U-shaped configurations, strings in the exterior region are
energetically favorable for separations L̄ ≤ L̄s2 ' 0.97, and by increasing the separation from there
on, the stretched U-shaped strings have the lowest area. Nevertheless, the straight string used in
the subtraction regularization is the preferred configuration for L̄ ≥ L̄sc ' 0.76, as can be seen from
the intersection with the horizontal axis in the figure on the left. Despite the fact that the stretched
U-shaped strings are energetically disfavored when compared with those going through the throat,
notice that for such solutions, which explore the deep IR, the energy ∆Ē increases linearly as a
function of the endpoint separation L̄. Specifically, this linearity is characterized by an effective
string tension given by

√
3Ni T0 a2/`2, as obtained in (65) and (66), after restoring dimensionful

quantities.

Figure 3: The energy ∆Ē of a quark-antiquark pair as a function of its separation L̄. The dual
portrayal corresponds to a U-shaped string with both of its endpoints on the same boundary in the
wormhole geometry.

4.2 LR-strings

When studying strings that extend from one side to the other of the wormhole geometry, we con-
sider two different configurations: There are extended strings which traverse the wormhole piercing
the throat’s surface and, on the other hand, in the same fashion as the U-shaped strings discussed
above, there are extended strings which traverse the wormhole but stretched a finite length parallel
to the thin throat. We begin by characterizing the former case which can be parameterized in the
static gauge as

r(σ) =


−(b− a)

√
fe(b)√
fi(b)

(σ + 1) + b σ ∈ (−∞;−1], forMe
L

−(b− a) σ + a σ ∈ [−1;σa=0], forMi
L

(b− a) σ + a σ ∈ [σa=0; 1], forMi
R

(b− a)

√
fe(b)√
fi(b)

(σ − 1) + b σ ∈ [1; +∞), forMe
R

(68)
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These string configurations are refracted once in each bubble at radial coordinate, rL,R = b. The
separation between the endpoints, as measured in the x direction of the Left and Right boundaries,
will be denoted as LLR, and it is calculated analogously as for the U-shaped strings. The normalized
separation for these type of configurations is

L̄LR ≡
a

`

(∫ σ−a

−∞
dσ x′(σ) +

∫ +∞

σ+
a

dσ x′(σ)

)
, (69)

from which LLR = `2 L̄LR/a is obtained. Explicitly, this yields

L̄LR =
2 C̄√

3

(∫ zb

1
dz

ϕ̄i√
1− C̄2 ϕ̄i

+
1

Ni

∫ ∞
zb

dz
ϕ̄ie√

1− C̄2 ϕ̄ie

)
, (70)

where zb = b/a, we have used that f̄i(1) = 3, and the auxiliary functions defined as

ϕ̄i =

(
1

z

)2 3

f̄i(z)
, ϕ̄ie =

(
1

z

)2 3N2
i

f̄e(z)
. (71)

The dimensionless constant C̄ that appears in (70) is the normalized positive integration constant
C, as in (33). This parameter specifies the configurations indicating how much the string bends.
For configurations going through the throat, the possible values of this constant are read from
the radicands in (70), yielding C̄ ∈ [0; 1]. Note that C̄ = 0 corresponds to the straight string,
while C̄ = 1 produces the maximum bending which corresponds to a string with an inflection
point at the throat (the string intersects the throat tangentially). Due to reflection symmetry, the
C̄ = 1 configuration has the same length as the refracted U-shaped string whose turning point
barely touches the throat of the wormhole tangentially. The latter can be checked analytically by
evaluating (56) at zu ≡ ru/a = 1. The energy ∆Ē obtained from this extended strings characterized
by C̄ is given as

∆Ē = 2

(
Ni

∫ zb

1
dz

1−
√

1− C̄2 ϕ̄i√
1− C̄2 ϕ̄i

+

∫ ∞
zb

dz
1−

√
1− C̄2 ϕ̄ie√

1− C̄2 ϕ̄ie

)
. (72)

We can analyze the small endpoints separation behavior of a quark-antiquark pair in different bound-
aries by expanding the above expressions with C̄ � 1, this is

∆Ē = C̄2

(
Ni

∫ zb

1
dz ϕ̄i +

∫ ∞
zb

dz ϕ̄ie

)
+O(C̄3) , (73)

L̄LR = C̄
2√
3Ni

(
Ni

∫ zb

1
dz ϕ̄i +

∫ ∞
zb

dz ϕ̄ie

)
+O(C̄3) . (74)

Combining the latter expansions we obtain

∆Ē ' 1

2
K̄ L̄2

LR , (75)

with

K̄ =
1

2

[
Ni

∫ zb

1

dz

z2N2
i f̄i(z)

+

∫ ∞
zb

dz

z2 f̄e(z)

]−1
' 0.88 , (76)

which exhibits a spring-like interaction for a pair of charges in different boundaries, as opposed to the
Coulomb potential found for small separations of the quark-antiquark pair in the same gauge theory.
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When restoring dimensionful quantities, we have that for a pair separated a distance LLR � `2/a,
the energy ∆E = 1

2 K L2
LR is given by a spring-like effective constant K = K̄ T0 a3/`4 ∼

√
λ a3/`6.

The energy increases with smaller ` and with greater a, consistently with bringing the charges closer
to each other.

The remaining physically allowed configurations correspond to extended LR-strings stretching
along the thin throat of the wormhole. To obtain such configurations, we pick half of a U-shaped
string from each side of the wormhole with C̄ = 1 (with the correct orientation), and apply the same
procedure described for U-shaped strings to join them with a finite-length stretched string segment
at r = a. Then, in virtue of the symmetry across the throat, the separation and associated energy
are the same as the ones calculated previously for the stretched U-shaped strings; these are given in
(63) and (65). In this way, stretched LR-configurations also show the linear dependence

∆Ē =
√

3Ni (L̄LR − L̄th) + ∆Ēth , (77)

for L̄LR ≥ L̄th, with dimensionful effective string tension given by
√

3Ni T0 a2/`2 ∼
√
λ a2/`4. The

dioptrics of strings configurations are displayed in figure 4, where we represented some examples in
the (r/a,x)-plane. Figure 4(a) shows exterior U-shaped strings (in blue), refracted U-shaped strings
(in light blue) and stretched U-shaped strings (in purple). Figure 4(b) shows extended LR-strings
piercing the throat with bending constants C̄ = 0, 0.5, 1 (in red), and a stretched LR-string (in
purple).

(a) U-shaped strings. (b) LR-strings.

Figure 4: String dioptrics in the thin-shell wormhole.

The results involving the complete space of solutions are summarized in figure 5 with the plot of
∆Ē as a function of the endpoints separation L̄: exterior and refracted U-shaped configurations are
represented in blue and light blue, respectively; LR-string configurations piercing the throat are in
red, and stretched configurations are in purple. We observe there is a critical length L̄sc for these
configurations where a transition takes place: For separations L̄ < L̄sc, quark-antiquark pairs on
the same boundary theory are energetically favorable, yielding U-shaped string configurations. If
a second pair is present on the other boundary, charges in the same gauge theory can be screened
by transitioning to LR-configurations connecting different boundaries. In other words, here we have
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managed to reproduce the same qualitative features observed in [22, 23], but for the case of thin-
shell wormholes with flat constant-r hypersurfaces, namely for the case in which the gauge theory
is formulated on R1,3.

Figure 5: The energy ∆Ē of a quark-antiquark pair as a function of its separation L̄. Configurations
within the same boundary, dual to U-shaped strings, are plotted in blue, light blue and purple.
Left-Right configurations, dual to strings which traverse the throat, are plotted in red and purple.

5 Smooth wormholes

Before we conclude, let us compare our results with those obtained in [23] where they considered
string probes in smooth wormholes that connect two locally AdS5 asymptotic regions. Such geome-
tries were obtained in [28] and are also solutions of 5D EGB theory at the CS point; the metric is
given by

ds2 = `2
(
− cosh2 (ρ− ρ0) dt2 + dρ2 + cosh2(ρ) dΣ2

3

)
, (78)

where dΣ2
3 now corresponds to a 3-dimensional space of negative constant curvature, locally equiva-

lent to Σ3 = S1×H2, ρ ∈ R, and where ρ0 is an arbitrary constant that parameterizes the asymmetry
of the wormhole: the configuration is Z2-symmetric for ρ0 = 0.

Following the same procedure described for strings in the thin-shell wormhole, we can calculate
∆Ē in these backgrounds as a function of L̄. This is shown in figure 6. For convenience, we have
chosen ρ0 = 0 in (78).
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Figure 6: The energy ∆Ē of a quark-antiquark pair as a function of its separation L̄. Configu-
rations within the same boundary, dual to U-shaped strings, are plotted in blue, and Left-Right
configurations, dual to strings which traverse the throat, are plotted in red.

Qualitatively similar behavior for string probes as those studied in this letter has been observed
in other AdS wormhole geometries. For example, in [52], holographic entanglement entropy [53] was
studied in a spacetime described by

ds2 = `2
[
(1 + ρ2)

(
−dt2 + d~x · d~x

)
+

dρ2

1 + ρ2

]
. (79)

It is not difficult to see that, in the particular case when the entangling region on the boundary is
the infinite stripe (equivalent to the rectangular Wilson loop that we have considered), the behavior
of the holographic entanglement entropy is similar to that depicted in figure 6: For small L̄, the
behavior is the same as that for the pure AdS space, and for large L̄ the result shows that it
increases linearly. Our thin-shell wormhole solutions exhibit a similar tendency, with the difference
being that cusp appear in the phase space due to the refraction effects produced when the strings
go through the thin-shells. It is worth mentioning that, as in [52], the wormhole geometry (79) was
also considered as an interesting scenario to study holographic entanglement entropy [53, 54, 55].
Similar calculations can be performed in the thin-shell higher-curvature wormholes we constructed
in this paper [56, 57, 58]. This is matter of further investigation.
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