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• The RSA problem of straight rigid rods on a simple cubic lattice is studied.
• A new procedure to calculate jamming coverage θj is presented.
• The behavior of the jamming coverage as a function of the rod size is obtained.
• The value of θj obtained for dimers corrects previous calculations in the literature.
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a b s t r a c t

Random sequential adsorption of straight rigid rods of length k (k-mers) on a simple cu-
bic lattice has been studied by numerical simulations and finite-size scaling analysis. The
k-mers were irreversibly and isotropically deposited into the lattice. The calculations were
performed by using a new theoretical scheme, whose accuracy was verified by compari-
son with rigorous analytical data. The results, obtained for k ranging from 2 to 64, revealed
that (i) the jamming coverage for dimers (k = 2) is θj = 0.918388(16). Our result cor-
rects the previously reported value of θj = 0.799(2) (Tarasevich and Cherkasova, 2007);
(ii) θj exhibits a decreasing function when it is plotted in terms of the k-mer size, being
θj(∞) = 0.4045(19) the value of the limit coverage for large k’s; and (iii) the ratio between
percolation threshold and jamming coverage shows a non-universal behavior, monotoni-
cally decreasing to zero with increasing k.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The study of systems of hard non-spherical particles is one of the central problems in statistical mechanics and has been
attracting a great deal of interest since long ago. In a seminal contribution to this subject, Onsager [1] predicted that rod-
like particles interacting with only excluded-volume interaction can lead to long-range orientational (nematic) order. This
nematic phase, characterized by a big domain of parallel molecules, is separated from an isotropic state by a phase transition
occurring at a finite critical density. Numerous model systems of anisotropic objects, ranging from inorganic to organic and
also biological particles, were analyzed by using the Onsager theory. An extensive overview of this field can be found in the
excellent reviews of Refs. [2,3].
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The long-range orientational order disappears in the case of irreversible adsorption (no desorption), where the
distribution of adsorbed objects is different from that obtained at equilibrium. Thus, for the equilibrium problem, a nematic
phase is observed at intermediate density, and a second phase transition (from a nematic order to a non-nematic state)
occurs at high density [4–8]. On the other hand, the final state generated by irreversible adsorption is a disordered state
(known as jamming state), in which no more objects can be deposited due to the absence of free space of appropriate size
and shape. The jamming state has infinite memory of the process and the orientational order is purely local [9–11].

The phenomenon of jamming plays an important role in numerous systemswhere the deposition of objects is irreversible
over time scales of physical interest [12]. The random sequential adsorption (RSA), introduced by Feder [13], has served as
a paradigm for modeling irreversible deposition processes. The main features of the RSA model are: (1) the objects are put
on randomly chosen sites, (2) the adsorption is irreversible and (3) at any time only one object is being adsorbed, so that
the process takes place sequentially. In this theoretical frame, anisotropic particles of different shapes and sizes have been
studied: linear k-mers (particles occupying k adjacent lattice sites) [14–18], flexible polymers [19,20], T-shaped objects and
crosses [21], squares [22–25], disks [26], regular and star polygons [27], etc. In all cases, the limiting or jamming coverage,
θj, strongly depends on the shape and size of the depositing particles.

In the case of lattice models of straight rigid rods (or linear k-mers), which is the topic of this paper, the RSA problem has
been exactly solved for one-dimensional (1D) substrates. In this limit, θ(t) can be written as [14],

θ(t) = k
 t

0
exp


−u − 2

k−1
j=1


1 − e−ju

j


du. (1)

From Eq. (1), the dependence on k of the jamming coverage can be obtained. Note that θ(t) represents the fraction of lattice
sites covered at time t by the deposited objects and, consequently, θ(t = ∞) = θj. For k → ∞, the jamming threshold
tends to Rényi’s Parking Constant θj → cR ≈ 0.7475979202 [28].

In two and three dimensions, the inherent complexity of the system still represents amajor difficulty to the development
of accurate analytical solutions, and computer simulations appear as a very important tool for studying this subject. In this
direction, Bonnier et al. investigated the deposition of linear k-mers (with k ranging between2 and512 on a two-dimensional
(2D) square lattice [15]). The authors found that the jamming concentration monotonically decreases and tends to 0.660(2)
as the length of the rods increases.

Vandewalle et al. studied the percolation and jamming phenomena for straight rigid rods of size k on 2D square
lattices [16] and found that, for values of k between 2 and 10, the ratio θp/θj (being θp the percolation threshold) remains
constant θp/θj ≈ 0.62, regardless of the length of the particle. Based on this finding, the authors suggested that both critical
phenomena (percolation and jamming) are intimately related.

Kondrat and Pȩkalski [17] extended the study of Ref. [16] to larger lattices (lattice size L = 30, 100, 300, 1000 and 2500)
and longer objects (1 ≤ k ≤ 2000). The results obtained revealed that: (1) as reported in Ref. [15], the jamming coverage
decreasesmonotonically approaching the asymptotic value of θj = 0.66(1) for large values of k; (2) the percolation threshold
is a nonmonotonic function of the size k: it decreases for small rod sizes, goes through aminimumaround k = 13, and finally
increases for large segments; and (3) the ratio of the two thresholds θp/θj has amore complex behavior: after initial growth,
it stabilizes between k = 3 and k = 7, and then it grows again.

Recently, Lebovka et al. studied an anisotropic RSA of straight rigid rods on 2D square lattices [18]. In this model, the
vertical and horizontal orientations occur with different probabilities, and the degree of anisotropy of the system can be
characterized by an order parameter measuring the difference (normalized) between the number of line segments oriented
in the vertical direction and the number of line segments oriented in the horizontal direction. The authors investigated the
effect of k-mer alignment on the jamming properties and found important differences with respect to the isotropic case.
In the limit of isotropic systems (order parameter equal to zero), the results obtained by Lebovka et al. are in excellent
agreement with previous simulation data in Ref. [17].

The RSA problem becomesmore difficult to solve when the objects are deposited on three-dimensional (3D) lattices, and
only very moderate progress has been reported so far. In the line of present work, Tarasevich and Cherkasova examined the
percolation and jamming properties of dimers (straight rigid rods with k = 2) on 3D simple cubic lattices and found that
θp = 0.2555(1), θj = 0.799(2) and θp/θj ≈ 0.32 [29]. This value of θp/θj differs from the corresponding value obtained for
square lattices and small values of k (2 ≤ k ≤ 10), θp/θj ≈ 0.62 [16].

In the present paper, the study of Tarasevich and Cherkasova is extended to larger k-mers (2 ≤ k ≤ 64). Using compu-
tational simulations and a new method introduced here, the jamming properties of straight rigid rods on 3D simple cubic
lattices are studied. The method is based on the calculation of the probability WL(θ) that a lattice composed of L × L × L
elements reaches a coverage θ . As it will be discussed in detail in the next section, the intersection point of the curvesWL(θ)
for different values of L gives an accurate estimation of the jamming threshold in the infinite system.

It is quite obvious that the model considered here is highly idealized and is not meant to reproduce a particular exper-
imentally studied system. However the objectives of this work are (1) to introduce a new procedure to calculate jamming
properties, which can be widely applied in RSA problems; (2) to evaluate the accuracy and applicability of the new tech-
nique; (3) to determine, for the first time, the dependence of the jamming coverage on the size of the deposited k-mers for
3D cubic lattices; (4) to improve previous calculations of θj for dimers (k = 2) [29]; and (5) to stimulate the development of
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more sophisticated models which can be able to reproduce concrete experimental systems. With respect to the last point,
the 3D adsorption of k-mers layer by layer could be an interesting topic for further research.

The outline of the paper is as follows. In Section 2 we describe the deposition model, along with the simulation scheme
and the procedure used to calculate the jamming coverage. In Section 3 we present the results and discussion of the
simulations. Finally, the general conclusions are given in Section 4.

2. Model, basic definitions and simulation scheme

The following scheme is usually called standard model of deposition or RSA. Let us consider the substrate is represented
by a three-dimensional simple cubic lattice of M = L × L × L sites and periodic boundary conditions. In the filling process,
straight rigid rods of length k (with k ≥ 2) are deposited randomly, sequentially, and irreversibly on an initially empty
lattice. The procedure of deposition is as follows: (i) one of the three possible lattice directions (x, y, z) and a starting site are
randomly chosen (random and isotropic deposition); (ii) if, beginning at the chosen site, there are k consecutive empty sites,
then a k-mer is deposited on those sites. Otherwise, the attempt is rejected. When N rods are deposited, the concentration
is θ = kN/M .

Due to the blocking of the lattice by the already randomly deposited dimers, the limiting or jamming coverage, θj ≡

θ(t = ∞) is less than that corresponding to the close packing (θj < 1). Note that θ(t) represents the fraction of lattice sites
covered at time t by the deposited objects. Consequently, θ ranges from 0 to θj for objects occupying more than one site,
and the jamming coverage depends on the size of the deposited object [9,14–18].

It is well known that it is a quite difficult matter to analytically determine the value of the jamming coverage for a given
lattice. For some special types of lattices, geometrical considerations enable to derive their jamming thresholds exactly [14].
For systems which do not present such a topological advantage, jamming properties have to be estimated numerically by
means of computer simulations.

In order to calculate the jamming thresholds, we introduce the probability WL(θ) that a lattice composed of L × L × L
elements reaches a coverage θ . In the simulations, the procedure to determineWL(θ) consists of the following steps: (a) the
construction of theM = L×L×L lattice (initially empty) and (b) the deposition of particles on the lattice up to the jamming
limit θj. In the latter step, the quantitymi(θ) is calculated as

mi(θ) =


1 for θ ≤ θj
0 for θ > θj.

(2)

n runs of such two steps (a)–(b) are carried out for obtaining the number m(θ) of them for which a lattice reaches a
coverage θ ,

m(θ) =

n
i=1

mi(θ). (3)

Then, WL(θ) = m(θ)/n is defined and the procedure is repeated for different values of lattice sizes. For infinite systems
(L → ∞), WL(θ) is a step function, being 1 for θ ≤ θj and 0 for θ > θj. For finite values of L, WL(θ) varies continuously
between 1 and 0, with a sharp fall around θj. In conclusion, WL(θ) appears as a good parameter evidencing the jamming
threshold and its definition is computationally convenient.

Using a systemof fully aligned rods deposited on 3D cubic lattices as an example of application,1 we show in the following
how to determine the corresponding jamming coverage from the probabilitiesWL(θ). Thismodel of fully aligned rods can be
exactly solved [14], which allows us not only to illustrate the use of the method introduced here, but also to test its validity
and accuracy by comparing our simulation results with those of Ref. [14]. Five k-mer sizes were chosen for the comparison
k(=2, 3, 4, 5, 6). Then, a set of n = 105 runs were carried out for each pair k and L/k(=18, 24, 30, 36, 42).

In Fig. 1, the probabilitiesWL(θ) are presented for a system of aligned dimers (k = 2) and several values of L as indicated.
As it can be observed from the figure, curves for different lattice sizes cross each other in a unique point, which is located at
a very well defined value in the θ-axes determining the jamming coverage for each k. The procedure in Fig. 1 was repeated
for k(=3, 4, 5, 6) (data do not shown here for reasons of space) and the results are collected in the second column of Table 1.

The high accuracy of the simulation data can be asserted by comparison with exact results for θj presented in Ref. [14]. In
fact, for a fully aligned system, as studied here, the k-mers are deposited only along an axis of the lattice, and the jamming
problem reduces to the 1D case. In this limit, θj can be calculated from Eq. (1) [14]. The results are shown in the first column
of Table 1. A remarkable agreement is obtained between theoretical and simulation data, validating the applicability the
method introduced here to calculate jamming thresholds.

In the next section, we will analyze the dependence of the jamming coverage on the size of the deposited objects for a
system of straight rigid rods on a simple cubic lattice.

1 In this case, the k-mers are deposited along one of the directions of the lattice, forming a nematic phase.
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Fig. 1. Curves of WL vs. θ for fully aligned dimers on simple cubic lattices of different sizes as indicated. From their intersections one obtained θj . In this
case, θj = 0.864656(18).

Table 1
Simulation and theoretical values of θj (as indicated in the text) for fully
aligned rods on a simple cubic lattice and k ranging from 2 to 6.

k Aligned rods
θj (Eq. (1)) θj (WL ’s)

2 0.864665 0.864656(18)
3 0.823653 0.823646(16)
4 0.803893 0.803892(12)
5 0.792276 0.792284(15)
6 0.784630 0.784637(16)

3. Simulation results: random sequential adsorption of straight rigid rods on a simple cubic lattice

The procedure described in Section 2was applied to calculate the jamming coverage corresponding to a systemof straight
rigid rods on a simple cubic lattice. k-mers of length k = 2 . . . 64 were considered, and the finite-size study was performed
for lattices ranging between (36 × 36 × 36) and (1152 × 1152 × 1152) sites. In addition, n = 105 runs were carried out
for each pair k and L. These values of the parameters allowed us to obtain very accurate measurements of the jamming
thresholds, with errors less than 0.008% in all cases.

In Fig. 2, the probabilities WL(θ) are shown for two different values of k (k = 2 and k = 5 as indicated) and L/k(=18,
24, 30, 36, 42). From a simple inspection of the figure (and from data do not shown here for a sake of clarity) it is observed
that: (a) for each k, the curves cross each other in a unique pointW ∗

L ; (b) those points do notmodify their numerical value for
the different k used (ranged between k = 2 to k = 64). In the cases of Fig. 2,W ∗

L = 0.509(9) for k = 2, andW ∗

L = 0.505(9)
for k = 5; (c) those points are located at very well defined values in the θ-axes determining the jamming threshold for each
k, being θj = 0.918388(16) for k = 2, and θj = 0.736061(12) for k = 5; and (d) θj decreases for increasing k-mer sizes.

In the case of k = 2, the value of θj obtained in Fig. 2 corrects the previously reported value of θj = 0.799(2) [29]. Due to
themethodology used in this contribution, our estimate of θj is expected to bemore accurate than that reported previously.2

The case of dimers was also studied by using an independent algorithm developed to measure the coverage as a function
of time θ(t). Fig. 3 shows θ(t) for dimers adsorbed on a simple cubic lattice with L = 320. The curve in the figure was
averaged over 100000 independent runs. As is standard in the literature [10], the dimensionless time variable t was defined
in terms of the number of deposition attempts per lattice site. In this case, for the M-site lattice, the time step 1t = 1
corresponds to 0.1M deposition attempts. The jamming limit is reached when it is not possible to adsorb any more dimers
on the surface, this point is reached for t ≈ 102. A typical jamming configuration in a 16 × 16 × 16 system is shown in the
inset of Fig. 3, different colors represent different directions. The value of θj obtained in Fig. 3, θj = 0.9184(1), coincides,
within numerical errors, with the value calculated from the crossing of the probabilities WL(θ). This leads to independent
control and consistency check of the numerical value of the threshold θj.

2 After publication of Ref. [29], the authors found that the method of filling used in Ref. [29] produces a slightly anisotropic configurations. This effect
would be the reason for the observed differences [30].
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Fig. 2. Curves of WL as a function of the density θ for two values of k-mer size (k = 2, curves on the right, and k = 5, curves on the left) and lattice
sizes ranging between L/k = 18 and L/k = 42. Horizontal dashed line shows the W ∗

L point. Vertical dashed lines denote the jamming thresholds in the
thermodynamic limit.

Fig. 3. Numerical values of coverage θ as a function of time t for dimers adsorbed on a simple cubic lattice with L = 320. Inset: Typical jamming
configuration corresponding to dimers adsorbed on a (16 × 16 × 16) lattice. Different colors represent different directions. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

The procedure of Fig. 2 was repeated for k ranging between 2 and 64, and the results are shown in Fig. 4 (solid circles) and
second column of Table 2. The points corresponding to k =32, 48 and 64 were calculated for three relatively small values
of L/k (12, 18, 24). The jamming coverage decreases upon increasing k. At the beginning, for small values of k, the curve
rapidly decreases. However, it flatten out for larger values of k and finally asymptotically converges toward a definite value
as k → ∞.

Following a similar scheme to that proposed in Ref. [15] for straight rigid rods on 2D square lattices, the curve of θj vs. k
was fitted to a function

θj(k) = A1 +
A2

k
+

A3

k2
(k ≥ 6), (4)

being A1 = θj(∞) = 0.4045(19) the result for the limit coverage of a simple cubic lattice by infinitely long k-mers. In
addition, A2 = 2.63(5) and A3 = −5.2(2). As shown in the upper inset of Fig. 4, the plot of θj as a function of 1/k allows a
better visualization of the limit value θj(∞).
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Fig. 4. The thresholds θj (solid circles) and θp (open circles) as a function of k. The values of θp correspond to data reported in Ref. [31]. Lower inset: Ratio
θp/θj as a function of k. Upper inset: θj as a function of 1/k. The solid lines represent the best fits of the numerical values as indicated in the text.

Table 2
Values of θj , θp and θp/θj (as indicated in the text) for isotropic rods on a simple
cubic lattice and k ranging from 2 to 64.

k Isotropic rods
θj (WL ’s) θp Ref. [31] θp/θj

2 0.918388(16) 0.2555(1) [29] 0.2777
3 0.838860(14) 0.2129(1) 0.2538
4 0.780344(16) 0.1800(1) 0.2307
5 0.736061(12) 0.1555(1) 0.2113
6 0.701346(13) 0.1364(1) 0.1945
7 0.673355(14) 0.1218(1) 0.1809
8 0.650282(11) 0.1089(1) 0.1675
9 0.630901(12) 0.0990(1) 0.1569

10 0.614384(15) 0.0901(1) 0.1467
11 0.600130(10) 0.0831(1) 0.1385
12 0.587696(11) 0.0772(1) 0.1314
13 0.576780(14) 0.0714(1) 0.1238
14 0.567044(11) 0.0661(1) 0.1164
15 0.558360(13) 0.0632(1) 0.1128
20 0.525676(18) 0.0478(1) 0.0909
24 0.507750(18) 0.0411(1) 0.0807
32 0.483360(34) 0.0299(1) 0.0620
48 0.456071(32) 0.0191(1) 0.0417
64 0.440655(34) 0.0143(1) 0.0318

Fig. 4 includes also the behavior of the percolation threshold θp as a function of k for the system studied here (open circles).
The corresponding numerical values, obtained from Ref. [31], are tabulated in the third column of Table 2. The percolation
threshold is a decreasing function of k. Combining the results of θj and θp, the ratio θp/θj was calculated (see lower inset
in Fig. 4 and fourth column of Table 2). As for 2D square lattices, the ratio between percolation and jamming thresholds
exhibits a non-universal behavior. In this case, θp/θj decreases in all range of k and can be fitted to a function

θp/θj = B1 +
B2

k
+

B3

k2
(k ≥ 6), (5)

where B1 ≈ 0, B2 = 1.87(5) and B3 = −4.5(3) and, consequently, θp/θj → 0 as k → ∞. This result is consistent with the
behavior observed for θp and large values of k [θp(k → ∞) ≈ 0] [31].

4. Conclusions

Random sequential adsorption of straight rigid k-mers deposited on a simple cubic lattice has been studied by numerical
simulations and finite-size analysis. Several conclusions can be drawn from the present work.
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• A new theoretical scheme to determine jamming thresholds was introduced here. The method relies on the definition
of the probability WL(θ) that a lattice composed of L × L × L elements reaches a coverage θ . The value of θj can be
obtained from the crossing point of the curves of WL for different lattice sizes. Comparisons with rigorous analytical
results demonstrated the method’s accuracy. Further applications to more complex RSA problems, such as continuum
adsorption, deposition objects of different sizes and shapes, and multilayer adsorption, would in principle be feasible. In
this sense, the 3D adsorption of k-mers layer by layer could be an interesting topic for future research.

• For the first time, the jamming coverage dependence on the k-mer size has been reported. On the basis of the behavior
of θj vs. k in the range 2 ≤ k ≤ 64, and the best fit to this curve, the expression θj(k) = A1 + A2/k + A3/k2 was found,
being A1 = θj(∞) = 0.4045(19) the result for the limit coverage of a simple cubic lattice by infinitely long k-mers. In
addition, A2 = 2.63(5) and A3 = −5.2(2).

• In the case of dimers (k = 2), the value of θj = 0.918388(16) obtained in the present paper corrects the value θj =

0.799(2) calculated by Tarasevich andCherkasova [29]. This important findingwas corroborated by using an independent
algorithm developed to measure the coverage as a function of time θ(t).

• Finally, and based on previous investigation fromour group [31], the possible relationship between percolation threshold
and jamming coverage was examined. The results showed a non-universal behavior for the ratio θp/θj, which decreases
upon increasing k and tends to 0 for large values of k.
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