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Abstract. We provide a general framework for self-interacting warm dark matter (WDM)
in cosmological perturbations, by deriving from first principles a Boltzmann hierarchy which
retains certain independence from a particular interaction Lagrangian. We consider elastic
interactions among the massive particles, and obtain a hierarchy which is more general than
the ones usually obtained for non-relativistic (as for cold DM) or for ultra-relativistic (as
for neutrinos) approximations. The more general momentum-dependent kernel integrals in
the Boltzmann collision terms, are explicitly calculated for different field-mediator models,
including examples of a scalar field or a massive vector field. As an application, we study the
evolution of the interaction rate per particle under the relaxation time approximation, and
assess when a given self-interaction is relevant in comparison with the Hubble expansion rate.
Our framework aims to be a useful tool to evaluate DM self-interaction effects in the linear
power spectrum, with the consequent imprints on non-linear scales of structure formation.
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1 Introduction

In the standard cosmological paradigm, ACDM, Dark Matter (DM) has long been a neces-
sary ingredient in the Big Bang model of the universe and in understanding its evolution
since the early stages. While the evidence for its existence is implied by its gravitational
effects in astrophysical, galactic and cosmological structures; understanding the nature and
composition of this species is still an elusive subject [1-4]. Several attempts have been
made to explain this phenomenon by macroscopic objects, yet a microscopic origin of the
DM phenomenon by a new particle species remains as the most plausible hypothesis [3-7].
On the early stages of DM research, active neutrinos appeared as promising candidates for
this particle species [8, 9]. However, neutrinos are “hot” Dark Matter (HDM) with a free-
streaming length which erases structures up to large scales [10], while numerical simulations
have shown that such “top-down” structure formation is incompatible with clustering con-
straints [11]. Cosmological data favored the adoption of the ACDM paradigm [12]: in the
standard scenario, DM is assumed to be produced in a thermal distribution and modeled as
collisionless after it decouples from the other species. The effective decoupling is assumed to
occur at a temperature smaller than the DM mass so that the distribution corresponds to
non-relativistic particles. The traditional candidates are weakly interacting massive particles
(WIMPS) which were in thermal equilibrium with the species in the cosmic plasma via weak
interactions [13]. In this scenario, galaxies form in a “bottom-up” fashion: small scales (fa-
vored by the small velocity dispersion of CDM particles) become non-linear and collapse first,
and their merging and accretion leads to formation of structures on larger scales. On these
scales, data of the structure of the universe is consistent with CDM driving the formation
of galaxies and clusters, however, no viable fundamental particle within the standard model
(SM) fulfills these properties [3, 14].

The standing ACDM paradigm, is in remarkable agreement with large scale cosmo-
logical observations (see for instance [15-18]) and it is also compatible with an increasing
amount of observed galaxy properties (e.g. [19] and [20]). However, it has been noted that
in this paradigm it is challenging to describe some observables on smaller scales, such as the
“missing” dark matter sub-halos or the so called core-cusp discrepancy [21]. High resolution
cosmological simulations of average-sized halos in ACDM predicts [22] an overproduction of
small-scale structures, significantly larger that the observed number of small satellite galaxies
in the Local Group [23, 24]. Moreover, N-body simulations of CDM-only predict a singu-
lar density profile for virialized halos [25, 26], while observational evidence points to dwarf
spheroidal galaxies (dSphs) having smooth cores in their central regions [27, 28]. Some other
tensions have been raised between CDM-only predictions and observations (see for example
a review in [21]).

Among the earliest approaches to alleviate/resolve those conflicts is to consider two
DM components, one “cold” and one “hot” (C+HDM) [29, 30]. More recent models feature
only warm dark matter particles (WDM) [31], meaning that they are semi-relativistic during
the earliest stages of structure formation with non-negligible free-streaming particle length.
WDM models feature an intermediate velocity dispersion between HDM and CDM that
results in a suppression of structures at small scales due to free-streaming [32]. If this free
streaming scale today is smaller than the size of galaxy clusters, it can provide a solution
to the missing satellites problem [27, 33-35]. However, thermally produced WDM suffers
from the so called catch-22 problem when studied within N-body simulations [36, 37]. Such
WDM-only simulations either show unrealistic core-sizes for particle masses above the keV



range, or they acquire the right halo sizes though for sub-keV masses, in direct conflict with
phase-space constraints [38]. It is important to remark that this may be due to shortcomings
on the simulations themselves, and could be alleviated by including baryon feedback [39]. A
particular, promising realization of these WDM models has been the minimal extension of
the SM by intermediate-mass sterile neutrinos in the O(keV) range known as ¥MSM (see,
for example, [40] for a review).

From the astrophysical point of view, fermion masses in this range and up to (0.1 MeV)
seem to also be favored by recent elementary particle based DM halo studies [35, 41], where
self-gravitating equilibrium systems were shown to be both in excellent agreement with ro-
tation curve observations while thermodynamically stable (coarse-grained entropy maxima)
within cosmological timescales [42]. From current cosmological data it is possible to constrain
these models analizing observable properties, such as from Lyman-« forest and sub-structure
observations in the Local Group. Comprehensive reviews of the constraints for sterile neu-
trinos can be found in e.g. [43, 44] .

Another compelling alternative to colissionless CDM, apart from WDM, is to consider
interactions in CDM. This consideration relaxes the assumption that CDM interacts only
gravitationally after early decoupling, and includes interactions either between DM and SM
particles or additional hidden particles, or among DM particles themselves. These later
models are denominated as “self-interacting” DM models (SIDM) (see [77, 79] for reviews).
Born out of N-body simulations [46], SIDM halos could explain the cores of galaxies when
a 2 <> 2 interaction is assumed, with cross-sections constrained to be roughly of o/m ~
0.5 — 10 ecm?/g [47, 48, 77]. However, certain tensions have been raised about the upper
limits in the self-interaction cross section, based on a more refined analysis of the Bullet
Cluster [49]. This has motivated the consideration of velocity dependent cross sections (i.e.
o as a function of the rms velocity of DM particles) which are sensitive to the baryonic
environment [50].

Most SIDM studies assume a cosmological evolution identical to CDM on large scales,
and that the linear matter power spectrum remains unchanged. However, many models
include other ingredients that can produce small scale damping [51-54]. A good example
of the latter are the DM + Dark Radiation (DR) models considered by the ETHOS col-
laboration [51], who created a framework for structure formation that encompasses several
microphysical interaction models via an effective theory. Interestingly, interacting scenar-
ios combining DM+DR interactions with SIDM effects, are able to generate a truncation
in the power spectrum while producing shallower inner density profiles [55], alleviating the
core-cusp and missing satellite problems altogether.

So far, we have mentioned both WDM and SIDM as possible solutions to the tensions
between ACDM and observations on small scales, and discussed about their possible real-
izations. Here, we take both approaches into consideration. Previous studies have shown
that the inclusion of self-interactions among WDM particles in quasi-relaxed DM halos can
alleviate some constraints, as shown in [56, 79] for the case of self-interacting right handed
neutrinos. Also in [56] it is discussed the possibility of novel sterile neutrino production mech-
anisms through heavy mediators, while further effects of including a scalar self-interaction in
the vMSM active-sterile mixing production scenarios, were considered in [57].

We focus here on the description and treatment of the linear theory of cosmological per-
turbations for self-interacting WDM (SI-WDM) scenarios, and provide explicit expressions
for the Boltzmann hierarchies for different self-interacting sterile neutrino DM scenarios, with
its corresponding beyond SM field mediators. Efforts on calculating the evolution of these



perturbations either in traditional CDM or WDM scenarios (see [58] for a summary), have
been outlined either via semi-analytic methods such as in [59, 60], or via numerical integra-
tion of the coupled Einstein-Boltzmann system [58, 61-63]. For the latter, freely available
numerical routines such as CAMB [62] or CLASS [63] exist as general purpose tools, or more
specialized ones as the (CDM-based) ETHOS code [51] for interacting DM+DR models. An
earlier work [64] pioneered the inclusion of SI-WDM on numerical Einstein-Boltzmann solvers
(though under important simplifications, see also [65]), finding an enhanced suppression of
power in small scales when compared to WDM only evolution.

The objective of this work is to contribute to the findings of these early realizations
of SI-WDM structure formation. To this aim we provide here a systematic and accurate
treatment of collisions in WDM models extending [64], and at the same time retaining cer-
tain independence from a particular Lagrangian self-interacting model. Our procedure is
motivated by the tools provided by the Boltzmann hierarchies for interactive (active) neutri-
nos [66-68]. They are used and generalized to perform an accurate framework for the collision
term in the linearized Boltzmann equation for the SI-WDM species, and derive an explicit
and analytical expression for the equations of motion. Motivated by [51], we do not commit
to a particular form of the scattering amplitude, but provide a general parametrization in
terms of model dependent coefficients that naturally includes several interaction mediators
such as a massive scalar (as seen in [57, 67, 68]) or a vector field (as proposed from first
principles in [56, 79]). The general results here presented are aimed (but not limited) to
further evaluate the SI-WDM effects in the matter power spectrum, CMB anisotropies, halo
models and production mechanisms, and may also be useful beyond the study of DM such
as the study of active neutrino physics and their anomalies [68].

In order to set our notation and conventions, in what remains of this section we briefly
introduce the cosmological perturbation theory and Einstein-Boltzmann equations.

1.1 Cosmological perturbation theory

In cosmology, the evolution of perturbations to the isotropic homogeneous background, which
are originated through a primordial power spectrum and will eventually collapse to form the
myriad of observed structures today, is handled through the Einstein equations. There, the
universal spacetime metric is split into a background Friedmann-Robertson-Walker (FRW)
metric and a small perturbation to said metric. The Einstein equations govern the evolution
of this perturbation with the perturbed energy-momentum tensors acting as sources. Several
choices exist in order to describe these metric perturbations: a “gauge freedom” in the
equations. Here, we will use the so called synchronous gauge, where the line element is

defined as
ds® = CLQ(T) {*d7'2 + (513 + hw)d$ld$J} , (11)

where the scalar mode of the perturbation h;; can be described in terms of two fields h(E, T)
and n(k,7) as

(.. .1 . L
hij(f, 7-) = /dSkezk.z {kﬁlk‘jh(k‘,T) + <k‘z § 3(3‘@]) 617(](5,7')} , k=kk. (12)

A discussion on gauge freedom and gauge modes in the context of perturbations to the FRW
metric can be found in [58, 69, 70]. Here, we quote the final form of the Einstein equations



in the synchronous gauge, in Fourier space:
2 la; 2 ¢0
k*n — =—h =4nGa*dT",,
2a

k%) = 4nGa*(p + P),

. Q- ' (1.3)
h+2-h— 2k*n = —8nGa?0T",
hy + 6if + 2% (h n 61’7) — 9%k = —247Ga®(p + P)o,
where .
(ﬁ + ﬁ)@ = ’ikj(STOj , (ﬁ + F)O‘ = — <l{?zkfj — 351]> Eij , (14)

with X the traceless component of T;, p and P the background density and pressure respec-
tively; and the metric perturbation functions h, 7 in Synchronous gauge are defined as in
eq. (1.2).

1.2 The relativistic Boltzmann equation

In order to close the system of equations in (1.3) without the assumption of a perfect fluid, the
perturbations in a given energy component can be obtained in a more general way by making
use of the Boltzmann equation, which governs the evolution of the phase space distribution
function (DF). As a relativistic invariant, this function is used to describe the number of
particles of a given fluid in a differential unit of volume:

dN = f(«*, P;, 7)dx!dz*da®dPid PydPs (1.5)

where ! are the spatial coordinates and P’ refers to the spatial components of the conjugate
momentum, defined as P = (E/a, a[d;; + hij/2]p’) in terms of the 4-momentum p’ measured
by an observer comoving with the FLRW coordinates. In practice, it is convenient to describe
the perturbations to this function as a function of comoving proper momentum ¢; = a(7)p;
(with p; measured in a comoving frame) as:

f(xiﬂpjﬂ-) :fO(Q7T)+F(1"i’q7nj7T)7 (16)

where ¢ = ¢gn is the comoving momentum, and n; its j direction component and fy is the
background DF. The phase space density evolves according to the relativistic Boltzmann
equation. In terms of these new variables, this is:

aﬁ_ Y e ﬁaif— 87f
R R <3T>col’ (1.7)

where Flﬁ is the general relativistic metric connection and h;; the metric perturbation in
the synchronous gauge (see [58] for details) . The right hand side of the equation involves
the terms due to collisions (referred here as the collision term), whose form depends on
the type of particle interactions involved. In the case of a general-relativistic formulation
of perturbations, the derivatives with respect to the coordinates df /dz® and df /dq depend
explicitly on the way one chooses to express the perturbed metric: the so called “gauge
choice”. We refer the reader to [69] for a comprehensive explanation on perturbed FRW



metrics and the different gauge choices, and [58] for a “canonical” application to most of
the cosmological fluids in more than one gauge. In k-space, the equation that dictates the
evolution of the perturbation to the phase space distribution F' can be obtained from (1.7)
and (1.6), to first order in F as:

OF gk, . dfo[. ht6q. o] (of\"
aT+z€(k.n)F+dlnq[n (k.n)*| = oy (1.8)

)
col

with € = aF the comoving energy and h, 7 the potential functions describing the scalar mode
of h;; defined as in eq. (1.2). This equation is to be solved together with the zero order

Boltzmann equation [66]
oh _ (07)" (1.9
or ot ) o’ '

and the equations for the other relevant species together with Einstein equations, to give a
closed system. The equations for the metric perturbations are obtained from the Einstein
equations with the perturbations of the total energy-momentum tensor (built as the sum of
the contributions for all relevant species acting as a source term.

2 The Boltzmann equation for SI-WDM: interaction terms

Here, we focus on the right-hand-side (r.h.s.) of equation (1.8). This term describes the
interaction between the different particle species, and the eventual self-interactions between
the same species. Some species can be considered as collisionless during most of their lifetime
such as CDM [58]: for some approaches on interactions and collision terms see e.g. [51, 53,
71, 72]. For most other species (such as photons or baryons) the collision term plays a major
role in their evolution.

There has been recent progress in dealing with the collision term in cosmological simu-
lations from first principles. See for example [51, 53] for a streamlining on the treatment of
the term in CDM models, and [71, 72| for an approximation of the collision term in terms of
a Fokker-Planck operator. The focus of the following section is to extend the works of Olden-
gott et al. [66, 67], where the collision term has been uniquely calculated for ultrarelativistic
species (active neutrinos) and scalar field-mediators. Our extension is to the case of SI-WDM,
including a more general scattering amplitude for species that are neither ultrarelativistic nor
fully non-relativistic at decoupling, with emphasis in self-interacting sterile neutrinos.

The r.h.s. of equation (1.8) counts the number of collisions a particle species ¢ undergoes
in a time interval dt per unit phase space. For a CP invariant two body scattering process
i+ j <> m+ n, the full expression for the collision term is:

Ofi -
( ot )coll (k’

1

) = 95 9m3n d3 d3q a3’ 5@

- o
=79k, | (@n)%2E, (2r)32E, (2r)32E, P (q+1-q —1)

Q

x 20 \MIZ G { (6 @ 7) (6,7, 7)1 £ fi(R, G 7)1 £ (R, 1 7)]
— filk, @) fi (R, L)L £ fin(o @, T £ fu(R, T, 7))} 2.1)

where ¢ is the number of internal degrees of freedom of each species, |M|? is the squared

Feynmann amplitude for the process, and (5551) is the Dirac delta functional over the energy-
momentum 4-vectors labeled with boldface. The collision term as measured in the time-
interval dt is related to the expression in (1.8) as (9f;/07)col = a(0fi/0t)cor [66]



The zero-order integral, which dictates the evolution of the background phase space
distribution fy is simplified, under the same assumptions, as:

8f (0) 93 d31 d3q/ 3l
: = o= | om 5 I—q = 1)MJ?
<8t>imi("ﬂ’7) 2Eq(27r)5/2El 2E, 2E; pla+i—d =M

% [foll's ) fold's7) — foll, ) folg,7)] (2:2)

=Di[f] +Do[f] .

The first order collision integral, which involves the first order perturbation F (E, q,7)
can be simplified in the case of interactions i < i to:

Ofi W L& gg’ d3l d3q’ a3 (4) / / 2
<6t>m("“q’”‘w/m2E¢ 2500 (a+1-d =M

— —

x [2fo(d',T)F(k, U, 7) — folag, T)F(k,1,7) — fo(l,7)F(k,q,7)]

=Ci[f] + Ca[f] + C3lf], (2.3)

where we have made use of the symmetry of |M|? under the exchange ¢’ <+ I, and under the
assumption that Bose enhancement and Pauli blocking are negligible as is customary done
for DM candidates on such early epochs [73]. In the case of a cosmological component that
only interacts with itself, this would provide a source term in the r.h.s. of equation (1.8), the
equation of motion for the phase space perturbation F'.

Here, we maintain a general form for fy and provide the necessary collision term to
obtain its evolution via the zero-order Boltzmann equation (1.9). Concerning applications
of the results, a few comments are in order. In most interacting DM studies it is common
that either an equilibrium form (ultra relativistic, maxwellian or Juttner, see for example [74,
75]) or a “frozen-out” form for fy can be assumed for most of the dynamical evolution of
perturbations [64, 66]. Alternatively it turns out to be enough to compute the evolution
of a pseudo-temperature of the DM component as described for instance in [51, 52]. An
equilibrium distribution would implicitly assume either a thermal decoupling history of DM
or a period of strong coupling in self-interactions !

In [66] both the first (2.1) and zero order (1.9) collision integrals have been considered
for the case of active neutrinos with a scalar interaction. In that case, a specific interaction
model has been evaluated and the particle mass of the neutrinos has been neglected, given
that they remain ultrarelativistic until late times. Here, we maintain certain level of generality
in the choice of interaction amplitudes, and explicitly include the mass of the particle. This
generalization of the collision term can be useful in certain WDM models that include self-
interactions between dark particles. In particular, for those models where the ultra relativistic
to non relativistic transition takes place in the radiation dominated era, and neither the
massless or very massive DM particle limits properly account for the WDM features [76].
These topics are more thoroughly discussed in the following sections.

'For beyond SM neutrinos (assuming relativistic decoupling of Self-Interactions), a typical example is to
set fo o exp(—q/Tdec,0), where ¢ is the comoving momentum and Tgec,0 is the SI decoupling temperature
today. In [66] an extra normalization factor is included to provide a correction accounting for the effects of
Fermi statistics in the number density.



Besides the above mentioned assumptions for the collision terms in (2.2) and (2.3), we
focus here on the case where the only relevant source of interaction is the self-interaction
among the DM particles themselves (i.e. DM-DM collisions). However, if other interactions
are relevant our results can be generalized by adding the corresponding collision term to the
r.h.s. of (1.8). Moreover, the evolution of the mediator fields should in principle be studied
self-consistently. Nevertheless, in certain situations one can neglect the backreaction of those
fields. For instance, in the case of very massive mediator particles this assumption is justified
as the population of the mediators should be Boltzmann-suppressed at the times of interest.
This is generically not true, however, in the case of a massless mediator: the contribution
of the mediator population to the energy-momentum tensor may not be negligible and the
interactions between these two components should be properly accounted for. Here we do
not address the dynamics of the mediator fields and restrict our analysis to the effects of the
self-interactions of WDM. We focus below on the massive mediator cases, and relegate to
section C the computation for massless mediators.

2.1 Scattering amplitude

Further assumptions enter the expression we will use for the spin-averaged scattering ampli-
tude |[M]. We will assume that this amplitude can be expressed as a second degree polynomial
in the Maldestam variables s,t as defined in (A.20):

IM|? = mya,0)8” + m,1)st + mo,2)t> + m,0)s + M1t + m(o,0)- (2.4)

This parametrization leaves the my; ;) coefficients free as model dependent constants and
allows us to recover a few relevant cases for our study, such as the ones to be considered
in 3.3. This assumption, together with the approaches taken in describing both the collision
terms and the Boltzmann equations, allow us to complement previous works [51] aiming to
describe self-interacting species in cosmology. It is in this way that we maintain some model
independence, being able to describe a wide array of (elastic) interaction cross sections either
in an exact or approximate way.

This parametrization encompasses most tree level interactions due to massive mediators
with myeq > m, where m is the DM mass and meq is the one of the mediator. Notably, this
includes both of the examples studied in [66] as well as many more. Particularly, in the limit
m — 0, this parametrises the tree level self-interactions due to a massless scalar mediator,
which turns out to be a constant scattering amplitude (as detailed in section 3.3.1). However,
in a general case with m # 0 this parametrization does not account for massless mediators
(of interest for self interacting CDM models, see [77]). This is discussed further in section C,
where we consider the DM-DM collision term for a massless scalar mediator which cannot
be modelled as (2.4).

In order to explicitly perform the collision term integrations, it is necessary to recast this
expression into their respective powers of ¢, which reads (with B, and C; trivial functions of s),

’M|2 — AttQ + Btt + Ct, (25)

as relevant in the case of the Cs, Cy integrals as demonstrated in appendix A. A similar
expression works in the case of the C; integrals, this time involving u (having used the relation
52 +t2 + u? = 4m?, with A,, B, and C, simple functions of ¢ as shown in appendix A):

IM|? = Ayu® + Byu + C,. (2.6)



3 Solutions to the collision terms

3.1 The first order collision integral

In this section we write down the final results of the first order collision term in (2.3), and
refer to the reader to appendix A for the detailed derivation. In terms of integrations in
energies and Mandelstam variables, C3 can be expressed as:

_ F(qk,7)g}
o=~ ptams | s ELTX(s). (31)

with x(s) defined as

4m?2 1 1
X(s) = 1/1— %fAt(s —4m?)? 4 3 By(s — 4m?) + C1, (3.2)

and {Ay, By, Ci} given in eq. (2.5). Here and in what follows we use the convention that all

integrals run over the full range of the respective variables unless it is explicitly specified.
The calculations for the Co term are identical to the ones developed in A.1 for C3. The

only difference is that the roles of the background and perturbed DF are reversed. This

can easily be seen from the definition of the term in (2.3). So, the final expression for the

integral is

fo(Eq,7)g}

C2= 32(271')3qu

/dE dsF(I, k,7)x(s), (3.3)

where we have implicitly used that ['is a function of only (Ej, s). Given ¢, this is straightfor-
ward to check from the definitions of s, E;. In the case of Cq, the calculation diverges greatly
from the one of C3. In this case, both the background DF and the perturbation are integrated
over, and to perform the integration it is necessary to know fo(E,, 7). This integral can be
expressed in terms of time-dependent collision kernel K (Ey, Ey,t,T) as

3
gA
Ci=—4*— |dE, dtF(E, t)K(E,, E_ .t 3.4

1 16(271’)3qu/ q ( q7) ( g g’y 77—)7 ( )

where the kernel is given by:
Ay
K(Eg Eg,t,7) = {8!qu5{ (fo)s [ (3(B,y + Ey )%t — (By — Eg)? — t)(—4m? + t))}
+ {foby |4 A(E, = By (B, + 3Ey)m? — 4(E,(E, — By) (E, +2Ey)
+ (By + 3By )m?)t + (B + 3By )12)]
+ (foo [(48(E, — Ey)'m" = 16(E, — Ey*m*(2B2 — 3E,Ey + 6m?)t
+8(E2(Eq — Ey)? + (TE} — 12E,Ey + 3E})m* + 6m*)t*
~ A(2B2 ~ 3B,By + 6m) + 3t4)| }

il o [+ B

+ (fodo [2(Eq — Ey)?m? 4+ 2E,(—E, + Ey)t — 4m?t + tﬂ }




put in terms of moments of the background distribution function fy, that take the form

<f0>n (Eq, Eq/, t, 7‘) = dEl/fo(El/, T)EZ/Z , (3.5)
Ro

which are functions of (E4, Ey,t) only through Ry, defined as

1 L - 4m?2
R172:2{Eq—Eq/:t|q—q,| ].—t}

This kernel is the most complex part of the collision term, mainly due to its explicit de-
pendence on time through the momenta of the background DF. However, once the scattering
amplitude |M|? is specified, it should be numerically feasible to evaluate the integrals.

3.2 The zero order collision integral

The treatment of the term D[ f] mimics exactly the one for Cs[f] but with the simplification
F(q,k,7) = fo(Ey). Thus, this term can be expressed as

_ fO(Eq)Qi3

Dy = — 20—
2T T 32(2m)3E,q

dEdsfo(Er, m)x(s) . (3.6)

The term D;[f] is much more complicated. The key to solve this integral is to define a
method to recast an integration in an angular variable by an integral in energy, as described
in appendix B.1. As shown in such appendix, this procedure leads to a collision integral that
can be expressed as

3 4
g.
Dy =7t dEydEy fo(Ey Ey,m)ki(Ey, Ey, Ep,7), 3.7
1 16qu<2ﬂ)3;/1i ¢ dEy fo(Eq, 7) fo(Ey, 7)ki(Eq, Eq, By, 7) 3.7)

in terms of 4 integrals of kernel functions: the integration limits Z; are defined in (B.7)
schematically as

Ey Ey 00 0o Ey 00 4
/ qu/ |:/ dEy + / dEl/:| + / qu/ |:/ dEy + / dEl/:| = Z/ , (38)
m Eq—E +m E, Ey m Ey i=1 YL
and the kernels k;(Eq, Ey, Ey, T) are given by
ki(Eq, Ey, Ep,T) = /dt k(Eq, Eq,Ep,t,7) 1=2,4
ta (3.9)
ki(Eanq’aEl’aT) = dt K‘(E(I’Eq’aEllvt’T) ) 1= 173
t1
with
A
k(Eq, Ey, By t,7) = {M{Eﬁ [475 (3(Ey + Ey)%t — (Eq — Eg)? — t)(—4m? + 1)) }
q—4q

+ Ep [475(4(Eq — Ey)2(E, + 3Ey)m? — A(Ey(E, — Ey)(E, + 2E,)

+ (Bq + 3B,)m®)t + (Ey + 3Ey)t?)



+ [(48(Eq Ey)'m?* = 16(E, — Ey)*m?(2E2 — 3E,E, + 6m?)t

+8(E}(Eqg — Eg)? + (TE} — 12E,Ey + 3E2)m” + 6m*)t
— 4(2E2 — 3E,Ey + 6m)t* + 3t4)} }
B,
+ 7{1571, [t }

2174
+ (2B, — By)Pm? + 2B, (~ By + Byt - am?t + 2] |
C
L } , (3.10)

|7—¢|

and 12 defined as the two solutions to the following equation:

o 4m?
P(tl,Q) = ’q - ql‘ 1-— E =2FE) — Eq +qu

)

Thus, we have arrived at a somewhat general expression for the collision integrals which
depends on the scattering amplitude only through the coefficients A¢ ., Bt and Cy,, defined
in equations (2.5) and (2.6). After this, in order to obtain a Boltzmann hierarchy that can
be in principle solved numerically one can follow a procedure analogous to the one described
in [66]. We perform this procedure in section 4, while in next we provide some examples of
the kernel functions obtained from different models of the self-interaction.

Collision terms at the level of the zero-order distribution function are common in other
applications of DM such as in ACDM (thermal production and decoupling) [78]. The tools
developed in this section, together with an accurate treatment of inelastic collision terms
could help to discern the effects of self-interactions in early DM production, though remains
as an interesting avenue for future research.

3.3 Kernel functions for different mediator models

In this section, we calculate the different kernel functions involved in the collision inte-
grals for a small subset of self-interaction models. We need to compute the coefficients
[A¢, B, Cy] in eq. (2.5) for the Cs[f] integral and [A,,, By, Cy] given in eq. (2.6) for the Ci[f]
and D [f] integrals.

Motivated by the possibility that the DM constituents are sterile neutrinos, we consider
the following three cases: the first two evaluated by [66] which are interactions mediated by
scalar particles; and the case of a heavy vector field proposed in [79].

For the first case, the interaction Lagrangian can be written as (further information
about the scattering processes can be found in [66]):

Lint = 9VRVR®, (3.11)

where g is the scalar coupling constant, ¢ is the scalar field and vg is the DM field modelled
as a right handed neutrino. In the case studied in [66] the massless scalar limit reduces
to a constant amplitude, however, this does not happen generally. We refer to [80] for an
expression of the scattering amplitude for scalar mediators of arbitrary mass. In this study,
as an example, we only consider a constant amplitude case, reminding that only in the limit
of massless DM it corresponds to a zero mass scalar mediator (see section C). Our main
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focus here is a massive scalar mediator, meaning that mmeq = mg > E (with E denoting
the mean energy of the colliding DM particles).

The vectorial model of [79] also assumes DM is given by right handed neutrinos but
with an interaction Lagrangian given by

Ling = —gvVuUrY' VR, (3.12)

with gy acting as a coupling constant and V),, the massive vector field. In the cases considered
here, and under the assumption gy < 1 all mediators fall into the massive case myeq = my >
E (see (3.26)).

The authors of ref. [79] have proposed this effective interaction-Lagrangian to derive a
self-interacting system of self-gravitating sterile-neutrinos on galaxy scales. When applied
to the Milky Way, it was there shown how a O(10!) keV-fermionic DM concentration at the
center of the DM halo (i.e. forming a degenerate condensate), could work as an alternative to
the super massive black hole (SMBH) in SgrA*. At the same time such fermionic halo model
provides a plausible (and alternative) explanation to the small scale structure observables.

It is important to note that, while motivated by the study of sterile neutrinos, the
framework and the interaction models here presented, remain general and can be used in
other applications such as (massive) active neutrino cosmology.

3.3.1 Constant amplitude

We start with a simple toy model: a constant scattering amplitude |M|?. We adopt the
notation used in [66] for the massless scalar mediator. This constant amplitude can be
expressed as

Moo = 6", (3.13)

where g is the scalar coupling constant in the ultra-relativistic case. Being constant in the
involved momenta, the coefficients of the expansion in Mandelstam variables are, simply:

A =B, =A,=B,=0
e | (3.14)
Cy=C;=Cy=06g

For the x(s) function appearing in the final form for Cs and Ca, we obtain

x(s) :CO\/1—47:2 . (3.15)

For the time dependent kernel function K(Ey, Ey,t,7) in Cy, we find
Co (fo)o

K(Eq, Ey,t,7) = : 3.16
(By Bpot7) = e p (3.16)
with (fp), as defined in eq. (3.5) and

ki(Eq, Eq,Ep) =2Cy (\/(Eq — Eg)? —t1 —\/(Eq — Eg)? —t2) , i=1,3 317

ki(Eq, Eq) = 4Comin(q,q') i=2,4,

with ¢1 o defined as the roots of the equation P(t) = 2Ey — E,+ Ey with to > t1, as used in
section 3.2 for the kernel functions to calculate the background DF in D;. When comparing
these expressions with the ones used in [66], both collision integrals coincide in the limit
m — 0, showing explicitly that our more general expression for the collision term reduces to
this known limiting case.
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3.3.2 Massive scalar mediator

We follow here the considerations of [66] for the case of a scalar mediator which is considerable
more massive than the mean scattering energy. In this case the population of scalar particles
would be Boltzmann suppressed, so there would be no need to track the evolution of their
population. Moreover, in this scenario, the neutrinos would be initially in thermal equilibrium
(as noted in [66] and references therein). In this case, the interaction amplitude reduces to:
2 gt a0 2
IMovosvvln, = 5 (s +t°+u ) , (3.18)
o

with m, denoting the scalar mediator mass. Here, by using the identity s 4+ ¢ + u = 4m?
we can either replace u or s in the scattering amplitude to obtain the two sets of scattering
coefficients [A, B, C|:

g
A =2"—=2C,,
t Zmé
By = 2C,,(s — 4m?) J (3.19)

By, = 20, (t — 4m?) : (3.20)

Cy = 2C,,(t? — t4m? + 8m?)

Making use of these coefficients, the kernel functions x, k; and K as defined in section 3.2
and 3.1 respectively, read as follows:

1 4m? 4 2 2
x(5) =5Cm\[1 = =~ (256m" — 128m®s +195°) , (3.21)

Cm
K(E%Elvsv’r) :4((El _ Eq)2 _ 8)5/2

x { (fo)y 4s [(4(E, — E,)*m? + 2(E} + AE, By + E2 — 2m®)s + 52}

+ (fo), 45(E, — E) [ — A(Ej— E)*m? —2(E} +4E Eg+ E2—2m?)s — .92]
+ (fog [48(El — E))*m* = 16(E; — E,)*m*(E2 — 3E,E, + E2 + 6m?)s
+8((E; — Eg)*(E} — EiE, + E2) + (5Ef — 12E,Eq + 5E,)m* 4+ 6m*)s®
— 4(3E} — TE B, + 3E2 + 6m)s® + 734} } , (3.22)

Cim
ki(Eyg, By, Ep) = dt
z( q>~q"> l) /IZ 4((Eq’ _ Eq)2 —t>5/2

x {El’%4t [(4(Eq, —By)?m? + 2(E2 + ABy E, + E2 — 2m?)t + ﬂ

+ Bydt(E, — Ey) { — 4(E, —Eq)2m2—Q(Eg,+4Eq,Eq+E§—2m2)t—t2}

+ [48(By — Bg)'m* ~ 16(Ey — Ey)m*(E% — 3By Ey + B2 + 6m?)t
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+8((Ey —Eq)*(E2 —EyEq+ E7) + (5E2 — 12Ey Eq + 5E2)m” 4 6m*)t>
— A(3E% — TEy Ey + 3E2 + 6m2)t® + 7t4} } , (3.23)

where the integration regions in the ¢ variable for these last integrals are in the range
[tcos9=—1, teoso=1] for i = 2,4; and [t1, to] where t; o are the solutions of P(t) = 2Ey — E,+ Ey
for i = 1,3 (see appendix B.1 for details). Here the background DF kernels k; have analytical
(though complicated) expressions in (Ey, Ey, Ey,t12), which are not very illuminating to
write down.

3.3.3 Massive vector field

In [79] the authors calculate the 4-fermion self-scattering amplitude for the right handed
sterile neutrinos with the interaction (3.12), and reach the following result:

4
|MW,V|2V=<9V> L [44(a)? — (aq)® — (al')?] . (3.24)

my ) cost 0,

where my is the mediator mass, 6}, the (dark sector) Weinberg angle and pq = p”gq, on a
4-vector notation. By making use of the following Mandelstam variables properties

ql = s — 2m?
qq' =2m? -t (3.25)
ql’ =2m? —u

the equation (3.24) can be put in terms of (s,t,u). As for massive scalars, the scattering
coefficients can be calculated using s + t + u = 4m?:

(4= <5LVV>4 o = —20v

B; = Cy(8m? — 2s) ’ (3.26)
|Gt = Cy(168m* — 172m?s + 43s?)

(A, =43Cy

By, = Cy (88t — 172m?) , (3.27)
Cy = Oy (168m* — 172m>t 4 43t2)

and the expressions for the kernels are:

x(s) = éCm/1 — 4?2(747712 —29s)(m? — ), (3.28)

Cv
KB B m) = S —Bye — o2

{172<f0>2s[( — B,)?m® +2(E} + AE,E, + E2 — 2m )s—i—s]

+ 4 (fo)y s[172(B1 — Ey)*m?

A(—E, + E,)(—44E? — 86E,E, + E2 + 43m%)s — (4TE) + 133Eq)32}
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+ (fo)o [656(EL—Eq)*m*+16(E; — Eq)*m?(2E; +39E E,+2E2 — 82m?)s
— 8((Ey — Eq)*(—43E] — 2E,Eq + 2E})

+ (=35E7 + 156 5, Eq — 35E2)m” — 82m*) s>

+ 4(—84E} + 121E,E, + 6E2 — 78m?)s® + 12134} } : (3.29)

Cy
kiE,E/,El/ :/dt
( q)~q ) I, 8((Eq' _ Eq)2 _ t)5/2

X {172E,2,t [4(Eq/ — E,)’m® +2(E2 + 4By Ey + E2 — 2m°)t + tz}

+ 4Bt 172 By — By)'m?

+ 4(—Ey + Ey)(—44E2 — 86Ey E, + E2 + 43m>)t — (4TE, + 133Eq)t2]

+ [656(Eq/—Eq)4m4+ 16(Ey — By)*m? (2B +39E, B+ 2E2—82m2)t

— 8((Ey — Eq)*(—43E, — 2EyE, + 2E7)

+ (=35E}, 4+ 156 Ey E, — 35E2)m* — 82m*)t?

+ 4(—84E2 + 121E, B, + 6E2 — 18m*)t* + 121t4} } , (3.30)
where, again, the integration regions in the ¢ variable for these last integrals are in the range
[tcos6=—1,tcoso=1] for i = 2,4 and [t1, t2], where t; o are the solutions of P(t) = 2Ey — E,+Ey

for i = 1,3. These last kernel functions for the background DF have analytical forms but are
not illuminating, just as in the massive scalar case (see appendix A for details).

4 Boltzmann hierarchy

Once having obtained the expressions for the collision integral kernels, it is a standard practice
to perform a Legendre expansion in (1.8) in order to construct a so called Boltzmann hierarchy
of equations, which is independent of the angle between k and ¢- In order to calculate the
time dependent kernels above, the full solution to the background DF fy(E,, 7) must be
obtained. If we assume that, in the time scales of interest, the collision term is only due to
self-scattering, then the evolution of fj is governed by:

dfo

S2(E,7) = a(Dilfo] + Dalfo])

ZGoa{ — fo(Eq)/dElfo(Ez)/‘é(O)(Eq,Ez) (4.1)
4
+23° /I dE,dEy fo(Ey) fo(Er)KY (Eq,Eq,,El,)} ,
j=1"Zj

where Gy = 1/[4(27)3] and

1
KOy B) = [ dsxts). (12)

q

0 1
]Cj( )(Eq,Eq’7El’) :Fﬂkj(Eq7Eq/7El/) . (43)
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Here, we will assume that the initial conditions for fy are set beforehand at some early
time and that its subsequent evolution is only governed by self-interactions as said before.
This ansatz, notably, excludes the production mechanism that should give rise to the initial
population of these particles: we follow [64] and implicitly assume that the mechanism for
production is not significanly affected by the self-interaction mechanism. Once the evolu-
tion of this distribution is known, the various moments (fy), defined in eq. (A.68) can be
calculated, thus allowing to obtain the time dependent kernels K.

As the coefficients in the L.h.s. of the Boltzmann eq. (1.8) are only functions of |q], \l_ﬂ
and cose = l;:.(j, it is assumed that the r.h.s. also depends only on these parameters. Thus,
in order to express the relevant equations of both sides in a Legendre series we first write

[e.9]

F(|kl, lal,cos€) = Y (i)' (2L + 1) Fy(|k]. gl ) Pr(cos €) ,

l_l=0 (4.4)

1
1
Rkl ) = 5 | dcoseF(kl.lal.cose) Pcose).

where Pj(cose) is the [-th Legendre polynomial and Fj is the I-th multiple of the perturbed
DF. In this case however, a residual dependence on the azimuthal angle between ¢ and /3, P,
is still present (as caused by the first order collision terms). In [66] the authors argue that
an averaging over v in the collision terms has no effect on the expressions for the collision
integrals, and they perform such average. The argument is based on the fact that the L.h.s.
of (1.8) is not affected by such averaging. Also, from a phenomenological viewpoint, the
only observable is the integrated effect of the perturbation, further strengthening the claim.
Therefore, in what follows, we perform such average as well. The moment decomposition in
the Lh.s. of the Boltzmann equation is well known, and the reader can consult [72] for the
expressions for massive neutrinos in the collisionless case on both typical gauge choices.

In order to calculate the moment expansions of the collision integral, we make use of
the following property: given a collision term with the form

1 .
(?) (q.r) = [ deostdld (gl I cosb. ) F(F..7). (45)
k

the (¢ averaged) [-th multipole can be written as:

Z'l 27rd 1 B (1) ,
s [ o [ deosenieosa) (3) T = [ad it oRL LD, 40

2 27T -1 k

with
1

/Cz(\(JI,Iqll,T)E/ dcos 0K (|q|, |q'|, cos 0, 7) P(cos 0) . (4.7)
1

However, our expressions for the collision integrals are expressed in terms of Mandelstam
variables and energies instead of angles and momenta. Our kernels are also expressed in terms
of these variables. We can solve both problems by recasting the integration in Mandelstam
variables in the definition of the kernel moments. So, for a collision integral of the form

of @ . .
(87’) (k, , T) = /deEl/C(Eq, Ey, s, T)F(k, , 7') (48)
k
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the property (4.6) would be modified as follows:

Z'l 27 dw 1 8f (1)
2/0 o _ldcosePl(cose) <87')k —/dEllCl(Eq,El,T)Flﬂk:],\l,7'), (4.9)
with
Ki(Ey, By, 7m) = /dle(Eq,El,s,T)Pl(COSH(S)) . (4.10)

Then, putting together the results of sections A.1), (A.2 and A.3 we arrive at the following
moment expansion, in Synchronous gauge:

: k h o
Fo(k7EII77—) = %Fl(kaE%T) + 631{10q
q

— GOaFO(k‘, Eq, T)F(Eq, 7’) + Goa / dElFo(k‘, E;, T)IC[()I)(E(], E;, 7')

. k 2qk
Fl(kaEbe) :LFO(k7EQaT) - LF?(kvE!bT)

3E, 3E,

— GoaFy(k, By, 7)T(E,, 7) + Goa/dElFl(k;,El,T)icg”(Eq,El,T)

qk of 1. 2,
Fy(k, By, 1) 5 [zFl(k:, By 1) — 3Fs(k, E,, 7)} - (‘3ln0q [wh n 577]

— GoaFy(k, By, 7)T(E,, 7) + Goa/dEng(k,EZ,T)ICgl)(Eq,El,T)

) qk
Bk By ™) = L [Py (b By, 7) = (L 1) Py (K, By 7)]
— GoaFy(k, By, 7)T(E,, 7) +G0a/dElFl(k:, B, 7KV (E, EB,7) , 123
(4.11)
with the various kernel moments defined as:

T(E,,7) = /dElfg(El)/i(O)(Eq, E), (4.12)

1
K§1)<EQ7 El7 T) = _XI(E(I7 El)f0<Eq) + 2ﬂKl(EQ7 El7 T) 9 (413)

q

with () defined as (4.2), and Kj, x; the Legendre transforms of the K, x kernel functions
defined as in (4.10), and where the /-th moment of the perturbed DF Fj is defined as in (4.4),
and we have chosen to express the momentum dependence in terms of energy for consis-
tency. In order to solve this hierarchy, the kernel functions for the interaction model must
be specified.

5 Relaxation time approximation
Even if the evolution of the background DF fy may seem complicated due to the collisions in

play, its effect may be accounted for in a much simpler way depending on the particularities
of the interaction. Concretely, if the rate of particle interactions is much higher than the rate
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Figure 1. Relaxation times for three different interaction models: Constant Amplitude (left), Massive
Scalar (center) and Vector Field (right), calculated for a Maxwell-Boltzmann background DF for
different temperatures. The definitions on the interaction constants for the models considered (with
interaction Lagrangians defined in 3.3) can be found in (3.14) for the constant amplitude model,
in (3.26) for the massive scalar model and in (3.26) for the massive vector field.

of expansion of the universe, measured roughly by H, the Hubble rate, we may assume that
the shape of the distribution function is one in equilibrium. That is to say, a DF that obeys

(8fgq(Eq,t)>cou - >

ot

such as Maxwell-Boltzmann, Fermi-Dirac or Bose-Einstein distributions, depending on the
particle model used. It is possible to construct a substitute collision operator for f; that
reconstructs the expected behavior for small departures from thermal equilibrium:

% ~ fO(Eqvt) - gq(Eq’t)
< ot >c011 7(Eq) ' (5:2)

This is know as the relazation time approximation of the collision operator. The relaxation
time 7 is the timescale in which the system is expected to relax to equilibrium. This parameter
can in principle have a ¢ dependence and is commonly defined as [81]%:

_fO(Eqvt) —

Ds| fo]

which involves the integral of the kernel y, evaluated in the thermal equilibrium background
DF. It is straighforward to evaluate these integrals, as they only involve known functions.
We have performed these numerically for the interaction models posed in 3.3, and the results
can be seen in figure 1 (we refer to appendix D for more details).

For all of these models, we follow [64] and assume that the abundance of WDM and its
primordial distribution function are already set deep into the radiation dominated epoch and
the effects of self-interactions in these initial conditions can be effectively decoupled from the
evolution of perturbations.

0 (Eq 1)

~ (ov) Tt = —_—
T(Eq) N< > DQ[ (v)s-q] ’

(5.3)

?In the first equality we approximate the relazation time (the timescale for the system to relax towards
equilibrium) by the collision time (the mean time between collisions). While in the cases considered in
section 3.3 it can be considered as a good approximation, cases where many collisions produce small changes
in momenta (such as long range interactions) require additional care (see [82] for a discussion).
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Figure 2. Evolution of interaction rate per particle and Hubble expansion rate (in dashed line) for
three different interaction models: Constant Amplitude, Massive Scalar and (massive) Vector Field,
with interaction Lagrangians defined in section 3.3 and interaction constants defined in (3.14), (3.19)
and (3.26) respectively, and calculated for a Maxwell-Boltzmann background DF. Several interaction
strengths are evaluated for each model: both the ones relevant for a relativistic decoupling/recoupling
as well as interaction strengths satisfying Bullet Cluster constraints (see [79]). The calculations are
performed for a DM particle mass of 10keV, and the vertical line marks the relativistic-nonrelativistic
transition temperature.

5.1 Application to self-interaction decoupling

In order to evaluate whether or not a thermal fy can be assumed, for a given particle physics
model for the interaction, one may look at the ensemble averages of the interaction rate
I'(E,) = 7 Y(E,). This value is to be compared to H at this point: if I' > H, the sys-
tem is effectively in thermal equilibrium and adopts an equilibrium background distribution
function fp.

This is equivalent to the traditional approach used to determine if a species has de-
coupled from the rest of the cosmic plasma in the standard sector (see for example [67]).
In other words, a given interaction is considered to cease being relevant if the interaction
rate per particle I' ~ <T_1>th (see section D) is overtaken by the Hubble expansion rate,
which in the radiation dominated era is H ~ T2/ myp1 where my,) is the Planck mass. So, in
summary, a thermal background DF can be assumed if at some point during the evolution
of the perturbations, the self-interactions were a dominant phenomenon in the sense I' > H.

We can see how this interaction rate evolves along with the temperature of the plasma
in figure 2, using the models of section 3.3. We work here on the assumption that the self-
interaction decouples (this is to say, I' > H) while the particle itself is still relativistic. At
the moment the self-interaction decouples its distribution function remains “frozen-out”: the
function itself remains unchanged and the evolution is just given by the redshift in physical
momenta p x a. If decoupled while relativistic but well after the initial production of these
particles, the distribution is frozen with a form fy ox e Pdec/Taec and the redshift in momenta

can be reinterpreted as a temperature evolution of the form T o< a™!.

Depending on the coupling strength, it is possible that the self-interaction decouples
while the particle is non relativistic. This opens the possibility of a species that undergoes
chemical and kinetic decoupling from the plasma while still relativistic, but remains in equi-
librium (with itself) until a later stage. After the decoupling of the self-interactions, the
background distribution would be frozen out on a Maxwell form fy o e Paec/ (2mTace) and the
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temperature is interpreted to evolve as T o< a~2, while preserving the number density at
chemical decoupling.

We can see in figure 2 that the assumption of relativistic decoupling of the self-interaction
does not necessarily hold for some interaction constants (e.g. Cy ~ 108G 7). In that case,
the self-interactions should decouple while non-relativistic, if at all, and they alter the dis-
tribution function which in turn renders the method we used to obtain figure 2 (described
in (D.11)) inapplicable, as it assumes fy o< e Z/T. In particular, couplings Cy ~ 108G f
in the vector field case were shown in [79] to correspond to cross sections in the range
o/m ~ 0.1 — 1 cm?/g, which are usually considered to alleviate various problems in N-body
simulations on self-interacting CDM, and are strongly constrained by observations® [77].

5.2 An approximate form for the collision integrals

The full form of the Boltzmann hierarchy for these species (4.11) can be reduced by making
use of the relaxation time approximation. The most straightforward way to do this is by
simply replacing expression (5.2) into the collision term and calculating the new hierarchies,
through expression Ds[fo] (3.6). In [64] such an approach is taken in a simplified way: instead
of the full (energy dependent) relaxation time 7,.¢;, its thermal average is used (see section D):

ClF)|~ —a——~"=. (5.4)

This simple approach however leads to an important conceptual error: this approximation
(and to a certain extent (5.2) as well) qualitatively simply “erase” the perturbations to the
DF F(q,k,7) [83]. This violates conservation of particle, momentum and energy densities,
resulting in a poor approximation to the full collision term in the case of perturbations. In [64]
it is noted that this can be avoided by setting the Cj—o 1[f] = 0, and these conservation laws
are recovered, thus arriving to a Boltzmann hierarchy of the form:

. k h o
Fo(k, By m) ~ — %qFl(k,Eq,r) + 681{10(1
. qk 2qk
Fi(k,Ey,T) ~ B—Eng(k:, Eq, 1) — 3—EqF2(k, E,, T)
. qk ofo [ 1. 2, Fy(k, B, T
Fy(k, By, ) [QFl(k, B, 1) — 3F3(k, Eq,T)} _ alnoq [15h + 577] _ a2(<7>:)
q t
- Qk -Fl(kvE aT)
Fyk, By, 7) =~ @+, [lF(l_l)(k, Eqg,7)—(14+1) Fyo (k, Eq,f)} - aﬁ, 1>3.
(5.5)

This relazation time approximation [64, 67, 84] has the advantage of localizing the equations
in momenta, which results in more efficient numerical integration by eliminating all coupling
between different momentum bins and allowing for sparse evaluation.

As an illustration of the effects of self-interactions in the matter power spectrum, we
provide in figure 3 specific examples for the case of a massive scalar field-mediator (3.18),
under the relaxation time approximation (5.5). We have used an extended version of CLASS

3Interestingly, those cross sections may be large enough to spoil the assumption that the DF corresponds
to particles that decouple being relativistic, as used in previous applications of SEFWDM such as [64]. An
interaction constant that large may cause the particle to remain in thermal equilibrium well into a non-
relativistic regime.
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2.7.2 [63, 76] where we include our results for SEFWDM models with particle masses in the
~keV range.

In order to compare the results for standard CDM, WDM and the SI-WDM model,
both WDM and SI-WDM components were assumed to have a relativistic Fermi-Dirac equi-
librium distribution function fp with a given temperature Ty, (i.e. a DF that corresponds to
relativistically decoupled thermal relics), and their abundances were adjusted to match that
of CDM in the best fit data from Planck 2018 [85]. It is important to notice that the assump-
tion that the background DF is given at all times by the relativistic Fermi-Dirac distribution
may not apply if the self-interaction is sufficiently large. For instance, for some interaction
strengths that are favored by SIDM N-body simulations for CDM [77], it is necessary to
consider non-relativistic self-interaction decoupling.

In figure 3 we recover the results of [64] for the case of m = 1keV, but for different
coupling strengths. This is because of a missing scale factor in their calculation of the
relaxation time, see [67]. As shown here for the first time, for the masses considered, those
couplings actually correspond to non-relativistic self-interaction decoupling. In [65] similar
results are obtained, but using a fluid approximation leading to spurious oscillations at high
enough k (see [67, 76] for a discussion).

In the power spectra shown in figure 3 it can be seen that for the smaller interactions,
in which the assumption of relativistic self-interaction decoupling is fulfilled, the results
are practically indistinguishable from standard WDM. It is only for the cases of higher
coupling constants (where the relativistic decoupling assumption is no longer valid) that
certain features appear: both the modification in the transfer functions observed in [64]
and acoustic oscillations at higher k reminiscent of fluid approximations (see [51, 76]). Such
results are explicitly shown in dashed or dot-dashed lines in figure 3, for given self-interaction
strengths either for the case of m = 1keV and m = 10keV.*

For the case of m ~ few keV as of typical WDM models under the thermal decoupling
assumption [34], it can be seen that our SI-WDM power spectrums do not exhibit the steep
trend at large k typical of those standard WDM scenarios. This less abrupt suppression
of power at typical (comoving) wave numbers of k ~ 10 h/Mpc (i.e. short scales relevant
for sub-halo structures), can be better visualized in the transfer function of figure 3 (bot-
tom pannel). Such an effect should point to a better agreement with small-scale structure
constraints for the lower end of the (thermal relic) keV particle-mass range. All in all, a
more general behaviour of the suppression in the power spectrum (relevant for sub-structure
number counts), together with the self-interacting nature of the ~keV DM candidates (rele-
vant to the inner shape of DM halos), could bring the SI-WDM paradigm into an appealing
alternative to the CDM paradigm.

Before closing, we point out that the simplified approach to the hierarchies given here,
can be generalized slightly by using the separable ansatz instead. Namely, assuming that the
“temperature perturbation” F;(Ey, k, ) is independent of momentum, that is

1dln f()
Fi(k, By, 1) = ~1 I fo(Eq, 7)Fi(k,T) . (5.6)
Then, the [-th collision term can be reduced to:
Cilf] = —ali(k, Eq, 7)(Tre(Eq, 7) — Fexen i (Eq: 7)) (5.7)

“In the case of non relativistic self-interaction decoupling, the power spectrum damping is expected to
shift to higher k as the distribution function becomes “colder”. A detailed analysis of this effect in terms of
realistic cosmological effects on small-scales are the subject of future analysis [86].
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Figure 3. Power Spectrum (top panel) and Transfer Functions with respect to standard WDM
(bottom panels) for a massive scalar SI-WDM model under the relaxation time approximation (5.5)
for two values of the DM particle mass: 1 and 10keV. Also plotted are the power spectra of CDM
and of a 1 and 10 keV WDM model. Notice all the calculations assume relativistic interaction
decoupling, however dashed and dashed-dotted lines refer to coupling strengths which do not fulfill
this hypothesis and should undergo non relativistic self-interaction decoupling. These results have
been taken from [86] with permission from the authors.

with:

Frel(Equ) = _DQ[fO]/fO = T_I(Equ)
(5.8)
Cexchi(Ey, 7) = GO/dEl (Xl(Eanl)fO(Eq) - 2EquKl(Eq,El,7)> W :

While this is a significant simplification to the collision term, as proposed in [67], further
simplifications can be done by performing a momentum average

f dqq3f0(Q) (Frel - Fexch l) -1
Trel = Pexch l) gy = = = (T . 5.9
< > g quq3f0(Q) < >avg ( )
Under this approximation the Boltzmann hierarchy reduces to:
. qk h dfo
Fy(k, E ~ — —F(kE —
0( ) qu) Eq 1( ) q77)+681nq
. qk 2qk
Fi(k, By, T) ~ 73Eq Fo(k,Eq, 1) — 73Eq Fy(k,Ey,T)
. qk 8f0 1. 2 . OéQFQ(kZ,Eq,T)
B (kB ~—— 2F(k, E —3F3(k, E — T ha Zp| g e
2( ) (bT) 5Eq[ 1( ) QaT) 3 3( ) Q77—)} 81Hq|:15 +5T]:| a <7_>an
: qk aFy(k,Eq,T)
Fi(k, E ~——— | F k,E, —(I+1)F, k. E —q—2 7 >
l( ) qu) (2l+1)Eq|: (l*l)( ) qu) (+ ) (l+1)( s Q)T)} a <T>avg ) >3,
(5.10)

5This form holds under the assumption that conservation laws for number density, momentum and energy
are fulfilled. It has been explicitly checked in [67] for the case of massless particles under massive scalar
mediators, but it remains to be checked in the more general cases.
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provided Cj—g 1=0. This approximation can be further reduced to the form (5.5) by assuming
a;>9 = 1. If it results on a better overall approximation than (5.5), remains to be explored
in future works.

6 Summary and outlook

Throughout this work, we aimed to fill a gap in the description and treatment of linear theory
of scalar perturbations in cosmology by including the case of a self-interacting warm dark
matter component. Motivated by the possible impact of these self-interactions in large and
small structure formation scales, we provide an accurate treatment of collisions in the early
universe, extending previous works on the subject while maintaining a phenomenological
approach that allows us to retain certain model independence on the particular interaction
Lagrangian. By extending the treatment in [66—68] for active neutrinos, we calculated the
first and zero order collision terms and provided a general framework in order to include these
collision terms in the coupled Einstein-Boltzmann system. This was done with the objective
of accurately evaluating the effect of WDM self-interactions on the linear power spectrum
and the CMB anisotropies.

In section 2 we provide a short summary about the assumptions used in this framework,
as well as the general form (2.4) for the interaction amplitude that was used. It is shown
there that this form can accurately describe several models of massive mediator interactions
between sterile neutrinos, though not limited to those cases, and including for Majoron-
like scalar mediators between right handed neutrinos. The main calculations are given in
section 3.1 and 3.2 where we show the results for the first and zero order collision terms
respectively in the SI-WDM scenario. Also, we provide in section 3.3 some examples for
a handful of specific interaction models, along with the corresponding coefficients for the
collision terms.

A detailed treatment on how to include these collision terms in a Boltzmann hierarchy
is shown in section 4, and several possible simplifications in order to treat the evolution of
the background and perturbed distributions based on the relaxation time approximation are
shown in section 5. In this last section we discuss the effects of self-interactions in the matter
power spectrum for ~keV DM thermal relics, by providing an specific example for the case
of massive scalar field-mediators. Besides acoustic oscillations arising at large k, it is shown
a less abrupt suppression of power (relative to standard WDM) for typical comoving wave
numbers of k£ ~ 10 h/Mpc, relevant for small-scale structure constraints.

While developed with the intent of being used in the calculation of cosmological pertur-
bations in the case of SI-WDM, the forms of the collision terms themselves are quite general
and they can be used also in several other applications, for example in the case of (massive)
active neutrino cosmology, as noticed in section 3.3. The implementation of this formalism
in a CMB Boltzmann solver developed to explore the effects of the SI-WDM framework in
cosmology, has been partially used in section 5 through an explicit example (as explained
above). A detailed exploration for other field-mediators, interaction strengths, as well as
other quantitative small-scale structure effects are left for a future work [86]. In this direc-
tion, further exploration of possible approximation schemes or efficient computation methods
is key in order to successfully implement the hierarchies (4.11) in a practical way. Moreover,
the phenomenological model in (2.4) for the interaction amplitude can be generalized by
including other types of interaction Lagrangians, such as light mediators or more complex
models accurately. For light mediators, in section C, we extend the calculation of the DM-
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DM collision term. This calculation is a necessary step to further generalize the equations to
include models where other collision terms involving light mediators are relevant. In order
to explore this kind of WDM interactions, further modeling it is required, since in general
the population of light mediators cannot be neglected, and a consistent generalization should
also model the evolution of their distribution function and collision terms. Also, it should
be possible to extend this formalism to include the effects of Bose enhancement or Pauli
blocking by generalizing the collision kernels, as was argued in [66].
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A First order collision integral terms

A.1 Calculation of C3[f]

The term C3 can be expressed as:

3 3 3.1 337/
_ g d°l d>q" d°l 2 (4) o
Gl = =55 ey | 35 55 3, MPE @+ 1= d = DROF@. (A1)

where g; is the number of degrees of freedom of the particle and we have omitted the k, T
dependencies on the distribution functions for compactness.

A.1.1 Solving for I’ and B

The energy conservation Dirac delta 5g‘)(q +1—q =) can be used to solve directly the I’
integral using the definition of the invariant integration measure:

37/
/;iEZ S q+1-q -1) :/d3l’0(El/)®(Eq+El—Eq,)
l/

% 85§+ 1T~ q — 1)op(Ef — (By+ Ei — Ey)?)

(A.2)
= O(By + B — Ey)op(EZ ¢ 5 — (Bqg+ B — Eg)?)
= O(E, + E1 — Ey)d(9(a.LT))
where
9(@1LV) = —E2 ¢ o+ (Ey+ B — Ey)?, (A.3)

and O is the Heaviside theta function. The following parametrization is used for the momen-
tum 3-vectors:

7=q(0,0,1)
I'=1(0, sin v, cos ) , (A.4)

q’ = ¢'(sin Bsin 6, cos Bsin 6, cos 0)
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So the argument of the Dirac delta in (A.3) can be expressed as:

-

9(q, L) =2m? + 2E,E, — 2E,Ey — 2E;Ey + 24 (cos accos § + sin a cos 3 sin )

, (A.5)
+ 2qq cos — 2ql cos a .

In this parametrization for the momentum 3-vectors, the integrals in the collision term can
be expressed as

F(q)g} , 12 q
Cal/] :—8(;1% dq dld(eos@)d(cosa)El (DO(E, + Ei — Ey)|M?

2T .
></0 A3 (g(a.T.

(A.6)

7)),

where we have used d3 = 2mi2dld(cosa) and d3¢’ = dBq*dq'd(cosf), we have omitted
the relevant integration bounds except on the 3 integral and assumed that the scattering
amplitude | M| does not depend on the azimuthal angle 3. For this integral, we use the
following identity of the Dirac delta:

27rd 5 B 27rd 5
| asota = | ML

that allows calculations of compositions between delta functionals and functions, where 3;
are real roots of the real function g(...,[,...). For this integral, we have

-1
(A7)

3ﬁ

gg = — 2l¢ sinasin fsin 8 (A.8)
cos 3 = (I¢'sinarsin 9)71 [ —m® + (EqEy — qq' cos6) + (BEy — lg' cos a cos 6)
+ (qlcosa — B Ey)] . (A.9)

From this, we can infer that two solutions 3; exist: one in the interval [0, 7] and one in [, 27].
As the absolute value of the derivative of g is the same in both solutions, we can express the
integral in (A.6) as

dg |

/Ozwdﬁ%(g) = 2/07r a3

To ensure the physical condition that |cos ;| < 1, we add a Heaviside step function in
cos? B;. The following property follows from (A.9):

dg |~
) =2|= A.10
cos f3; (ﬁ B) 8B cos (3; ( )

dg |? )
¢9 . (A.11)
8'8 cos 3;

O(1 — cos? B;) = <’

So, the C3 integral in (A.6) can be expressed as

3 2 /2
Cslf] = —m dld(cosa)]lglfo(l)/dq d(cose) o O(E, + E; — Ey)|M? o
cof|f Y[l o
85 cos (3; 85 cos f3;
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Here, an important point in the calculation is reached. The remaining angular integrals
are in cos 6 and cos «, the angles between ¢ and q_; , and ¢ and l_: respectively. Now, without
any knowledge of the background function fy, up to three of the remaining four integrals
could be solved. However to continue solving from here on we need to know about the
scattering amplitude M. We will go as far as possible without specifying this, and then we
will assume an ansatz for a general form of M. To continue we express the term |0g/0/5|cos 3,
in terms of the variables {q,[,0, a} as follows:

’2; jos 5 = aée) cos’ 0 + b:(ge) cosf + cga) , (A.13)
with coefficients:
af) = —4¢”I+ @ < 0
bg@) =8¢'[q +lcosd][E,Ey + E\Ey — EyE; + ql cos a — m?] i (A.14)

Cg&) =4 {l2q/2 Sjn2 o — [EqEq’ -+ ElEq/ — Equ + ql COS (¥ — m2]2}

Now, let us consider in greater detail the integration of the Heaviside theta function
in equation (A.12). The argument of the function is a quadratic function in cosé with a
negative leading coefficient. Thus, the function will only be non zero if two real roots of the
polynomial |0g/ 8B]30$ 5, exist and it will be unity between them. So, the © function can be
translated into a border condition for the cosé integral and an existence condition for the
roots:

2
/d(cos 0) M @(aée) cos® 0 + bge) cos 0 + cée))
\/age) cos? 0 + bge) cos O + cge) (A.15)
x9 2 :
— @[(b:(,)e))2 — 4a§9)c:(f)] / d(cos0) M| ,
1 \/age) cos? 0 + b:(f) cosf + Cg@)
with x7 2 the roots of the polynomial ]6g/8ﬁ|c055 )

X0 B \? O
2|az”| 2laz”| laz”’|

The argument of the Heaviside step function can be expressed as

(bgg))2 ée)cg ) _ 64q’2l2 sin? o [Equ(l — CcoS y)]

x{ —2E% +2(E,+ E)Ey — |E,E;(1 — cosy) + m?|l+qf°
1 1 V= L E,E;(1 — cosy)
(A.17)
where
m? ql
1— =1 — . A8
cosy + E,E B, cos o ( )
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So this argument has 4 real roots in Ey: {—m,+m, Ry, Ry}, with Ry given by

Ris= 2 B+ E |l +q4/1- 2m? (A.19)
2Tt e E.E (1 —cosy) | '

The —m root can already be discarded as non physical. In order to obtain the ordering for
the rest of the roots, thus the non-zero intervals for the Heaviside step functions, we will next
develop some alternative notation for the angular variables 6, «, making use of Mandelstam
variables.

A.1.2 Mandelstam variables for Cg

Mandesltam variables are Lorentz invariant quantities constructed with the relevant infor-
mation on a two on two scattering process and are defined as:

s=(q+1)%= (B + E)?— |7+ >0
t=(a—q)=(E,—Ey)?—|7-d*<0. (A.20)
u=(q-V)2=(E,—E)?—|7-T]?><0

We can make use of these quantities to advance in the remaining integrals for the collision
integral Cs. First of all it is important to note that at this stage the derivations here and
in [66] start to diverge. Some of the interesting properties of Mandelstam variables, which
allows them to be of use in these calculations, are related to the center of momentum (CoM)
frame that cannot be properly defined in the case of collisions between massless particles.
Indeed, for the case of identical particles the Mandelstam variables can be calculated in the
CoM frame making use of their Lorentz invariance:

s = 4 (ECoM)?
t=-2 (10%01\/[)2 (1 — cos §M) | (A.21)

U= -2 (pf,{f’l\/[)2 (1 + cos QCOM)

with ES°M, pCoM the individual particle’s energy and momentum magnitude measured in the
CoM frame and #°°M the scattering angle measured in the same frame. We can also express
these variables in terms of the quantities we have used throughout the calculation of C3 as:

m? ql
s=2E,E 1+ E,B BB cosa | =2E,E)(1 — cosy)
2 o (A.22)
t=-2FEF,y|1- — 0
o < EgBEy  EqBy o > 7

where here, the quantities are measured in the “lab” frame, that is to say, the fixed frame
in which we have measured ¢. It would not be possible to change the whole integral to CoM
quantities making use of the Lorentz invariant measure d®p/ 2E, because ¢ is fixed by the
L.h.s. of the Bolztmann equation. As a first use for these quantities, let us consider the roots
R 2 in the polynomial above. The roots can be immediately recast as a function of s:

1

- 4
R1,2:2{Eq+Elj:’l+q_1 1_8} . (A23)
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From expression (A.21) we can see that s > 4m?, thus these roots are always real. As
for the ordering of the roots, it should be quite obvious that Ry > m, R;. It is also possible
to prove that Ry > m:

e Let us first define the total momentum 4 vector: p* = (E, + Ej, ¢+ Z_B If we recall the
form of a Lorentz transformation over a 4-vector,

" =~ — B.p)

) (A.24)
P =~(=18p" + )

we can infer that the form of R; is very similar to the 0 component of this 4-vector,
measured in a different coordinate system (Lorentz boosted). The magnitude of this
boost from the “laboratory” system ( where we measure ¢, [ ) to this new system would

be |5| = /1 —4m? /s in the direction of the total 3-momentum g+ [.5 The total energy
p° measured in this new frame of reference is

El. =29R, (A.25)

e On the other hand this energy, measured in the boosted system, can be also written as

EL. =mp, (A.26)

where, this time, myu = /|pup*| and 7 is the Lorentz factor corresponding to the
boost from the center of momentum system to this new system of reference.

¢ Equating these two expressions, one finds:

| o~/ 2 /
Ry = |pup |l:£ mry —m'y’Zm, (A.27)

2 v 2 /s
because 7' > 1. [ ]

So, going back to the expression for the last Heaviside theta (A.17) we can conclude
that it is both non zero and physical only between R; and Rs. We can then express the
whole C3 integral as

3 2 '(R2) 12 T2 2
9; F'(q) / l 1 ' q (M[*(s,7)
Cy = ——t—=— [ dld(cos a)— fo(l) dq — d(cos ) ——=—=—==, (A.28)
4(2m) Ey £ 7' (R1) Eq Ja ‘@ ?
9p cos (3;

where ¢'(R) = VR? —m? and we have made use of the fact that Ry > E, + E; to eliminate
O(E, + E; — Ey). The observant reader may have noticed that not only we omitted the
dependency on the dynamical variables of |M|?, but we have also simply carried it outside
of both integrations, on I/ and 5. As the Mandelstam variables encompass all of the relevant
invariant quantities involved on the kinematics of the process itself, it is reasonable to expect
the scattering amplitude |M|? to only depend on (s,t,u). Now, we have solved first a three

5This is a valid boost rapidity 3, as using the properties of the Mandelstam variables one can find |/§\ =
pSM / ESM | with these quantities being the individual particle’s energies and momenta measured in the center
of momentum system.
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momentum integral in U imposing the momentum conservation Dirac delta. When calculating
scattering amplitudes momentum conservation is explicitly imposed, so we can consider | M|
to already be evaluated at V= —q— I+ q7 . Now for the 8 integral we have solved a Dirac delta
in the function g defined in (A.3). If we express this function in Mandelstam variables we can
see that it is simply dp(s+t+u —4m?). Thus, we can impose the condition s+t +u = 4m?
in |[M| and bring it out of the  integral. Note that this condition is trivially fulfilled given
the definition of s, ¢ and wu.

A.1.3 Change of variables to {s,t, Eq, Eq}

At this point, as mentioned above, further integration is not possible without specific knowl-
edge of the scattering amplitude |M|. However in terms of the variables we have used so far,
namely {, q’ , l, I }, the scattering amplitude may indeed have a very complicated and ulti-
mately redundant expression. The Mandelstam variables contain all of the Lorentz invariant
quantities that are involved in the expression of | M| so that its only dependencies would be
on (s,t), after having applied the identity s + ¢ +u = 4m?. In order to accommodate to a
more general expression for the scattering amplitude, it is convenient to change variables in
the integrals of C3 to obtain an expression involving (s, t). Indeed, we can make the following
variable change:

¢ = By = Vq*+m?
l—>El:\/l2+m2

2
m ql . (A.29)
=2F,E; |1 —
cosx — S q l< +Equ Equcosoz>
m2 qq/
0 —t=-"2EFy(1— — 0
cosf — Ly < FyEy  B.Ey cos >
The integration measures change accordingly as:
E, E
d'dcosf = L dBydt , didcosa = ——sdEds . (A.30)
2q¢’ 24!
So that the whole integral can be expressed as
3
9;F(q) / g IMP(s:t) ( t)
Cs3=————— [ dEdsfo(E)) dE (A.31)
16(27T)4qu2 R1 :El) t1 ’ 99
a8 cos 3;

Now, the expression (A.13) that states |9g/08|2.,
cos f can be recast into a polynomial in ¢ using (A.22):

5, as a second degree polynomial in

2
gg — a2+t + (A.32)
cos 3;
with 1
agt) = —?‘l + q_12
2 .
) = =5 {s(Ey = B)(Ey = By) + 2P sin* o} (A.33)
S
¢ = S (Am? — 5)(E, ~ Ey)?

q
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The ingredients are all set to perform the ¢ integral given an expression for |M|. We
then assume that this amplitude can be expressed as a second degree polynomial in (s, t), as
n (2.4):

IMJ* = 7”(2,0)52 +mq1)st + m(o,z)?f2 +m,0)8 + mo,1)t +m0,0) - (A.34)

In order to explicitly perform the ¢ integral, we group the coefficients in (A.34) in their
respective powers of t:

|./\/l|2 - Att2 + Btt + Ct . (A35)
So the t integral becomes
/152 |M|2 1 t2
— At
t \/ (g2 | FORVENC m
t2 t2

-l-Ct

+Bt

\/t—tl tz—t }
36)

\/ (t —t1)(ta — 1)

Then, we use the following identity:

[l i () e ) e e

where T(4,_) are the solutions of az? + bz + ¢ = 0 to arrive at

Ro

3
9; F(q) / / ™
=——2 2 [ dEdsfy(E, dE,
Cs 16(2m)* Eqq tdsfo(E1) R |“+l|

2
3 (b:(;)) - éJta:(3 )cét) b:(f)
| 5 (o)’ " ) T
as

3
The expressions in brackets have fairly complicated forms, but mostly polynomial in nature
in (Ey, Ey, Ey,s,m). They can be factored into powers of Ey in order to integrate them as:
(t) cét)

2
3(6")" - 4a

() ML { B |4(25 (B — 4B, + B - 2m?)
8 (agt)) 8|1+ ql*

+4m?(E; + E,)? + 32)]

(A.38)

+E, [43(4m23(3El — E,) — 4m2(3E, — E,)(E, + E,)>
+ $2(E, — 3E) — AE,s(E, — 2E)(E, + Eq))]
+ 857 (m? (3EF +12B0B, + TEZ) + B2(Ey + E,)* + 6m*)
—45° (B3E,Eq + 2E; 4+ 6m*) — 16m*s(E; + E,)*
x (3ELE, + 2E2 + 6m?) + 48m*(E, + E,)* + 354} } , (A.39)

®)
b 1
S E,|s(E, - E)
2a§t) ’l_i_(ﬂQ{ q|: q :|

[ s (BB + By) +2m2) +2m2(Br+ E)* +52/2] L. (A40)
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Once these are replaced into (A.37), we can perform the integral in Ey using

( R2 -
/ dEy = |7+ 1|\/1—4m?2/s

Ry

R» .
/ dE, Ey = |+ /1 4m2/s(E, + E})/2 . (Al
Ry

R . .
/ dEgE2% = |G+ 1\/1—4m?[s[(Eq + E)* /4 + (1 — 4m?/s)|q + 1] /12]

R1

In this way we arrive at the following expression for the integral Cs:

3 2

(A.42)
which can be recast into a more compact notation:
3> 1o
9; F(q,k, ) /
=—t——""" [ dEdsfo(E A.43
Cs 320277 Eyq 1ds fo(Ey, 7)x(s), (A.43)

where the function x is defined in (3.2), and we explicitly wrote the arguments of each
function. Now, in this particular integral we could in fact formally integrate in s to obtain
only a last integral over E; of the background DF times an arbitrary function. We leave this
as it is, because this form will become practical in calculating the next collision integral Co.
It becomes quite remarkable that the y function only depends on s (which in turn is only
proportional to the CoM energy). This might suggest that a more straightforward method
of obtaining these integrals may be available.

A.2 Calculation of Ca[f]

The calculations for the Cy term are identical to the ones developed in the previous section.
The only difference here is that the roles of the background and perturbed DF are reversed.
This can easily be seen from the definition of the term in (2.3). So, the final expression for
the integral is

gl f 0 Eqa T

Co —
2T T 32(21)3E,q

/ dEdsF (1, k,7)x(s), (A.44)
where we have implicitly used I = [(E}, s). This is true given the parametrization (A.4) for
this vector, as its magnitude can be uniquely determined by E; and its angle with the vector
¢ by the Mandelstam variable s. Therefore, unlike the previous case, the integral on s cannot
be performed, since F' also depends on it.

A.3 Calculation of Cq[f]

The procedure for calculating C; are very similar to the ones used to calculate Cs, but with
some changes in the parametrization of the vectors involved. Following from the expres-
sion (2.3), the full integral can be expressed as

2g3 /d3l d3q &PU
Eq(27'(')5 2El 2Eq/ 2El’

-
/

Clf] = M2 (q+1—o = 1) folq)F(i

). (A.45)
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A.3.1 Solving for 'and B

Since the integrand does not depend on l_; we perform the first integral using the momentum
conservation Dirac delta along this variable (instead of I’ as it was used before). After doing
this, we use a new parametrization that reflects our choice of remaining variables:

7=q(0,0,1)
¢ = ¢ (0,sin 6, cos 0) : (A.46)
/= I'(sin 8 sin «, cos 3 sin v, cos )

Following the steps on section A.1, we reach the following expression:

3 122 -
Ci[f] = 97’4 /d(cos 0)d(cos a)dl'dq’ 1 fol)F(¢)O(Ey + Ey — E)|M|?
4Eq(27'(') Eq’ El’ (A 47)
27 L. ’
< [ dso(ald. 7).
0
where this time the argument of the remaining Dirac delta g can be expressed as
g=2m*+ (2B, Ey — 2By E, — 2E,E,) — 2¢'l'(sin acos Bsin 6 + cos a cos ) (A.48)

+2ql’ cos a + 2qq’ cos 6 .

Again, as the [ integral only involves the Dirac delta we can rewrite this integral as in
equations (A.7), (A.9) where in this case the functions involved are:

g; =2¢'l'sinasin Bsin 6, (A.49)

cos B = (2¢'I'sinfsina) ™! |2m? + 2E, By — 2EpEy — 2E,E,) — 24" cos avcos 0
+ 2¢l’ cos a + 2qq’ cos 9] . (A.50)

We also add here a Heaviside theta function in cos? 3; to ensure the condition |cos ;| < 1,
but this time with the argument

2
99 = aga) cos? a + bﬁ“) cos av + cﬁ“) , (A.51)
85 cos 3;
with coefficients:
o\ = 47 - g
b\ = 81'(¢/ cos 6 — q)[m? + Ey By — E,Ey — EyEy + qq cos 6] , (A.52)

i) = {1 sin? 0 — [m? + By By — EyEy — EgE, + qq' cos6)”}

Then the C; integral results:

3 12 /2
_ gi 14 /L / ) L
Cilf] = 1E, (27)] /d(cos@)dq Eq/F(q) dl B fo(l"O(Ey + Ey — Ey)
2
X /d(cos a) M| @(aga) cos? a + bga) cos o + cga)) .

\/aga) cos? o + bga) cos o + cga)
(A.53)
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The argument for the last theta function is a second degree polynomial, this time in cos «,
with negative leading coefficient. As before, we solve this condition by imposing integration
limits in the cos « integral and adding a new Heaviside theta function to ensure the existence
of real roots for the polynomial (A.51). The discriminant of this polynomial becomes:

2
(1) = 40l = 6412 sin? 0, (1 — cos z){QEf, +2(Ey — Ey)Ey

E,E, (1 —cosz)+ melq q_7|2 o
— / — COs 2z
7 EEy(1—cosz)| ]’
where
1 —cos 1 m* ad cos 6 (A.55)
—cosz=1-— - . .
E,Ey E.Ey

The argument of the function again has four real roots in Ey : {—m,+m, Ry, Ry} with R; 2
given by

Ris= 4B, —By+lg—q)/1+ 2m? (A.56)
L2= g Fe T Pe =l EqEy(1—cosz) | '

As before, we can discard any roots smaller than m as non physical. This time however, the
ordering of these roots is different, as we will see below once we express these roots in terms
of Mandelstam variables.

A.3.2 DMandelstam variables for C;

So again, in order to assess the ordering of the roots Ry 2, as well as facilitating the integration
of the collision kernels, we make use of the Mandelstam variables. The relevant variables for
the integrals here are ¢ and u. Their expressions are given in (A.20), however as we have
changed the parametrization of the vectors themselves for this collision term, we need their
expressions in terms of the momentum variables:

t=(q—q)?= —2E,Ey + 2m? + 2qq’ cos = —2E.E, (1 — cos z)

(A.57)
u=(q—1)%=—-2E,Ey + 2m? + 2ql’ cos «
(@) _ 4 @ (o) : :
Now, the roots of (b1 > —4ay ’c; 7 in terms of these new variables is
1 5 - 4m2
RLQ - 5 Eq - Eq/ + ]q —dq ‘ 1-— T . (A58)

We can see that the argument in the square root is always positive, because ¢ is always neg-
ative. To find out the order of the roots, we start by noticing the following three conditions:

1. Thanks to the fact that ¢ is spacelike, we can infer that |E, — Ey| < |¢— 7|

2. As t is negative, /1 —4m?/t > 1.

3. Thus Ry < 0 for any ordering of E;, E,. [ |
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Then, as R; is negative, it is not a physical value for the energy integral. The proof that
Ry > m?, hence R, is physical, is slightly more complicated but possible, and is left to the
reader. It is important to note in this case the ordering of these roots in order to understand
the allowed ranges for Ey. If we focus on the discriminant (A.54) we see that, as before, it has
four roots but in this case the value is positive in the limit Ey — oco. So, as the ordering of all
four simple roots is in this case [(—m < Rj)or (R < —m)] < m < Ry, we can conclude that
the only range of energies where both Ey > m and the discriminant is positive is Ey > Rs.
So, for C; we have boundary conditions for Ey that are completely different from the ones
for Cy and C3. We can then use these limits in energy for the full integral but first we need
to change variables to Mandelstam variables to perform them, these time using (¢, u).

A.3.3 Change of variables to {t,u, Ey, Ey}

So, we now make the appropriate change of variables proceeding in a very similar way as
in the case of C3. In fact, the expression for the variables and differentials in Ey and ¢
are exactly the same as (A.29), (A.30). It is therefore immediate to see that the change of
variables to Ep and u is expressed as:

(¢ = By = Vq* +m?
' = Ep = \I'? + m2

2 I A.59
cosa — u= —2E,Ey (1 - % - EZEI' cos a> ’ ( )
2 !

m qq
cosH—)t:—QEE/(l— — cos@)
\ R E,E, E,E,

with the corresponding integration measures given by
/ Ey / Ey
dg'dcos = —sdEgydu , dl'dcosa = —<dEpdu . (A.60)
2qq’ 2ql’

Now, we had expressed |M|? in terms of only (s,t) in (A.34). However, this time s is
not a relevant variable of integration. We can use the relation s + ¢ + u = 4m? to obtain an
analogous expression in variables (¢, u):

IM|? = Ayu® + Byu+ C, (A.61)

with the {Ay, By, Cy} coefficients only depending on t. So, the C; collision integral can be
expressed as:

3 oo u(y2)=us 2
g; (M |*(u,t)
C :’/dE/thE/,t/ dEy f E/ du 22D A 62
L= 8@ B, g dtF (Ey,t) _— (Ev) o ‘89 = (A.62)
9B
cos B;

with ;2 the roots of |9g/0p)|? g, in cosa. This expression depends on 10g/0p)? this

cos cos B,
time given by (A.51), which can be recast into a polynomial in u as:

2
‘89 = agu)u2 + bgu)u + c§“) ) (A.63)

op

cos f3;
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with coefficients:
ot = ~l7— 7P/’
b = —20t(B, + By)(Ey — Br) +20%¢*sin® 0)/q® . (A.64)
& = t(By — Ey)*(4m® — 1) /¢

The integral in uw can then be computed using the property (A.41), so that the full
collision integral becomes

3 [e's)
g.
C1 = —t dE_ dtF(E, 1t / dEl/fo El/ =
8(2m)*Eqq o A1) Ro ( )Itf— 7|
2
3 <b§u)) o 4agu)c§u) bgu) (A65)
x | A, 5 — By, @ + C,
8 (a&“)) 2a,

The expressions for the coefficients accompanying {A,,, By} can be expressed in terms
of powers of Ey, in order to facilitate integration:

@)? _ 4,
30 —4day’c
( 1 ) 21 v b {E?, [4t (3(Ey + Ey)*t — (By — Eg)? — t)(—4m? +t))}
3 (agu)) 8|7 —d'|*

+ Ep [475(4(Eq — By )2 (E, + 3Ey)m? — A(Ey(E, — Ey)(E, + 2E,)

+ (By + 3B, )m2)t + (B, + 3Eq/)t2)]
+ [(48(B, — Ep)'m* = 16(E, — Ey)*m?(2E2 — 3E,Ey + 6m)t
+8(E}(Eq — Ey)? + (TE} — 12E,Ey + 3E2)m? + 6m*)t>

— 4(2E2 — 3E,Ey + 6m?)t® + 3t4)} } , (A.66)
(w)
B .
= = Ey t(E + F /)
2a{" |7 q’\Q{ i+ )
+ [Q(Eq — By)?m? + 2B, (—Ey + Ey)t — 4m?t + tﬂ } . (A6T)

Here the approach diverges greatly from the one we took for Co and Cs. In the previous cases
we managed to also perform the integration in energy, but here this cannot be done without
knowing the background DF fy. Since given fy, the integration in Ey can be performed, it
is convenient to define

o0

<f()>n (Eq, Eq/, t, T) = /R ClEl/f()(El/, T)EZT/L , (A68)

which is a function of (E,, Ey,t) only through R, and express the full collision integral in
terms of these moments of fj:

T
C = m /qu/th(Eq/,t)

Ay
X {w{ (fo)o [4t (3(Ey + Ey)?*t — (Ey — Ey)? — t)(—4m? + t))}
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+ {foby |[4H4(E, = By)*(By +3Ey)m?
— A(Ey(Ey — Bg)(Eq + 2Ey) + (Ey + 3B )m?)t + (B + 3By )12)]
+ (fo)o |(48(E, — Ey)'m* = 16(E, — Ey*m*(2B2 — 3E,Ey + 6m?)t
+8(E}(Ey — Eg)? + (TE} — 12E,Ey + 3E})m”* + 6m*)t>
— 4(2E2 — 3E,E, +6m®)* + 3t4)} }

- Q‘CJE“JIP{ o [HE, + Ey))|

+(fog [2(Eq — Ey)*m? 4 2E,(—E, + Ey)t — 4m2 + tﬂ }

G <f0>o} : (A.69)
17— |

We can recast this expression in terms of a (fairly complex but mostly polynomial)
integration kernel K(Eq, Eq,t,T).

3
g.
Cil=—— | dEydtF(Ey,t) X K(Ey, Ey,t, 7). A.70
1 16(27T)3qu/ q ( q' )X ( g g’ 57—) ( )
This integration kernel is the most complex part of the collision term, mainly due

to the explicit dependence of the integration kernel on time through the momenta of the
background DF.

B The zero order collision term

In this appendix we provide details on the calculation of the zero-order collision integral. As
shown in (2.2) this can be split into two parts: Dp[f] and Da[f]. The treatment of the term
D,[f] mimics exactly the one for Cs[f] but with the simplification F(q, k, 7) = fo (Ey). Thus,
it is immediate to see that this term can be expressed as in (3.6).

B.1 Calculation of D[f]

The term Dll f]_}holds some similarity to the term Cj, as it involves the integration of both of
the vectors ¢/, I’ on which the distribution functions are evaluated. The derivation for this
term closely follows the one for the perturbed DF until equation (A.65). In this case, the
result can be written as

3 o0 :
DS = iy | B Ey) [ aE |J;°(_Elq)| [Aul o+ Bul ]+ Cul. J} (B1)

where the terms accompanying the factors {A,, B,,c,} are specified in equa-
tions (A.66), (A.67). Continuing the procedure as we did for C; will require the moments for
the background distribution function, which is exactly the quantity we are trying to obtain.
Here instead of doing that, we will express this integral in such a way that it depends on
the integral of a function times the background DF itself: we want to obtain a convenient
expression for the integration kernel to be used in the equation for fy. To do that, we will
integrate in ¢, given that the background DF does not depend explicitly on this variable. A
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complication in this approach comes from the fact that a simple modification of the order of
integrals will not work, as the boundary for the integral in Ej, Ry, depends explicitly on ¢.
In order to circumvent this, let us first define the variable P

= |7 7| 4m?
=19—q ;
We change variables from ¢ to this new variable P in the integral:

t(cos6=1) Eq+Ey QP12
dt(. .. :2/ dP (.). (B.3)
/t(cos 0=-1) ( ) |Eq—Egy|+2m ‘4m2(Eq - Eq,)Z - ZL/2|

Now, we rewrite the integration limits as a series of Heaviside theta functions

Eq+E, o)
/ dP/ dEy = /deEl’@(El’ —Rg)@(P— (|Eq —Eq/| +2m))@(Eq +Eq/ —P) .
|

Eq—E |+2m Ry
(B.4)
Then, using the relations
©(E, + Ey — P)O(2Ey — E;+ Ey — P)
=O(Ey — Ey)O(E;+ Ey — P)+O(E, — Ey)O(2Ey — E,+ Ey — P), (B.5)
@(QEl/ — Eq + Eq/ — P)@(P — ‘Eq — Eq/| — 2m)
= @(Eq — Eq/)@(2El/ — Eq + Eq/ — P)@(P — Eq + Eq/ — 2m)
+ @(Eq/ — Eq)@(QEl/ — Eq + Eq/ — P)@(P - Eq/ + Eq/ - 2m) N (B6)
it can be found out that the integration splits into four parts:
Eq Eq 2El’_Eq+Eq’ o Eq—‘rE !/
/ qu/ / dEy / dP + / dEy /
m Eq—E +m Eq—E +2m Ey -E /+2m (B?)

Ey 2K, — Eq—I-E ’ Eq-l-E /
+ / dE, / dEy / dP + / dEy /
Ey o —Eqt+2m Ey Eq+2m
Here, each of the four parts is first integrated in an angular variable and then in the energies.
Using this procedure for the integral (B.1) the collision integral can be expressed as:

3 4
_ g; 2 : )
Dl [f] = 716qu(27'()3 — /L qu’dEl’fO(Eq’7 T)fO(El’a T)kz(Eqa Eq’v El’a 7-) ) (B8)

where Z; refers to the integration method in energies specified in (B.7) and defined in (3.8)
and the kernel functions k; are expressed as in (3.9).

There, we have labeled the kernels with ¢ = 1,...,4 according to the integration regions
Z; in the order in which they appear in equation (B.7). We have chosen to return the integrals
to their original angular variable t instead of P, as the integrands themselves are functions
of t and can’t be expressed neatly in the new variable and the integration measure is also a
function of both P and ¢. The integrals labeled 7 = 2, 4 possess the original limits on ¢, as the
integration scheme has not modified the bounds in P appearing in (B.3). The ones labeled
i = 1,3 are the (two) solutions of the equation P(t12) = 2Ey — E; + Ey. The integrands
themselves are expressed in equation (3.10) on a similar way as in equation (A.69).
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C The DM-DM collision term for a massless mediator

Here, we will give the form of the DM-DM collision term for the case of an actually massless
mediator, out of the models considered in section 3.3 and the ansatz (2.4). In this case, we
should start by noting that, as the mediator population is not Boltzmann suppressed, this
is one of the three relevant collision terms in the full evolution of the system: not only the
population and DF of the DM need to be tracked but also of the mediators (hereby called
DR, Dark radiation) and the other two collision terms between the DR-DR and DR-DM. In
this appendix we calculate only the DM-DM collision term.

We consider DM scattering of light or massless mediator particles under the La-
grangian (3.11). We start by considering the scattering amplitude for such a model in the
massive DM particle case [80]

(C.1)

t72+? stu

M = 6g + 16m*g" (512 L. > _dmigl(s i)

We can see from this expression clearly that in the limit m — 0 the amplitude reduces
to (3.13). As p/m < 1 (with p the typical momentum of the particles in the CoM frame)
the other terms in the scattering amplitude become more relevant, and the massless DM
approximation becomes invalid. As the particle becomes highly nonrelativistic p/m < 1 the
assumption of tree level diagrams being dominant breaks down as ladder diagrams become
more relevant and other approaches are more well suited for the analysis, such as considering
Sommerfeld Enhancement [87, 88].

As in section A we will start by calculating Cs first, then calculate Cq on a similar fashion

and rely on the derivations in section B to relate these results to the ones for Dy and Ds.

C.1 Calculation of C3[f]

For the Cs[f] term, the derivations in section A.l remain the same until the specific form
of the ansatz had been used in (A.38). For the sake of readability, we will split the scat-
tering amplitude (C.1) into three parts: one containing only terms on s (constant on the ¢
integration), and two others containing mixed {s, ¢} terms and {s,u} terms respectively

4 4 6 4 6
IMP _94{[64— 16m ] N [16m N 64m } N [16m N 64m ]}
(C.2)

52 12 st(s — 4m2) u? su(s — 4m?2)

= ’M@s} + ’M‘%s,t} + ‘M’%s,u} :

The s term can be integrated directly using the result (A.42), while the other terms
require special care. We start by the mixed {s,¢} term: the integral can be performed directly

to M 2
/ dt Mo (C.3)
0o oot

srm'gt (—4m? (E} + 2E.E, + 3E2 — AE,Ey +2E2 ) + 25 (B(Ey + Ey) + B2 — EEy +2m?) - 5%)

3 [s(s—4m?)
EZ—m?

s(4m? — s) |E; — Ey

In the case of the {s,u} term integral, it is better to change variables in integral (A.31)
from ¢ to u. By making use of definition (A.32) and that s+t +u = 4m? we can also perform
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the integral directly

t2 |M |?s,u}
dt (C.4)
t ﬁgf)t? o0 4 D

srm'gt (—4m? (3B + 2B/(E, — 2E,) + E2 +2E2 ) + 25 (E? + BBy — Ey) + EyEy +2m?) = )

s (4m2 _ S) ‘El ‘ s(s—4m?2)

EZ—m?

After the ¢ integral is done, as in (A.41) it is time to continue solving for the F; integral.
In the case of the {s,t} term, it is convenient to change variables to Ey = Ey — E;. The Ey
integral for this term then becomes

to
/ dE, / dt ‘{s d
R1 t1 \/ t)tZ

t+c()

Ro L 8
", STmtag’

R (E?s (s — 4m2)>3/2

X {—4m2(E, + By)? + 4B Eys + 4m®s — s* + By(2E;s — 2E,s) — SE?mQ} . (C.5)

where the integration limits are

_ 1 4m?
Rip = 3 <El - - ) ; (C.6)

and it can be demonstrated that the lower limit R; is always negative and the upper
limit R always positive. Remarkably, the {s,u} term is identical upon the variable
change Fy = Ey — Ej.

The above integrals in the new variable E exhibit divergences. A proper treatment
of the divergences requires the understanding of the infrared physics of the specific model
with the mediator fields. Here, we will write the divergent contributions as the following
integral terms

E3 n
7, = / apt~ ©.7)
I3 |E®

A possible regularization is to consider that the mediator have a small mass and, follow-
ing [66], to introduce a (physical) mass my for the mediator in the calculation of the vanish-
ing denominator on the integrals. For a truly massless mediator case some effect, analogous
to Debye shielding in plasma [51, 89], would be needed to limit the interaction range and
provide an effective length scale that would act as a regulator. In view of the limited purposes
of the present paper, here we leave the results in terms of the divergent integrals (C.7). In
terms of these, the final Cs[f] collision term becomes

344 2 4
979" F(q) / 16m _dm 16mm*q
G = 5a@npE,g | B T e —

x [(—4s (EiEy + m?) + 4m*(E, + E,)? + %) T3 + 25(Eq — E;)Ty — 8m®T4] }

92g*F(q)

532(27r)3qu/dElde0(El)Xe . (C.8)
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We remark here that any Lorentz invariant regularization mechanism must fulfill the
property x. = Xe(s), as was outlined in section D.1 and [74].

C.2 Calculation of C1[f]

For the C; term we would have to perform a similar split in the scattering amplitude, however
in this case the terms similar to (A.69) would be the ones with only ¢ dependence, and we
would have to calculate the {s,¢} and the {u,t} terms. This split of (C.1) can be expressed as

IM[* = {[ LOm ] + [1(1?4 - st(jjglﬁ t)] - [1?4 - W(Ejgﬁ f)]} (C.9)

= |M‘%t} + ’M’%t,s} + ‘M‘%t,u} :

Again we integrate directly the |M\%t Wy term, this time on u, to find the expression
/ du
\/al u2+b u—i—cgu)
8rmqg? (C.10)
) 3/2
(Elt (t — 4m2))
x { (4m*(Ey — By)? + 4B Egt — 4m*t + %) = 2Ent (B, + Ey) +8Em?} |

where E; = Ep — E,. For the term ]M|%t sy We change integration variables from u to s
using (A.63) and s+t + u = 4m? to obtain

/du\/

al uQ—i-b u—i—cgu)

8rmiqg? (C.11)
R 3/2
(Ezt (t— 4m2))
x { (4m*(Ey — By)? + 4B Egt — 4m* + %) — 2Fat (B, + Ey) + 8Bgm?} |

where Ey = Ep + Ey. In this case we can arrive to similar expressions as in (C.8) when we
account for the dlvergent E integral in (C.10). For the case of the term (C.11) the integrals
themselves are very similar, however as Fy = Ey + Ep > 2m there is no singularity in the
energy integral and regularization is not needed. The final results for these integrals can be
expressed as

> w2 M+ M
/ dEl’f(El’)/ du ’ ’{t,u} ‘ ’{t,s}
Ry u agu)ug + bgu)u 4 Clu)

8rmqg?

B t\/t (t — 4m2)?

x { (4m(By — By)? = AB Byt + dm®t — 12) Jy + 2(Ey + Bt — $m* 71 |

(C.12)
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where the results are expressed in terms of the integrals

> E,+ E)E*™ > E—-Ey
zﬂ%@¢ﬂ:/(wmq+g +/¢wmn“, (C.13)
R E| Ry E
and the integration limits are defined as
— 1 5 - 4m2
R374: 5 Eq—i—Eq/:l:)q—q 1—T (C14)

for the sum of all these integrals. Afterwards, we can express the various scattering func-
tions as:

gt 8rm*
Cl = 829% /qu/dtl"_’(Eq/7 t) —q
(2m)* Eqq tr/t (t — 4m2)?

X [ (—4m®*(Eq—Ey)* — 4AE,Eyt + 4m®t — t%) Js + 2(Eg+Eg )tJo — 8m2j1] (C.15)
16m*
+ _)77_‘<f0><6—|— tT)}
‘q -q¢

D Numerical integration of D,[f,

7]

In this section, we will provide the numerical integration scheme used to calculate 7. As was
justified in 5, the expression for this quantity can be set in terms of the kernels introduced
in 3.3: 5
_ 9i
©32(2m)3E,|q]

As we are not considering Bose enhancement or Pauli blocking, we set the equilibrium
DF as a relativistic Maxwell-Boltzmann distribution

Tfl(Eq) dEdsx(s) fo(Er) .

CU B, t) = fMB(E, T(t) = e BT (D.1)

and the function x(s) depends of the particular interaction model used. Now, in order
to numerically integrate these equations, it is necessary to adimensionalize this expression.

We define: i
F=mr , e¢=E/m , s=s/m* , T=T/m. (D.2)

Then, the expression for 77! is

) 93 oo B 2e46+2424 /2 -1 /€l -1
1 (ey) = : | darme |
32(27T)36q /63_1 1 26061+2—24/2—1/eZ—1

For any given choice of the kernel function x(s), this double integral can be readily
calculated. We will now summarize the kernels for the models considered in 3.3:

4
Constant Amplitude : xo(s) = Coy/1 — —,
s

Co = 6g* . (D.4)

dix(3) . (D.3)
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[ 4
Massive Scalar : Xim(s) = Cm[1 = — (256 — 1285 + 19s%) ,
gt [ m\*

mae
4
Vector Field : xv(s) = Cyy /1 — =(74 —29s)(1 — s?),
s
4 (gym 4 1
Cy = . D.6
v 3<mv) cost 0, (D-6)

For these models, the results of numerical integration are summarized in figure 1. In
order to obtain a relevant value of the relaxation time and compare it to a cosmological
timescale, it is usual to obtain a thermal average of 7—!. For any quantity g, a thermal
average is defined as
() = fd3q g(@feq(EQ)

o [ d3q fea(Ey)
where f°? is an equilibrium distribution function. In particular, for the inverse relaxation
time, this thermal averaging can be reduced to the following expression, accounting for

adimensionalization:
4 i deqeq\/eg —1fMP(eg) 77 (eg)
<7‘ >th = , (D.8)

floo degeq /63 — 1fMB(¢,)

where we have assumed the background DF is given by (D.1).

(D.7)

D.1 Parallelism with the calculation of abundances of stable species

Several similarities exist between the calculation of the thermal average of the relaxation
time and the procedures in [74]. In that paper, the thermal average of the quantity ovp,l,
i.e. the cross section times the relative Mgller velocity for elastic 4 fermion interaction, is
calculated. This quantity differs from the relaxation time only in the normalization, and a
parallelism between the original quantity ovy,e(©, s) and x(s) can be obtained.

The definition of ovye from [90] can be given through the full Boltzmann equation:

@+ u9)f =5 [ Py fo = Fufdovm (D.9)

with f; = f (Z) If we eliminate the spatial dependency of the DF we can identify this equation
as the Boltzmann equation for the background DF, we can further identify the terms D; and
Ds. By comparing it with the expression we had for Do, it can be found that

x(s) 2E,E/(2m)3 / 1 / 9 4m?2
= dQovmel = ——— [ dcos O, 1-—, D.10
1 e Vol 102 cos | M| . ( )

)

with O, the scattering angle measured in the CoM system. This property, apart from
relating x and o, reproduces the feature that ovmEgE) is a function of s only (see [74]).
We can use the procedures outlined in the calculation of thermal averaged annihilation cross
section to obtain an alternative expression for the thermal average of the relaxation time:

3

(T = Szf;@QN / dsx(s)\/1— 4SmQ\/ETMWE/T) , (D.11)
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where T is the temperature of the background Maxwell-Boltzmann DF, K, is the modified
Bessel function of the second kind of order n and N is a normalization constant defined as

N7l = /quqqu(l)VIB(Eq) : (D.12)

This expression yields the same results as the one in (D.8), but it is much easier and faster
to implement numerically.
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