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We consider the problem of encoding pairwise correlations between coupled dynamical systems in a
low-dimensional latent space based on few distinct observations. We use variational autoencoders (VAEs)
to embed temporal correlations between coupled nonlinear oscillators that model brain states in the wake-
sleep cycle into a two-dimensional manifold. Training a VAE with samples generated using two different
parameter combinations results in an embedding that encodes the repertoire of collective dynamics, as well
as the topology of the underlying connectivity network. We first follow this approach to infer the trajectory
of brain states measured from wakefulness to deep sleep from the two end points of this trajectory; then, we
show that the same architecture was capable of representing the pairwise correlations of generic Landau-
Stuart oscillators coupled by complex network topology.
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Many biological systems can be understood in terms of
simple dynamical rules coupled by heterogeneous con-
nectivity patterns. Perhaps the most paradigmatic example
is the human brain, where complex collective behavior
emerges from the nonlinear dynamics of ≈1010 neurons
interacting at ≈1015 synaptic connections [1]. In spite of
this complexity at the microscopic scale, the brain sponta-
neously self-organizes into a reduced number of discrete
states, such as those in the wake-sleep cycle, which
suggests that a low-dimensional manifold could be suffi-
cient to encode its large-scale dynamics [2].
The mechanisms underlying the emergence of different

brain states can be probed using whole-brain models based
on conceptually simple local dynamical rules coupled
according to empirical measurements of anatomical con-
nectivity [3], for instance, by coupling nonlinear oscillators
with the long-range white matter tracts inferred from
diffusion tensor imaging (DTI) [4,5]. After parameter
optimization to reproduce neuroimaging data acquired
during different brain states, the models can be used to
explore the interplay between local dynamics, long-range
structural coupling, and the formation of large-scale activ-
ity patterns [6] and as methods for data augmentation to be
combined with machine learning techniques for the pur-
pose of brain state classification [7,8].
While whole-brain models can reproduce the functional

connectivity of brain states such as those seen in the
progression from wakefulness to deep sleep [9,10], it is
unclear whether coupled dynamical systems can also
capture relationships between these states, encoding them

into a low-dimensional manifold that preserves the ordering
within brain state progressions. More generally, we con-
sider a system of coupled units whose dynamics have been
optimized to reproduce the second-order statistics (i.e.,
pairwise correlations) of a real-world system and ask
whether different discrete states of such system can be
efficiently represented by latent variables that are capable
of reproducing the whole repertoire of states from a reduced
number of representative examples. In the particular case of
collective brain dynamics, this is equivalent to asking
whether the end point states of a certain progression, such
as the descent from wakefulness into deep sleep, can be
used to learn a latent representation that encodes all
intermediate stages, and whether this representation can
be extrapolated to reproduce states beyond this progression.
We used whole-brain models fitted to empirical data to

generate pairwise correlation matrices for the different
brain states that comprise the human wake-sleep cycle:
wakefulness, N1, N2, and N3 sleep (N1 and N2 are
intermediate stages, while N3 is the deepest stage of
human sleep) [11,12]. Rapid eye movement sleep data
were not included since the required functional magnetic
resonance (FMRI) recording time was not possible due to
technical constraints. Next, we trained a variational auto-
encoder (VAE) with matrices corresponding to wakefulness
and N3 sleep, showing that intermediate (N1 and N2) sleep
stages were embedded continuously in the latent space, and
that the resulting two-dimensional manifold could also be
extrapolated to capture known results concerning the
structure-function relationship during unconsciousness
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[13,14]. Finally, we assessed the relationship between
latent space variables and the parameters of generic coupled
Stuart-Landau oscillators.
Whole-brain model.—We start from a model constructed

from 90 Stuart-Landau nonlinear oscillators, each repre-
senting the dynamics within a macroscopic brain region of
interest [4]. The coupled dynamics are given by

dxj
dt

¼ ða − x2j − y2jÞxj − ωjyj

þ G
X

i

Jijðxi − xjÞ þ βηj;

dyj
dt

¼ ða − x2j − y2jÞyj þ ωjxj

þ G
X

i

Jijðyi − yjÞ þ βηj; ð1Þ

where xj is the dynamical variable that simulates the FMRI
signal of region j, and Jij represents the symmetrical
coupling matrix that weights the connectivity between
regions i and j. This matrix is inferred from the diffusion
of water molecules in white matter from DTI recordings
and represents the empirical distribution of long-range axon
bundles in the brain (further information on the experi-
mental procedures to obtain and analyze FMRI and DTI
data can be found in the Supplemental Material [15]). The
bifurcation parameter (a) controls the proximity to oscil-
latory dynamics and G scales the global coupling between
oscillators. The ωj values were estimated from the empiri-
cal FMRI data. These frequencies ranged from 0.04 to
0.07 Hz and were determined by the averaged peak
frequency of the bandpass-filtered FMRI signals of each
individual brain region [10]. Finally, ηj is an additive
Gaussian noise term that is scaled by β ¼ 0.04. An
exploration of another model presenting an order-disorder
transition can be found in the Supplemental Material [15].
Equation (1) can be optimized to reproduce the second-

order statistics of FMRI data acquired during different brain
states. In previous work, we proposed to reduce the
complexity of the model by grouping brain regions into
well-studied functional networks, known as resting state
networks (RSNs) [10]. We encoded the 90 bifurcation
parameters (aj) into six parameters representing the con-
tribution of each RSN to the local dynamics as
aj ¼

P
6
k Δk1jk, where 1jk equals 1 if the node j belongs

to the kth RSN and zero otherwise. We then applied a
stochastic optimization algorithm to determine the Δk and
G that best reproduce the correlation matrix Cij of each
state in the progression from wakefulness to deep sleep.
The Cij contains in its i, j entry the linear correlation
between the empirical and simulated FMRI time series
corresponding to nodes i and j [10]. The Supplemental
Material contains a comparison between empirical and
simulated Cij [15].

Encoding the Cij with a VAE.—We implemented a VAE
to find a low-dimensional representation encoding the
progression of brain states. VAEs are autoencoders trained
to map inputs to probability distributions in latent space,
which can be regularized during the training process to
produce meaningful outputs after the decoding step [34].
The architecture of the implemented VAE (shown in Fig. 1)
can be subdivided into three parts: the encoder network,
middle variational layer, and decoder network. The encoder
consists of a deep neural network with rectified linear units
as activation functions and two dense layers, which bottle-
necks into the two-dimensional variational layer, where
units z1 and z2 span the latent space. The encoder network
applies a nonlinear transformation to map the Cij into
Gaussian probability distributions in latent space, and the
decoder network mirrors the encoder architecture to pro-
duce reconstructed matrices C�

ij from samples of these
distributions.

FIG. 1. VAE architecture. The inputs are correlation matrices
Cij obtained from the model [Eq. (1)] fitted to wakefulness and
N3 sleep. The input layer has 8100 units, followed by an
intermediate layer with 1028 neurons and a two-dimensional
latent space. The next two layers reverse the encoding process,
yielding a matrix C�

ij for each z1, z2 pair in the latent space. The
bottom panel presents input matrices Cij (above diagonal) and
their reconstructed versions Cij (below diagonal) for the model
fitted to wakefulness and N3 sleep.
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To train the network, the errors were backpropagated via
gradient descent with the purpose of minimizing a loss
function composed of two terms: a standard reconstruction
error term (computed from the units in the output layer of
the decoder) and a regularization term computed as the
Kullback-Leibler divergence between the distribution in
latent space and a standard Gaussian distribution. The
regularization term ensures continuity and completeness in
the latent space, i.e., that similar values are decoded into
similar outputs and that those outputs represent meaningful
combinations of the encoded inputs. [34].
We generated 5000 correlation matrices Cij correspond-

ing to wakefulness and N3 sleep using the model described
in Eq. (1), each one using a different random seed. We then
created 80%/20% random splits to obtain training and test
sets and used the training set to optimize the VAE
parameters. The training procedure consisted of batches
with 128 samples and 50 training epochs using the loss
function described in the previous paragraph and an Adam
optimizer (gradient descent with parameter-specific learn-
ing rate and a running average of gradients and their second
moments to attenuate the effects of noise) [35]. A com-
parison with principal component analysis (PCA) is shown
in the Supplemental Material [15].
The latent space encodes the progression of brain states

during sleep.—The encoding process applied to the test set
with wakefulness and N3 sleep data generated two distinct
clusters in the latent space [Fig. 2(a)]. We then applied the
encoding to simulated correlation matrices obtained by
fitting empirical data corresponding to intermediate sleep
stages not used to train the VAE (N1 and N2 sleep). This
procedure resulted in separate clusters organized according
to sleep depth [Fig. 2(a)]. The emergence of a manifold in
latent space where the sequence of correlation matrices was
mapped preserving its continuity suggests that a low-
dimensional representation can capture the signatures of
progressively fading wakefulness.
We applied the decoder exhaustively throughout the

latent space, obtaining a pairwise correlation matrix for
each z1, z2 pair [Fig. 2(b)]. Next, we computed the
structural similarity index (SSIM) to compare each matrix
obtained from the latent space to the matrices correspond-
ing to wakefulness, N1, N2, and N3 sleep. SSIM is
defined as ½ð2μxμyþ0.01Þ=ðμ2xþμ2yþ0.01Þ�½ð2σxσyþ0.03Þ=
ðσ2xþσ2yþ0.03Þ�½ðσxyþ0.015Þ=ðσxσyþ0.015Þ� [36], where
x stands for each Cij matrix shown in Fig. 2(b) and y is the
average Cij computed for each brain state. The variables μx,
μx, σx, σy, and σxy correspond to the local means, standard
deviations, and covariances of matrices x and y, respec-
tively. SSIM has the advantage of simultaneously weight-
ing the Euclidean and correlation distances between
matrices [10]. For each z1, z2 pair, we determined the
brain state with the highest SSIM value and constructed the
latent space parcellation shown in Fig. 2(c). Again, we
observe that the latent space could be divided into regions

corresponding to wakefulness and all sleep stages, while
also respecting the ordering of brain states in the descent to
deep sleep only from the VAE fitted to wakefulness and N3
sleep [Fig. 2(c)].
Extreme latent space values predict collapse into struc-

tural connectivity.—After mapping the progression of brain
states during sleep into the latent space, we investigated
whether the variables z1, z2 could be extrapolated to
reproduce signatures of other unconscious states.Wehypoth-
esized that moving pastN3 sleep in the latent spacemanifold
where the progression of brain states is represented would
increase the similarity between C�

ij (decoded correlation
matrices computed from the dynamics) and Jij (structural
coupling matrix). As previously shown both in humans and
nonhuman primates [13,14], states of deep unconsciousness
are characterized by the collapse of functional coupling to the
underlying anatomical connectivity structure.
We decoded a wider range of latent space variables and

computed the SSIM between the output correlations and

(a)

(b)

(c)

FIG. 2. The latent space obtained from wakefulness and N3
sleep contains the orderly progression of intermediate brain
states. (a) Latent space representation obtained by encoding
the test set (wakefulness and N3 sleep) and the encoding obtained
for the two intermediate states that were not used to train the VAE
(N1 andN2 sleep). (b) Correlation matrices obtained by decoding
an exhaustive exploration of the latent space variables z1 and z2.
(c) Latent space divided into regions with maximal similarity to
wakefulness, N1, N2, and N3 correlation matrices.
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the structural connectivity. As shown in Fig. 3(a), moving
beyond the N3 region (high z1, low z2) increased the
similarity of the generated correlations with the structural
connectivity. Exploring a wider region of the latent space,
we found the highest similarity between empirical (Jij) and
reconstructed (J�ij) structural connectivity given by SSIM
ðJij; J�ijÞ ¼ 0.81. Figure 3(b) (left) shows the empirical Jij
and Fig. 3(b) (right) shows the best connectivity matrix
reconstructed from the latent space variables; in both cases,
the part below the diagonal corresponds to the matrices
thresholded at 0.2. As hypothesized, moving past the N3
region in latent space reproduced a well-known signature of
deep unconsciousness. This suggests that the latent space
constructed from wakefulness and N3 sleep not only
represented intermediate stages, but also captured a mani-
fold where an ampler range of levels of consciousness can
be represented.
Mapping the homogeneous model into the latent

space.—To gain further understanding concerning how

the VAE successfully captured the progression of brain
states from few parameter combinations, we trained a VAE
using a homogeneous version of the nonlinear coupled
oscillators in Eq. (1) (i.e., same a for all oscillators) and
compared the latent space encoding in variables z1, z2 with
the parameters a and G [9]. While the resulting correlation
matrices do not reflect those obtained from the empirical
data, the homogeneous model can be used to gain insight
on the mapping performed by the VAE.
We trained a VAE with 8000 correlation matrices

randomly extracted from a set of 10000 matrices generated
with the homogeneous model. Half of these matrices were
generated using a high coupling factor (G ¼ 0.8) and a
bifurcation parameter in the oscillatory regime (a ¼ 0.015),
while the other half were generated using low coupling
(G ¼ 0.2) and a bifurcation parameter corresponding to
fixed-point dynamics (a ¼ −0.015).
We decoded the latent space in 20 steps from −6.2 to 6.2

for each variable, obtaining a correlation matrix for each
parameter combination. We also constructed several corre-
lation matrices from the model with a between −0.02 and
0.02 and G between 0 and 1. For each parameter combi-
nation, we found the combination of latent space variables
that maximized the SSIM between both matrices. In this
way, we related each pair ða;GÞ in the parameter space with
each pair ðz1; z2Þ in the latent space. We found that both
sets of variables were related by approximately linear
relationships (G vs z1, r ¼ −0.70, p < 0.001; G vs z2,
r ¼ 0.69, p < 0.001; a vs z1, r ¼ −0.56, p < 0.001; a vs
z2, r ¼ 0.52, p < 0.001) (Fig. 4). This shows that, for the
simplified case of homogeneous a, the latent space approx-
imates a linear transformation of the parameters governing
the dynamics of the coupled oscillators.
Discussion.—Several recent studies demonstrated that

low-dimensional models suffice to capture the large-scale
correlation structure of neural activity seen during different

(a)

(b)

FIG. 3. Latent space variables can be extrapolated to reproduce
increased structure-function coupling as a signature of uncon-
sciousness. (a) An exhaustive exploration of the SSIM between
the decoded correlation matrices and the empirical structural
connectivity matrix. High z1 and low z2 maximize this similarity.
The red rectangle indicates the range of z1 and z2 reproduced in
Fig. 2(a). (b) The empirical structural connectivity (left) and the
best connectivity matrix reconstructed from the latent space
(right) with the lower triangular part representing the matrices
thresholded at 0.2.

FIG. 4. Relationship between latent space variables (z1, z2) and
the parameters of the homogeneous model (a, G).
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brain states [9,10]. We went a step further, showing that
these models implicitly represent different brain states as
points in a low-dimensional manifold. This was established
following a constructive process that consisted of training a
VAEwith correlation matrices belonging to a reduced set of
brain states and showing that the latent space represented
intermediate states and could be extrapolated to produce
hypothesized signatures of deeper unconsciousness. More
generally, we showed that complex nonlinear dynamics
depending on two parameters could be represented by a
latent space that approximated a linear transformation of
these parameters. Our results suggest that other (e.g.,
pathological [37]) brain states could be captured and under-
stood in terms of trajectories within a low-dimensional latent
space, with potential applications in diagnosis, prognosis,
and data augmentation for automated classification.
Generally, we propose that whenever complex collective
dynamics are suspected to emerge from few independent
parameters, VAEs can be applied to reconstruct these
parameters as a trajectory embedded in a low-dimensional
latent space.
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