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ABSTRACT: In the Second Order Theories (SOT) of real relativistic fluids, the non-ideal
properties of the flows are described by a new set of dynamical tensor variables. In this
work we explore the non-linear dynamics of those variables in a conformal fluid. Among all
possible SOTs, we choose to work with the Divergence Type Theories (DTT) formalism,
which ensures that the second law of thermodynamics is fulfilled non-perturbatively. The
tensor modes include two divergence-free modes which have no analog in theories based on
covariant generalizations of the Navier-Stokes equation, and that are particularly relevant
because they couple linearly to a gravitational field. To study the dynamics of this irre-
ducible tensor sector, we observe that in causal theories such as DTTs, thermal fluctuations
induce a stochastic stirring force, which excites the tensor modes while preserving energy
momentum conservation. From fluctuation-dissipation considerations it follows that the
random force is Gaussian with a white spectrum. The irreducible tensor modes in turn
excite vector modes, which back-react on the tensor sector, thus producing a consistent
non-linear, second order description of the divergence-free tensor dynamics. Using the
Martin-Siggia-Rose (MSR) formalism plus the Two-Particle Irreducible Effective Action
(2PIEA) formalism, we obtain the one-loop corrected equations for the relevant two-point
correlation functions of the model: the retarded propagator and the Hadamard function.
The overall result of the self-consistent dynamics of the irreducible tensor modes at this
order is a depletion of the spectrum in the UV sector, which suggests that tensor modes
could sustain an inverse entropy cascade.
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Introduction

Fluid description of relativistic matter proved to be a powerful tool for a clearer understand-

ing of high energy phenomena [1, 2]. Examples are the thermalization [3] and isotropiza-

tion [4] of the quark-gluon plasma created in the Relativistic Heavy Ion Collider (RHIC)

facilities, the behaviour of matter in the inner cores of Neutron Stars (NS) [5-7] and during

cosmological phase transitions [8], etc. The processes observed in those systems cannot be

explained using ideal relativistic fluids.



Unlike non-relativistic hydrodynamics, where there is a successful theory to describe
non-ideal fluids, namely the Navier-Stokes equation, there is no definite mathematical
model to study real relativistic fluids. The history of the development of such theory begins
with the recognition of the parabolic character of Navier-Stokes and Fourier equations' [9],
which implies that they cannot be naively extended to relativistic regimes. In fact, the
first attempts by Eckart and Landau [10, 11] to build a relativistic theory of dissipative
fluids starting from the non-relativistic formulation, also encountered this pathology.

The paradox about the non-causal structure of Navier-Stokes and Fourier equations,
known as First Order Theories (FOTs), was resolved phenomenologically in 1967 by
I. Miiller [12]. He showed that by including second order terms in the heat flow and
the stresses in the conventional expression for the entropy, it was possible to obtain a sys-
tem of phenomenological equations which was consistent with the linearized form of Grad
kinetic equations [13], i.e., equations that describe transient effects that propagate with
finite velocities. These equations, constitute the so-called Second Order Theories (SOTs),
whose main difference with respect to FOTs is that the stresses are upgraded to dynam-
ical variables that satisfy a set of Maxwell-Cattaneo equations [14-17], thus constituting
a hyperbolic theory. Later on, Miiller’s phenomenological theory was extended to the
relativistic regime by W. Israel and J.M. Stewart, and others [18-31].

The problem with parabolic evolution equations is not restricted to relativistic fluids.
Hyperbolic theories are useful not only in the relativistic domain, but also in the non-
relativistic one, whenever the relaxation time toward a steady state is larger than the
time between collisions as, e.g., second sound in superfluids and solids, polymeric fluids,
etc. [32, 33]. The difference between parabolic and hyperbolic theories can be ignored only
when the relaxation times are shorter than the characteristic time scale of the state. This
was originally suggested by Maxwell [14]. Muronga [34] compared the descriptions of early
stages in heavy ion collisions given by ideal, FOTs and SOTs, and concluded that the latter
were the most accurate and reliable among them.

The rationale for pursuing second order theories such as DTTs or anisotropic hydro-
dynamics [4] also comes from the observation that highly anisotropic expansions such as
in the early stages of RHICs, produce strong local momentum anisotropies that cannot be
described considering weak deviations of the distribution function from local equilibrium.
Also, hydrodynamic formalisms derived from Grad’s theory are liable to predict spurious
instabilities not present in the underlying kinetic theory, for example, when considering
perturbations of highly anisotropic flows [35], while SOTs give a more accurate descrip-
tion. As a matter of fact, not all SOTs are able to coup with highly anisotropic states:
even for moderate specific shear viscosities 1/s ~ 5-10 the (negative) longitudinal com-
ponent of the viscous shear pressure can become so large in Israel-Stewart theory, that it
overwhelms the thermal pressure, resulting in a negative total pressure along the beam
direction [36, 37].

In 1996 Liu, Miiller and Ruggieri [38] developed a field-like description of particle
density, particle flux and energy-momentum components. The resulting field equations

'Recall that the non-relativistic Fourier law allows for an instantaneous propagation of heat.



were the conservation of particle number, energy momentum and balance of fluxes, and
were strongly constrained by the relativity principle, the requirement of hyperbolicity and
the entropy principle. The only unknown functions of the formalism were the shear and
bulk viscosities and the heat conductivity, and all propagation speeds were finite. Several
years later, Geroch and Lindblom extended the analysis of Liu et al. and wrote down a
general theory were all the dynamical equations can be written as total-divergence equa-
tions [39, 40], see also refs. [35, 41-47]. This theory, known as Divergence Type Theory
(DTT) is causal in an open set of states around equilibrium states. Moreover, all the dy-
namics is determined by a single scalar generating functional of the dynamical variables, a
fact that allows to cast the theory in a simple mathematical form. Besides the dynamical
equations an extra four-vector current is introduced, the entropy four-current, which is
a function of the basic fields and not of any of their derivatives, and whose divergence
is non-negative by the sole virtue of the dynamical equations. This fact guarantees that
the second law is automatically enforced at all orders in a perturbative development. In
contrast, as Israel-Stewart-like theories must be built order by order, the Second Law of
thermodynamics must be enforced in each step of the construction [48]. In other words,
DTTs are exact hydrodynamic theories that do not rely on velocity gradient expansions and
therefore go beyond Israel-Stewart-like second-order theories. Further, DTTs have been
tested through its application to Bjorken and Gubser flows [47], where exact solutions of
the kinetic theory are available.

The novelty of SOTs, is the introduction of tensor dynamical variables to account
for non-ideal features of the flow. This means that besides the scalar (spin 0) and vector
(spin 1) modes already present in Landau-Lifshitz or Eckart theories, it is possible to excite
tensor (spin 2) perturbations. This fact enlarges the set of hydrodynamic effects that a real
relativistic fluid can sustain. As is familiar for the gravitational field, the tensor sector can
be further decomposed into scalar, vector, and divergence-free components. If present in the
Early Universe plasma, the latter could excite primordial gravitational waves [49], or seed
primordial electromagnetic fluctuations [50]. Another scenario where tensor modes could
play a relevant role are high energy astrophysical compact objects as, e.g., Neutron Stars [6].
It is well known that rotational tensor normal modes of those stars can source gravitational
waves, however at present there is no compelling hydrodynamical model for them.

The study of hydrodynamic fluctuations in the relativistic regime is a natural follow-up
to the successful application of the theory to describe thermalization and isotropization in
systems such as RHICs [3]. Among all the possible lines to pursue this task, there is the
study of the stochastic flows induced by the fluid’s own thermal fluctuations.

The development of fluctuating hydrodynamics was pioneered by Landau and Lif-
shitz [11, 51-54], who applied the fluctuation dissipation theorem [55] to the Navier-Stokes
equation. Hydrodynamic fluctuations in a consistent relativistic theory were studied in [28]
and, in the context of DTTs, in [45]. Forcing by thermal noise is relevant to the calcu-
lation of the transport coefficients of the fluid [56-58] as well as the phenomenon of long
time tails [59-65]. Noise, whether thermal or not, can also play an important role in
early Universe phenomena such as primordial magnetic field induction [66, 67] and phase
transitions [68, 69] to cite a few.



In the literature on relativistic fluctuating hydrodynamics, no distinctions were made
between scalar and vector fluctuations, not even tensor fluctuations were mentioned. So,
as the distinctive feature of SOTs is that they sustain tensor modes, in this work we shall
concentrate on the study of fluctuations in the pure tensor sector. Among all possible
SOTs, we choose to work with DTTs. The reasons were mentioned above: they are ther-
modynamically and relativistically consistent in arbitrary flows and independently of any
approximations. Consequently in a perturbative development we do not have to worry
about enforcing the Second Law.

To address the subjet of study, we use effective field theory methods, which long
ago began to be used in the study of turbulence [70-72], and continue to be a powerful
tool to study random flows [73-76]. Among all methods, the Effective Action formalism
allows to express the different N-point correlation functions of the theory in terms of loop
diagrams, which adds a new source of intuition in the intepretation of the correlations. In
this manuscript we use the Two-Particle Irreducible Effective Action (2PIEA) formalism,
through which we write down the evolution equations for the relevant two-point functions
of the problem under study, namely the Retarded and the Hadamard propagators. This
field method allows to build the propagators as the contribution of all closed interacting
diagrams that cannot be separated by cutting two of their internal lines.

The Martin-Siggia-Rose (MSR) formalism [77-82] is a systematic way to derive the
sought 2PIEA, which then may be straightforwardly evaluated through a diagrammatic
expansion [82-86]. These methods have been applied to relativistic fluids in refs. [3, 87-89].
To characterize the thermal fluctuations we shall use a formulation of the fluctuation-
dissipation theorem appropriate to causal hydrodynamics [45], recovering the Landau-
Lifshitz fluctuating hydrodynamics as a limiting case.

In summary, the relativistic perfect fluid approach that is widely used in several high
energy descriptions is rather well established [90], while relativistic viscous hydrodynamics
is much less well understood. We are dealing with systems whose fundamental description,
whether kinetic theory, field theory or a combination of both, involves many more degrees
of freedom than hydrodynamics may capture. As most excitations decay exponentially
fast, long lived modes can be considered an attractor in the space of solutions [91-94]
regardless of the initial conditions. In this sense stochastic SOTs represent phenomenolog-
ical attempts to model the longest-lived non-hydrodynamic modes as additional degrees of
freedom (besides the usual hydrodynamic ones) and the short-lived as noise, in timescales
of the order or shorter than the relaxation time, using causality as a guideline. Among all
SOTs, DTTs have the advantage of being thermodynamically consistent. It is important
to mention that recently there appeared several works indicating that causality might be
satisfied within FOTs [95-97] (see also [98]). However our interest in SOTs is precisely
the fact that its range of variables is broader, including specially divergenceless tensor
modes which enable a richer description of irreversible processes. Further, it is well-known
that the transverse and traceless projection of the anisotropic stress tensor, HfFjT, plays an
important role in the dynamics of the gravitational waves acting as a source [99]. In the
cosmological context there are several scenarios in which matter has non-vanishing HEIZT
and it affects the amplitude of gravitational waves [100], e.g. freely streaming neutrinos or
photons, interacting scalar fields and primordial density perturbations, among others.



The paper is organized as follows. In section 2 we begin by quickly reviewing the
Landau-Lifshitz hydrodynamics, after which we build the minimal conformal Divergence-
Type-Theory beyond LL. We end this section by setting the criterion for incompressibility.
In section 3 we give an abridged presentation of the fluctuation-dissipation theorem in
DTTs consistent with a causal theory [45] and outline the Martin-Siggia-Rose formalism
for the Two-Particle-Irreducible Effective Action. We briefly show how this formalism
allows to write down evolution equations for the main propagators of the theory, namely
the retarded (or causal) propagator and the Hadamard two-point function. In section 4
we study the effect of linear fluctuations around an equilibrium state and find the lowest
order causal propagators as well as the vector and tensor Hadamard propagators. In
section 5 we extended the analysis of section 4 to include nonlinear fluctuations. We
work within the free-streaming approximation, which amounts to consider times shorter
than the typical macroscopic relaxation time. Even at these very early times one may
formulate a consistent hydrodynamics that acts as an attractor for the evolution of the
system [92-94]. The free-streaming approximation is equivalent to the approximation 7 —
oo which was recently shown to be appropriate for the early stages in high-energy heavy
ion collisions [101]. In this regime we find that at one-loop in the interactions and using
dimensional regularization to treat the ultraviolet divergences, the equation for the causal
tensor propagator acquires a new term which renormalizes the relaxation time introducing
a scale dependence proportional to the fourth power of the momentum. In consequence
the Hadamard correlation function is also modified in a way that shows a transition from
a flat spectrum, for low values of p, to a power law spectrum (o< p~4) with increasing p.

Before going on a comment is in order. In the large-7 limit we are considering there
may be several so-called non-hydrodynamical modes contributing to the dynamics. We
have chosen to include only a single tensor mode as representative, because such a mode
is naturally present in the energy-momentum tensor, and so it is easily identifiable in a
large range of models. However, in the absence of a symmetry principle that singles out
this tensor mode above other possible slow modes, such as higher spin currents, these extra
modes may contribute similarly to loop corrections. In such a case, a more complex theory
must be considered and the analysis presented in this paper is a preliminary first step in
this direction. We end section 5 by briefly discussing the effect of the tensor fluctuations
on the mean value of the entropy, which is also depleted in the “large-p range” of the
spectrum, arguing that this may be an indication of an inverse cascade of entropy [102].
Finally in section 6 we discuss the results we obtained, draw our main conclusions and
suggest possible lines to pursue the study developed in this manuscript. We left for the
appendix A the discussion of the scaling law of the main diagrams that contribute to the

one-loop approximation.

2 The model

To make this manuscript self-contained, we begin this section with a condensed review of
Landau-Lifshitz hydrodynamics for a conformal neutral fluid, in order to show that a FOT
does not guarantee fulfillment of the Second Law of thermodynamics. Among all possible



SOTs, we choose a DTT to build what is arguably the minimal extension of Landau-Lifshitz
hydrodynamics which enforces the Second Law of thermodynamics non-perturbatively, and
where the dynamics of the neutral fluid is given by the conservation laws of the energy-
momentum tensor (EMT) T" and of a third order tensor A*? that encodes the non-ideal
properties of the flow. The theory is completed by considering an entropy current S* whose
conservation equation enforces the Second Law of thermodynamics. T+ is symmetric and
traceless, and A*"? is totally symmetric and traceless on any two indices [103]. We linearize
the evolution equations and find the propagation speed for the scalar, vector and tensor
modes, from which we write down a criterion to define incompressibility.

2.1 Landau-Lifshitz hydrodynamics in a nut-shell

Let us consider the simplest model for a conformal fluid, for which there is no particle
number current and the energy-momentum tensor is traceless. The energy density p is
defined by the Landau prescription

T u, = —pu (2.1)

with normalization u? = —1. Observe that eq. (2.1) is also the definition of u* as an
eigenvector of TH” with eigenvalue —p. For an ideal fluid the energy momentum tensor
must be isotropic in the rest frame, so

T = putu” + pA* (2.2)
where
AP = g™ - utu? (2.3)
is the projector onto hypersurfaces orthogonal to u”. Tracelessness implies the equation
of state
p
=-. 2.4
p=3 (2.4)

From the entropy density s = (p + p) /T we build the entropy flux
Sy = su = pBL, — B Th" (2.5)

with BZ ; = u*/Trr and where subindex LL refers to Landau-Lifshitz frame. The differen-
tial form for the first law, ds = dp/Tp 1, implies

dSy = —Brr.dT}"”, (2.6)
which gives that an ideal fluid flows with no entropy production, i.e.,

S&“ = —ﬁLLl,T(‘]L?Z =0. (2.7)
Besides from p = p/3 we have s = 4p/3Ty;, and ds/dp = 1/Tr, and we get p = o T},
where o is a dimensionless constant which depends on the statistics and the number of
species of the particles that describe the fluid. In the case of a photon gas o is the well-

known Stefan-Boltzmann constant.



A real fluid departs from an ideal one in that now
™" =T + 11" (2.8)

where II* encodes the non-ideal properties of the flow and satisfies II#*u,, = 0. If we still
consider S¥ to be the entropy flux, we now have

v Uy,
S{iu = _BLLI/T(I)J;M = ﬁLLVHfﬁ’ = —ﬁﬂ““. (2.9)

Positive entropy production is satisfied if
M, = —1o., (2.10)

where o*” is the shear tensor

2
otV — AHIAVA <ua;)\ + Uxo — BAU,\u;pp> (2.11)
and 1 « TE‘L is the fluid viscosity. This constitutive relation leads to Landau-Lifshitz
hydrodynamics, namely a covariant Navier-Stokes equation, which violates causality [23].

We may intend to solve the problem by upgrading IT#” to a dynamical variable and
adopting a Maxwell-Cattaneo equation for it, having eq. (2.10) as an asymptotic limit. We

then write
My = = [0y + 710 (2.12)
This would follow from demanding positive entropy production with an entropy production
term
|1 o .

S,!la = —E [O—IJJ/ + §H“y:| (213)
and identifying later on 7 = ¢n. There arises the problem of what is S#. A natural choice
would be

S
St =S — HIT™1L,,, 2.14
0 4 TLL u Y ( )

which is thermodynamically satisfactory, but leads to

SH — LW 3 S H

=~ |7+ 6Tl | - JIVILL B, (2.15)
The extra term may be expected to be small, as it is of third order in deviations from
equilibrium, but it is not nonnegative definite, and so we cannot be certain that the Second
Law is properly enforced. To guarantee that it is, we should go to higher order in eq. (2.12),
a step that would stem from including a new higher order term in the expression (2.13),
and then impose a condition equivalent to (2.14), and so on. In other words, in order to
have a thermodynamically consistent hydrodynamics we should enforce the Second Law
order by order in deviations from equilibrium.



2.2 Minimal conformal DTT beyond Landau-Lifshitz hydrodynamics

Instead of patching the theory one step at a time, DTTs attempt to formulate a consistent
theory in its own right by postulating new currents, besides 7", which together determine
the entropy flux. In its simplest form there is only one further current, A***, satisfying a
divergence-type equation [103]

AP =T (2.16)

where M is a tensor source of irreversibility. A simple count of degrees of freedom tells
us that we need 5 independent equations to complement the 4 equations from the energy
momentum conservation. We impose A**? to be totally symmetric and traceless on any
two indices and take the transverse, traceless part of eq. (2.16) as providing the required
equations.

The big assumption of DTTs is that we have a local First Law of the form

dS* = —B,dT™ — (,,dAMP (2.17)

with ¢, a new tensor variable that encodes the non-ideal properties of the flow. In par-
ticular, this leads to
Sl = —Gpl™. (2.18)

So the Second Law is enforced as long as
Cu I <0. (2.19)

Another consequence of eq. (2.17) is that if we consider the Massieu function density [39, 40]

OH = St — B,TH — (,, AP (2.20)
Then
o+
=TH 2.21
aﬂy ) ( )
oPH
= AWP, 2.22
9y (2.22)

and further, the symmetry of T# allows us to write

0%
0B,
Thus the theory is defined by specifying the scalar ® and the tensor I*” as local functions

of the vector 5* and the tensor (*¥, subjected to eq. (2.19). Although a DTT may be
derived from an underlying microscopic description, such as kinetic or field theory, when

P (2.23)

such is available, one of its appealing features is that one can go a long way into finding
the right DTT from purely macroscopic arguments. In this paper we shall make the
simplifying assumption that the scalar ® has no space-time dependence other than through
the hydrodynamical variables themselves, for more general situations see [47].



We start by writing the generating function ® in terms of Oth, 1st and 2nd order in
deviations from equilibrium

O =05+ Py + Do (2.24)
In equilibrium ¢*¥ = 0, so
Do = ¢o (X) (2.25)
where X = 3,8". Thus
of = 266}, (X) (2.26)
Ty = 4B"B" ¢4 (X) + 29" ¢ (X) (2.27)
then
0="TF=4[X¢5+ 2¢;] (2.28)
Thus the only choice is
b0 = _%X—l (2.29)
ol = %MX*Z (2.30)
8" = oX? [—X‘lﬁ“ﬁy + ;AW] (2.31)
For the first order terms we have
©1 = 61 (X) G5 + 62 (X) (o887 (2.32)
O = 26" [ (X) QR + ¢h (X) o887 + 262 (X) (4 (2.33)
whereby
T = 488" 6] (X) QR + 04 (X) O BY87 | + 29" [0 (X) G + ) (X) o887
+4¢5 (X) (4B + (5B") BT + 292 (X) ¢ (2.34)
and
AP =281 (¢ (X) g + ¢ (X) BYB°] + 2 (X) (6" B + " B”) (2.35)

To obtain the right number of degrees of freedom for a conformal fluid we ask that for
physically meaningful fields ¢ f\‘ = (8% = 0. When these conditions hold we shall say we
are “on shell”. As A*”P must be symmetric on any pair of indices we have that ¢ = 2¢],
and by demanding AP to be traceless on any pair of indices X ¢}, + 3¢2 = 0. So

P (2.36)

with a a constant that sets the intensity of the first order deviations around equilibrium,
whose precise value will depend on the specific system under study, and

B 0 (2.37)

Tiu,ll _ _aX—3</u/ (238)
v — 1 -

AP = 3aX BB — SaX TP (B + g B + g7 B (2.39)



In writing second order terms, we leave out terms that do not contribute to the currents
“on shell”. This leaves

By = 3 (X) (" + 04 (X) (5,878 (2.40)
and
@ = 264(X)P B + 204(X0F, 878" + 9a(X)GE, [9V87 + 97| (241)
Therefore
TfY = 465(X)CP BB + 204(X)P " + 64(X)F, [9¥9™ + g™ g™ (2.42)
and
AL = 8 (X)CP7 B + 204(X) [CB7 + (7B (2.43)
From TQ’L =0 we get
AX ¢l + 8¢y + 2p4 = 0 (2.44)

From symmetry of A"? we get ¢4 = 4¢%. So we can write

b _
By = L XBGR

T2/u/ _ bX74 |:C2AW 4 % (glﬂl _ 8X*16Nﬁl’) Ci)‘:| (245)
Ay = %w (B2 +¢MPB” + ¢ ") (246)

with b a constant that sets the amplitude of the second order deviations around equilibrium.
Its precise value will depend on the specific system under study. The energy density then is

p=—-X18,8,T" =X [0 + szQgik] (2.47)
and the entropy current reads
St = gaﬁ“X’Q - %bX*%“(f’\ ~ %pﬁ“ [1 — ggxﬂ iA] (2.48)
We now define
¢ = —\/iXZ‘“’ (2.49)
a = aVbo (2.50)

where « is to be defined below, to get

1
T" = oX 2 [—Xlﬁﬂﬁ” + gAY ezt + zw

+ ﬁ (9" —8x~'p1p) ng] (251)

A0 = ZaX OB BB — X (B + "B + "B
+a (2B + ZHRY + 20 M)} (2.52)
St = gaﬁwr2 {1 + 22?} (2.53)

~10 -



These constitutive relations define the theory. By comparing to the Landau-Lifshitz theory
above we see that on dimensional grounds we may write X ' = —T2, where T has dimen-
sions of temperature, while Z*" is dimensionless. Writing f* = ut/T the constitutive
relations take the form

7

1 1
™ = oT* [(1 + 422§> <u“u” - 3AW> +aZM + (Zz‘“’ - SAWZ%H (2.54)

1
AMVP = iaT‘r’ {6ulu’u? + [g"u” + gMPu” + g"Put

+ o (2" + 21 + Z7Pu)] ) (2.55)
4 9
SH = gguﬂT?’ [1 + 82?} (2.56)

To fix the remaining constants we ask that the theory reproduces Landau-Lifshitz hy-
drodynamics to first order in deviations from equilibrium. This requires T'=T7, (1 +0 (Z 2))
and

caTZM = —pat” (2.57)

In the DTT framework, eq. (2.57) ought to follow from the transverse, traceless part of the
first-order conservation law for A***

I = NTATN = %CLT‘:’U“V (2.58)
where
A = | ABAL + AfAL - ZAma,, (2.59)
is the complete transverse and traceless spatial projector. Therefore we must have
o — 90T (2.60)
2 7

It is convenient to introduce the relaxation time 7 through the Anderson-Witting prescrip-
tion [104, 105]

aT®
W =———7M 2.61
2ar ( )
whereby
o = (i) (2.62)
o't \T3 '

We may estimate 7 from the AdS/CFT bound [106], n > (4/3) 0T /4, Ty being a fiducial
equilibrium temperature. In the next subsection we show that causality requires o < 2/3
and so Tt > 3n/20T§ > 1/27. In what follows we shall be interested in the “free-
streaming” limit 7 — oo, thus a — 0.

As we shall show in next section, when thermal fluctuations are considered I* acquires
a stochastic component, I* — I* + FF_ FF ig a stochastic source which may be derived
from fluctuation-dissipation considerations and will be described in more detail below.
Observe that this force sources entropy and not energy, as there is no stirring in the
equations for the conservation of TH".

- 11 -



2.3 Propagation speeds and “incompressibility”

Before we proceed, we shall derive the propagation speeds for different types of linearized
fluctuations around equilibrium [107], and show that in the o — 0 limit scalar modes may
be regarded as frozen, thus the fluid behaves as an incompressible one.

We are looking at a situation where a discontinuity is propagating along the surface
z = ct, ¢ being the desired propagation speed. Above the front the fluid is in equilibrium,
so T'= Ty = constant, u* = U* = (1,0,0,0) and Z*” = 0. Hydrodynamic variables are
continuous across the front. Observe that any variable X which remains constant at the
front must obey X = —¢X’, where X’ = X 3, where subindex 3 refers to the z coordinate.
Moreover the conditions u? = —1 and Z*u, = 0 show that u?p = Zf,‘)o = 0, and the
condition Z5 = 0 shows that Z% = —Zg’ (indices a,b run from 1 to 2, which denote x and
y coordinates).

The theory decomposes into tensor modes Z% + (1/2) 5“bZ§’, which do not propagate,
vector modes u® and Z% and scalar modes T, u® and Z33. Writing the conservation
equations T%"” = 0 and A%Af)g)‘ 7 = 0 (since I"™ = 0 at the front), and eliminating time
derivatives, we get two sets of equations. For the vector modes

c
ul, — EZ(’lg =0 (2.63)
4
—gcug +aZs=0 (2.64)
which shows that vector modes propagate with speed
¢ =3a%/4 (2.65)
For scalar modes we get
4 c
' / 3 !
?0 — CU3 + ZOJZB3 = 0 (267)
T 1,
—c—+ -u;s =0 2.68
cT0 + U3 (2.68)

which admits a non-propagating mode with us = 0, T77/Ty = — (3/4) aZ45, and two prop-
agating modes with speed
1
2 2
Cg = -+«
573
So causality demands a? < 2/3, and cg > ¢y when a? < 2/3. This means that the only

interaction of interest is between tensor and vector modes.

(2.69)

3 The Martin-Siggia-Rose effective action

As stated above, we shall be interested in fluids stirred by their own thermal fluctuations.
Therefore in this section we shall review the fluctuation dissipation theorem appropriate
to causal relativistic real fluids [45] (see also [28, 108]), and then use the MSR formula-
tion [77-82] to develop an effective action from where we can get the Dyson equations for
the stochastic correlations of vector and tensor hydrodynamic variables.
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3.1 Fluctuation-dissipation theorem in a DTT framework

In this subsection we summarize the derivation of the fluctuation-dissipation theorem as
applied to causal relativistic fluid theories. Following ref. [45] we define the following
shorthand notation for the variables described above

= (8%,¢™), (3.1)

= (T, A%, (3.2)

IB = (0, Lap) (3.3)
Fp = (0, Fup), (3.4)
5= — xPAg, (3.5)
¢4 = %, (3.6)

with &% the vector generating functional. The entropy production is given by
5% =-XPAg,. (3.7)

To include thermal fluctuations we add random sources Fg in the equations of motion
which then become Langevin-type equations, namely

Ap,=1Ip+ Fp. (3.8)
A satisfactory theory must predict vanishing mean entropy production in equilibrium, so
(%) = —(XP(a)Ip(x)) — (X () Fp(x)) = 0. (3.9)

However, because the coincidence limit may not be well defined, we impose a stronger
condition due to elementary causality considerations, which is

(XF(2)Ip(2)) + (X (2)Fp(a’)) = 0 (3.10)

for every space-like pair (z,z’). In the following we shall assume that we have defined the
time in such a way that x and 2’ belong to the same equal time surface, namely ¢ = ¢'. In
the linear approximation Ip is a linear function of X, then

(X (2)Ip(x)) = /d3x”l(3,0) (X ()X ("), (3.11)

with
0Ip(x)) 0l (x")
SXC(x")  6XB(x')

Only the symmetrized derivative occurs in (3.11) due to the symmetry of the stochastic

(3.12)

Iisoy =3

average. Assuming Gaussian white noise

(FB(x)FC(:c’)) = opo(x, a:’) St — t’), (3.13)
we have that the correlations between fluxes and noise is
(5XA(:U)
Al 3
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where t” = t/. The fluctuation dissipation theorem follows from

6XB(z) _6XC()

B Cy,..t
pu— prm— .1
(XE@xC) =2 S —p S (3.15)
whenever t = ¢/, which implies
SXB(x)
B _ 3
Using (3.10), (3.12), (3.14) and (3.16) we get
oBC = —2 I(B,C)v (317)

or equivalently
(Fa(z)Fp(z') = — [ 5‘;?;((3) + gffffx))] 5t —1'). (3.18)

We use this version of the fluctuation-dissipation theorem in order to set the correlation

function of the noise source. Of course, as we show in the main text, in the limit in which
our DTT converges to the Landau-Lifshitz hydrodynamics, the correlation of the stochastic
energy-momentum tensor converges to the well-known Landau-Lifshitz noise [51, 52].

To verify eq. (3.15), let us multiply both sides by the non-singular matrix

52 2

Map =ng——
AB = Ta'sx A5 X B

(3.19)

where n, is the unit normal field to the equal time surface containing both z and z’. In
the linear approximation ®* is quadratic on X4 and

§(n,®%) 5@
B a
MapX? = = = =<7 (3.20)

In equilibrium we may apply the Einstein’s formula, relating the thermodynamic potentials

to the distribution function of fluctuations, to conclude that
Map(XB(2)XC (")) = =65 6O (2, 2') (3.21)

where ) (x, 2') is the three-dimensional covariant delta function on the Cauchy surface.
This is a generalized version of the equipartition theorem. On the other hand
S§XB(x) §AY ()

Mab 5p ey = " 5Fo () (3.22)

with A% = —n,A%. It is possible to write the equations of motion (3.8) as
A"
é“t(x) + Lu(z) = Fa(z) (3.23)

where L 4 involves the field variables on the surface, but not their normal derivatives, and
0/0t :=n® 9/0x®. Indeed
A (x)
0Fc(x")

1
= 5525(3)(:3, ). (3.24)
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The factor 1/2 takes into account the average of the derivative evaluated in z = 2/~ and
x = 2/T. Therefore (3.21) and (3.22) are equal. Due to the non-singularity of Mg,
equation (3.15) holds.

In the case at hand, these results imply that only the equation for A*? acquires a

random source, and then

(FM () Fyy (2')) = No(t — )6 (z — 2/) A (3.25)
where 27
a
N = a%_OT (3.26)

3.2 MSR and the 2PI effective action

The main tools to study the evolution and physical properties of a stochastic system are
their different propagators, or Green functions, because they determine the response of
the system to its own thermal fluctuations as well as to the fluctuations in the initial
conditions [101, 109, 110]. In the regime of strong fluctuations this study involves correc-
tions due to non-linear effects [82-85] and it is in this scenario where effective field theory
methods such as the MSR show their power [77-79, 81]; for applications to theories of
turbulence see [83, 84, 111]. It was also used recently to study fluctuations in relativistic
Landau-Lifshitz theory [87, 88].

We now proceed with the analysis of the correlations in the theory. From the analysis
of the propagation velocities we know that in the free-streaming regime the scalar modes
propagate faster than the vector ones and therefore can be considered as frozen. In other
words, in the considered limit the flow may be regarded as “incompressible” (cfr. subsec-
tion 2.3). The MSR formalism will allow to convert the problem of classical fluctuations
into a quantum field theory one, for which we shall derive the Two-Particle-Irreducible
Effective Action (2PIEA). This formalism yields the Schwinger-Dyson equations for the
propagators in the most direct way.

Before going on an important remark is in order. In hydrodynamics there is no explicit
single ‘small’ parameter, such as h in quantum field theory, which can be used to organize
the perturbative expansion. For this reason it has been propossed that the loop expansion
should be understood as an expansion in ‘the complexity of the interaction’ [83, 84], since
due to the randomness of the stirring, the sum of higher order terms will tend to cancel.
On the other hand, it is possible to identify the relevant small parameters in the theory
through the scaling behavior of restricted sets of graphs. In the case at hand, this analysis
suggests that the loop expansion is an expansion in powers of (p/ pL)3 where

pr. = (ct o T3) 13, (3.27)

(see appendix A). In consequence the loop expansion is consistent while p < pr,.

Let us return to the construction of the 2PIEA. We continue to use the abridged
notation from eqgs. (3.1)—(3.6). The equations of motion have the form P4 = F4, where
the P’s are the left hand sides of the EMT T and the nonequilibrium current A**”
conservation equations. If the sources F4 are given, we call X [F] the solution to the
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equations. Under thermal noise, all <X A> = 0. Therefore we can write a generating
functional for the correlation functions <X Ax B>

ez’W[KAB]:/ DxA / DF, P [FA]et] KABXAXB/25(XA_XA[F]) (3.28)

where P [F A] is the Gaussian probability density for the sources, K 4p are the currents
introduced in the formalism to couple to the variables of the theory and the integration is
performed over all the noise realizations. Observe that

§ (X4 — X*[F]) = Det Lf;f‘q] §(Pa — Fa) (3.29)

where the determinant can be proved to be a constant [112] and will be consequently
disregarded. We exponentiate the delta function by adding auxiliary fields Y4

¢WIKaB] _ / Dy4 / DxA / DFy P [FA] e KapXXP20i [ YAPa-Fa) (3 30)

Introducing the source correlations

(FaFB) = Nap (3.31)
we finally obtain
cWIKas] :/ Dy 4 / DXA ¢iSei] KapXAXE/2 (3.32)
where '
S = / d*x [YAPA + %YANABYB (3.33)

In fact, we have mapped the stochastic hydrodynamic problem into a nonequilibrium
field theory one, where S from eq. (3.33) plays the role of “classical” action. We may
formally add new sources coupled to the auxiliary fields and consider the whole string
XK = (X A YA) as degrees of freedom of the theory.

The Legendre transform of the generating function is the 2PIEA T’ [gJ K ], where the
G'KE = <X JxK > are the thermal correlations we seek. Omnce the 2PIEA is known, the
actual correlations are obtained as extrema

or
The 2PIEA has the structure [113]
1 %S i
N'=s - ——~ K _ _1In Det [G7E] +T .
2 a5 |, ¢ T e 9]+ T (3.35)

where I'yg is the sum of all two-particle irreducible Feynman graphs for a theory whose

interactions are the terms cubic or higher in S, and carrying propagators G/%.
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It so happens that <YAYB> =0, and also

528

dXASXB

6T
= —>=__ = 3.36
vy B (XAXE) (3.36)

so actually we get two sets of equations, one for the retarded propagators G44 = —i <X AYA>

ret —

ST
+ 2”} GAA = 54 (3.37)

{ 528
SYBSXA|,_, “o(YBXA)[ et

and another for the actual thermal correlations GAZ = <X AxB >

2
4o 0l >}GAB+1'{6 5 4o 020 >}GCB:0

525
SYBsxA

veo 0(YBxA YB§YC|,_, ~6(YBYC) [ Tad
(3.38)
where Ggf, =—i <YCXB>, with the integral
628 oIy
GAP = (i) GaprGBE ]~ 0 229 __ 3.39
(—1) Gret Gadv SYASY B o + § (YAY By ( )

3.3 Induced dynamics

We now begin to investigate the induced dynamic in the presence of thermal fluctuations.
As we have seen, it is given by egs. (3.37) for the causal, or retarded correlators and (3.38)
for the symmetric, or Hadamard two-point functions. In equilibrium we have <X K > = 0.
The MSR “classical” action (3.33) may be written as

Sc [XK] = Sq [X5] + 57 [xK] (3.40)

where Sg is quadratic and S; contains the interaction terms; in our case we only keep
terms cubic in the fields in S¢. The 2PIEA is given by eq. (3.35), with

(20 :N/ DK ¢ 3X (G AT Hisc[XK] (3.41)

GKL

and where the are the propagators

GHE = (xKat) (3.42)
and N o (DetGKL)il/2 [113]. We use the notation
(0) :/\// DXE 2 ()0t 0 [xK] (3.43)

The normalization is set up so that (1) = 1. If, as in our case, (S¢) = 0, then the lowest
order contribution to I'yg is

i
Taq = 5 (S&) (3.44)
and then the self energies read
%) ./ 65c dSc
Sk =2—% =i{ ——— 4
KL =<sqrL — ! <52(K 52(L> (3:45)
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The expectation value on the r.h.s. is developed in terms of Feynman graphs with propa-
gators G®1 in the internal legs, and where only 2PI graphs are considered [113]. Again to
lowest order, we may replace the full propagators by their lowest order approximations

5250
SXKsAM

which describe the correlations of linearized fluctuations around equilibrium. The equations

GME — sk (3.46)
for nonlinear fluctuations (3.37) and (3.38) can then be written in compact form as

528, .
LW((SQ)(M + EKM] GML — jsL (3.47)

4 Linear fluctuations around equilibrium

From the discussion above, to formulate a MSR effective action for the minimal DTT, we
consider a “classical” action of the form (cfr. eq. (3.33))

S = %N / d'r Y, YH — / Az {Y, T + Y pAPP + Y, M} (4.1)

Since we are disregarding scalar modes, the auxiliary fields Y, and Y),, contain only vector
and tensor degrees of freedom. This means that the independent variables are a three vector
Y7 and a three tensor Y7* obeying Yg = Y;k = Ykk = (0. The time components are then
constrained through Y, u* = Y, u* = Y/}’ = 0. Observe that Y, has units of T —1. while
Y, has units of T—2. Explicitly expr. (4.1) can be decomposed as S = Sy + St + Sa + 57
with

N
Sy = % / 4z Y, Y (4.2)
1 1
St = —aTé/ d*r Y., [u“u” + §AW +aZl 4+ 74 1 (g™ — Sutu”) Z3 (4.3)

1
Sy = —iaTg / d*x Yup [Butu”uf + gH"uf + gHPu” + g"Put

1
+ — (2P + ZFPuY + Z”pu“)] (4.4)
o
S:T‘?/d‘lxy zm (4.5)
I~ 9ar w '

4.1 Identifying the physical degrees of freedom

We now apply the above formalism to study thermal fluctuations around a fiducial equilib-
rium configuration with velocity U# = (1,0,0,0) and temperature Tp. We shall keep only
terms which are quadratic (S;) or cubic S, (not to be confused with the ‘classical Action’
referred above) in deviations from equilibrium. We shall derive the quadratic terms in the
next subsection, and come back to the cubic terms later on, in subsection 5.1.

We write u# = U* 4+ VH*. The condition u?> = —1 becomes U, vt = —V?2/2 and so

1
VI =RV + SUMV (4.6)
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This suggests taking V¥ = AV as independent variables, whereby

1 1
Vo= (vkv’c - (V0)2> ~ SViVE 4 ho. (4.7)
Any transverse tensor admits a similar decomposition, namely
Yo ~ Vi VF + heo. (4.8)
Yoj ~ Yi; V¥ + heo. (4.9)
Yoo = Yi,; VFVI + heo. (4.10)
Zoo = Z;V*VI + heo. (4.12)

where h.o. means ‘higher orders’. Moreover Ykk = Z,’j = 0. We can thus identify the
quadratic and cubic terms in the “classical” action. The quadratic terms are

SNg = Z;V/ d*z Y YI* (4.13)
Stq = —0Ty / d*z [gyj;ow +ayj;kzjk} (4.14)
Say = —;aT(?/ diz [;ij;ozﬂf + Vi (97'VF + glej)} (4.15)
Sty = ;‘Z‘i / diz Yy 79 (4.16)

and recalling that V; = Yj = le]j = Yg = 0, the cubic terms read

4 ,
Ste = —JTO4/ d*z [—ayj;ozkjvk + Y <3ka + Zﬂzﬁ>] (4.17)
1 9 A
Spe = —~alP / dix [10 (vigv*) v+ = (vigv*) 27
2 ;0 « il
1 . . .
+ Vi (Z]’“Vl + ZMyI 4 Z’Jvk)] (4.18)
Our next step is to Fourier transform all degrees of freedom. We adopt the convention
d3 -
Vk (7, 1) = / P efmyk (p, 1) (4.19)
(2m)
to get
iN d? ;
Svy ="y [t s Y o) Y (1) (4.20)
2 (2m)
4 dp [4 ; . i
Srq = —aTo/ dtw 3 Y50 (=0, ) V7 (. 1) — ippa; (—=p, 1) Z7% (p, ) (4.21)
1 5 d3p 1 ik .k 5
Sag=—5aly | di——5 | ~Yjxo (=p.t) 27" (p,1) = 2ip"Yjy (=p, ) VI (p 1) | (4.22)
(2m)” la
aT? d3p ;
Spp =2 [ at Yir (—p,t) Z7% (p,t 4.23
= o | s Ve () 2 00 (429
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and

_ 4 d’p d’q : A k
STC = —O'TO dt 37 3 - an;O (_p —dq, t) Zk] (qa t) Vv (p’ t)
(2m)” (27)

i -0 (3 00V @0 + 2 o 2k o) | a2

1 dp  d3q ‘
S C:—CLT5/ dt———= {53/ o (—p—q, ) VE(p,t) VI (¢, t
A 5440 (271')3 (271')3 kj,O( p—q,t) (p,t) (g,t)

.2 ;

— quaij (—p—q,t) V¥ (p.t) 27 (q,1)
i
8]

W+ 0V (p =00 (2 @OV 00 422" @0V 00) | a25)

We may simplify these expressions by using the linear equations of motion derived from
the quadratic terms, namely

4 .
0= —O’Télgyj;o (=p,t) + aT3ip"Yjy (=p, t) (4.26)
[ v 4
0= _%QTO Yik0 (—=p,t) + iaUTo (PrY; (=p,t)
aTOE’
+ ;Y (—p, 1)) + 20y Vik (—p,t) (4.27)

where O,y refers to the time derivative, to get

dBp dq [3 .
STC = / dt (27_[_)3 W |:4CkCLT6E)Zka7k (_p7 t) le (q7 t) Vl (p - q, t)

. 4_ . .
+ ioTyprY; (—p,t) <3VJ (p—q, ) VF(q,t) + 27 (p — q, 1) Zf (g, t))} (4.28)
d3p d3q 4 aTOE’
p=— L9 5 LiaoTepY; (—p,t) + 220y,
o / " e ) [5 [WU oL TP Y

. a ;
- unaT(?ij (=p, ) V¥ (p — ¢, ) 27 (q,1)

e (=p, t>] VE (- a. )V (0.0)

— LS (p ) (2 @)V - 0,0) + 227 (g, VI (p m))] (4.29)

Finally, we discriminate between vector and proper tensor modes by writing

2% =i (2 + 2] + 24 (4.30)
vt =i (pve 4+ p"vE ) + Vi (4.31)

where p; Z}, = p; Vil = PjZ%kT = ijTj”l; =0.
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4.2 The quadratic action

After separating vector and tensor proper modes, the quadratic terms decouple. For the
vectors we get

. d? ;

Swav =iN [ s PV (P )Y (1) (4.32)

4 d3p 4 i 2 j
Stqv = —0o1j / dt(27)3 ng;O (=p,t) V7 (p,t) +p ayY; (—=p,t) Z77 (p, 1) (4.33)
L 5 dp 2, j 2 j

SAqV = —§GT0 dtw ap YTj;O (‘Py t) Zr (P, t) —2p YTj (_P,t) Vv (Pu t) (4‘34)
aTP d3 .

Sty = G2 [ de s p Y (n.t) 700 () (435)

and for the tensors

iN d3 ,
SNgr = / dtipg Yorje (—p,t) Yer'® (p, t) (4.36)
2 (2m)
1 43 1 ,
Saqr = —5aT§ / dt—L [YTTM;O (—p,t) Zr1o* (p, 1) (4.37)
@) la
aTp d3p ;
Srar = —2 | dt—=s Ypra (—=p,t) Zrr?® (p,t 4.38
IqT 20”/ (27)3 TT]k( b, ) TT (Pa ) ( )

4.3 The lowest order propagators

We now return to the conformal fluid case, where the string of fields X may be split into
physical vector fields V7 and Z%, auxiliary vector fields Y7 and Y%, the physical tensor
proper field Zpr™ and the auxiliary tensor proper field Ypr%. The correlations between
a physical and an auxiliary field yield the causal propagators; if the physical field is to
the left, then it is a retarded propagator. The correlations between physical fields are
the symmetric correlations in the theory; the correlations between auxiliary fields vanish
identically. To lowest order, we obtain decoupled equations for correlations involving only
vector fields and those involving only tensor fields.

4.3.1 Causal vector correlations

The causal vector correlations are <Vj Yk> and <ZTj Yk> on one hand, and <Vj YTk> and
<ZTj Yo > on the other. These two pairs are decoupled from each other. They all have the

structure
<Vj (p,t)Y* (g, t’)> =i(27)° 6 (p+q) P7* [p] Gvy (p.t — ') (4.39)
where
ik
Pik [p] = 57k p;f; (4.40)
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The equations of motion for the Gyy, Gz,y pair are

4 d
oTy [Bdthy - apQGZTy] =6 (t—1t) (4.41)
1d aTp
Top? —— —0p? = 4.42
alyp [Gvy+ adtGZTY] P Gz,y =0 (4.42)
whose solution is
—(t—t') /27 . o
e A sinw (t—1t) ,
= t—t)+——2|O(t—t
Grv = [cosw (1) + 22D o ()
Cvp _(4—¢ 7_
= m@ (t t )/2 COS |:CL) (t — t/) — Qﬁp] @ (t — t,) (443)
—Q 6_(t_t/)/27_ . , ,
GZTY:?WSHIW(t_t)e(t_t) (444)
where
3 1
_ 2,22
YEVAT T e
1 T
_ -1 _T_ -1
pp = tan (ZwT) 5 tan™ " (2wT) (4.45)

cy = \/ga/ 2 is the propagation speed for vector modes (cfr. subsection 2.3), which in the
limit we are interested satisfies ¢y < 1.
For the second pair <Vj Yo* > and <ZTj Yo* > we obtain

4 d
oTy [3dtGVYT - OCPQGZTYT] =0
1d aTb
T8 [Grve + G G| + {20 Gan = (0-1) (a0
with solution
G = 30 -t/ g Ne(t—t 4.47
VYT_4aT05we smw(t—t) (t—t) (4.47)
o v ¢y jor ! e} ! 4.48
ZTYT_iaTg’pwe cos[w(t—t)—i—(pp] (t—t) (4.48)

In summary, the causal correlations of vector fields all have the structure

(XL YE(0.6)) =1 205 (0 0) P ] Cope™ /2 con 10 (1)  0s] © (1)

(4.49)
The different correlations are summarized in table 1.
4.3.2 Causal tensor correlations
The only causal tensor correlation is
<Z¥T (p,t) Yrru (g, t/)> =i (2m)° 3 (p+ @) ST 41 [P G Zpryvier (ot — ') (4.50)
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Xao | Y5 Cagp Pas
VY | (evp)/(0Tgw) | ¢p
Zr |'Y (—a)/ (GTéw) /2
V | Yr | (3a?) / (4aTjw) | w/2
Zr | Yo | (cva) (aTg’pw) —p

Table 1. Summary of vector causal propagators. w and ¢, are defined in eq. (4.45).

where
St [p) = % [Plipzj + PP - Pijpkl} (4.51)
It obeys the equation .
% [jt + i] G Zpryer =0 (8 — 1) (4.52)
with solution 90, /
GZrryYrr = TTg’e_(H Te (t—t) (4.53)

Observe that the tensor modes do not propagate, and their momentum dependence is
trivial.

4.3.3 Hadamard vector correlations

The vector correlations are <Vj Vk>, <Vj Zf}> and <Z%Zflﬁ> They have the structure

<Vj (p,t) V¥ (g, t')> = (2m)* 5 (p+ q) P7* [p] Gavv (p,t — 1) (4.54)

They may be derived from eq. (3.39). For example

min(¢,t')
Givy (p,t — t/) = 2Np2 / dt” Gvyy (p,t — t”) Gvyy, (p, t— t”) (4.55)
Explicitly,
3 iy sinwl|t — t'|
G t—t/ _ 2 [t—t'|/27 t—t/ SILWit — L]
wv (p, ) 40T63€ cosw| |+ r
3cvD /0
= me =21/27 cos [w]t =] — ¢y (4.56)
Similarly
min(¢,t")
Givzy (p.t —t') = 2Np? / dt" Gvy, (p.t —t") Gzovy (p, 8 — 1) (4.57)
Now, from the equations for the propagators
4 d

min(¢,t")
Givzy (p,t —t') = 2Np? / dt" Gyyy (p,t —t") Gvyy (p,t' —t")  (4.58)

3ap? dt’
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Xo | Xp Ciap P1a8 | dap
V|V | Bevp)/(40Tgw) | ¢p | 0
V | Zr| Ba)/(40Tjw) | w/2 | 1
Zr | Zv | (ev)/(oT§wp) | —¢p | O

Table 2. Summary of vector correlations. ¢, is defined in eq. (4.45).

Since the integrand vanishes at the upper limit, we find

4 d

Givzy (pt—1t') = W@lev (p,t —1)
= 3704e_‘t_t/‘/2Tsir1(,u|t — t'[sign (¢t — t') (4.59)
4(7Tg’w

The correlation G1z,z, is even in ¢ — ¢/, and so there is no loss of generality in assuming
t > t'. In this case, we get

4 d
Gi1zoze (Pt — 1) = WaGWZT (p,t—t')
: /
= 713 26_‘t_t/‘/27 coswlt —t'| — sinwlt = ¥
olyp 2wT
_ v j—t|/2r /
= —a t—t 4.60
JTgwpe cos [ wl | + ©p) (4.60)

In summary, the structure of vector correlations is

<XZ; (p,t) X} (q,t’)> = (2m)* 3 (p+q) P7* [p] Crape™ " 1/?7 cos [w]t—t'| —p1as] (sign (t—t'))**
(4.61)

They are summarized in table 2.

4.3.4 Hadamard tensor correlations

The remaining correlation is trivial. It has the structure
<ZTTjk (p,t) Zrr'™ (g, t')> = (2m)° 5 (p+ q) ST’ [p] G1z00z0e (Dt — 1) (4.62)

where the projector St is defined in eq. (4.51), and

200 \% 1 gt
GlZTTZTT =N (CLT5> 56 lt=t'l/7
0

2 ;
= e Ittl/T 4.63

We may check that in the limit 7 — 0 we recover Landau-Lifshitz theory. Indeed in this

limit we may approximate

47
GlZTTZTT - TTS’(S (t - t/) (4‘64)
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In this limit, the self correlation for the tensor proper part of the viscous EMT (cfr.
eq. (2.54)) is

<HTTjk (p, t) Ipp'™ (q,t’)> 't <ZTTjk (p,t) Zrr'™ (4, t/)>
= (2m)* 3 (p+q) St [p] ATon s (t—t) (4.65)

where we have used eq. (2.62). We thus recover the Landau-Lifshitz result [51, 52] in this
limit.

5 Nonlinear fluctuations around equilibrium

In this work we shall show the application of the field theory technics to a consistent
causal theory. We choose to focus on the interaction between tensor and vector modes. In
this section we compute the one-loop corrections to the tensor propagators found above,
and apply the results to derive the corresponding fluctuations in the energy and entropy
densities. To this purpose we need the cubic terms in the “classical” action eq. (4.1).

Considering heavy-ion collisions, we may ask at which stage of the fireball evolution
are the loop corrections significative. We shall show below (eq. (5.45)) that this holds for
p > pr ~ 1o (T()T)_S/ 8. Since we work within the free-streaming approximation, it implies
that the spatial correlation at equal times is non-trivial for distances r < p}l <cyT < T.
These are the relevant scales at the very early stages of a heavy-ion collision.

5.1 Cubic terms in the “classical” action

We shall not need the cubic terms which do not contain tensor modes. For those which
contain tensor fields, we distinguish

(a) Terms that only contain Y7T; (—p,t): these terms naturally split into two

SYTT = SYTTVV+SYTTVZT (51)
5aTg dBp d%q e
- - dt D'TS ) Y J _7t " _7t s 7t
Syrvy 2a7/ @) (2 D (p,q) Yo" (=p, ) V" (p—q,t) V" (¢, 1)
aT? d3 a3 4
Sypavze =——0 [t T B (p,q) Yert (—p ) VT (p—q.t) Z1° (4,1) (5.2)
(2m)” (27)
where

Djkrs (p7 Q) = 5rk6js
Ejrs (p,q) = (q2 + pz(]’) 0sj0kr + ¢* (8jspr + Psljr) (5.3)

(b) Terms that only contain Zrpry,, (¢,t): these terms also split as

SZTT = SYTVZTT +SYZTZTT (5'4)
aT? d3 a3
SYaV Zpp = — / dt p3 q3 Frstm (0, Q) Y1" (—p, )V (p—q,t) Zr1'™ (q,1)
o | “onpon

d3p d3q

(27‘_)3 W Grslm (pv C]) YT(_pv t) ZTS(p_Q7t) ZTTlm(q,t) (55)

SYZTZTT = —O’T6L /dt
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where

3
Frslm (p7 Q) = 1a2p25mr6ls+2pl5mrps +pmpl5rs

Grstm (1,0) = ((0=0)" 615+ (p—0)' s ) +bm (P (0—0)' +1 (=)0 )~ (5.6)

We shall not need the explicit form of the remaining terms:
(c) terms that contain both Yrrj; (—p,t) and Zrry, (¢,1),

(d) terms quadratic in Zpry,, (q,t).

5.2 Tensor self-energy
We now turn to the derivation of the self energy for tensor modes

5T
5 (Yo% (—p,t) Zrr™ (q,1))

Sikim (—p,q,t —t') =2 (5.7)
We may split the self energy into two contributions, one with only vector propagators in
internal lines, and the other with one vector and one tensor modes. Our goal is to derive the
momentum dependence of the self-energy and the noise kernel. Now, because the lowest
order tensor propagators are momentum independent, the Feynman graphs containing
them are momentum independent too. For this reason we shall not compute them.

The self-energy, considering only the Feynman graphs with vector propagators in in-

ternal lines, is

Eg‘]:l)?n (_p’ q7t . t/) _ Z <6 (SYTTVVIj_ SYTTVZT) 5 (SYTVZTTZT:_ SY/ZTZTT) > (58)
SYrr’" (=p, 1) 6Zrr™ (¢, 1)

It is understood that after computing the functional derivatives one must project back onto
tensor proper modes. The terms involving Sy;..vv are suppressed by one power of 7 and
will not be computed. Let us begin with

s (—pyg,t —t) :i< 08vivzy  O8vavin >
Jkim o §Yrrd® (—p,t) 6 Zrr!™ (g, 1)

a2 10 3./ 3.,/ , ,
—1 Cz;o / (;lﬂq)a (Czlﬂ_p)(; Ejkrs (p,q ) Fuvlm (p 7Q)
{(V"(p—d.t) Ya" (=0, 1))(Z2° (d. ) V" (¥ — ¢, 1))
+ (V' (p=d. )V (¢ —a.t))(Zr° (¢, t) Yo" (-1, 1))} (5.9)

m
second line of the right hand side vanishes when ¢ = ' and we shall not compute it. We

Observe that 25.‘,;[1) vanishes unless ¢ > t/, which we assume. Moreover, the graph in the

then have

9aaTy 5

oo 00— ) (2m) e OOt lae (5.10)
o

Sfiim (.t 1) = i

Jkim

— 96 —



where

o= [ @4 gy (0:d) Fun (d8) P [p = ] P [d]

lp—d|
o8 [wy_g (=) — p_g] cos [wy (t =) + @] (5.11)
q Wq'Wp—g'
On dimensional grounds, we see that the tensor self energy has units of 7% as it should.
(V1)
O jklm
To obtain the true self energy we must project back on the transverse components, sym-

(V1)
abed ?

where the indices run from 1 to 2. Since there are no preferred directions, we will obtain

has units of p°.

metric and traceless in jk and Im. If p lies in the z direction, this means we only need o

Tyt = Abacbbi + Baabpe + Clapdeq (5.12)

Symmetrization on ab yields

1
o-((z‘l:il) - 5 (A + B) (5a05bd + 6ad6bc) + C(Sabécd (513)

and removing the trace on ab we get

1
O—((z‘b/cld) - (A + B) STTabcd§ (5ac(5bd + 5ad5bc - 5ab5cd) (514)

where STT4peq 1 the restriction to the case where p is on the third direction of the projector
eq. (4.51). This means that the physical self energy takes the form

T2 '
SO0 (Cp, gyt —t) = 222005 ) — g) (2m) SOt = )0 VD Spr (5.15)

i 160 phys
where
=3 [ W 1 o[y (=)= cos [y (1) ] .10)
with
Wip.d] = qliq, St [P Ejirs (p:4') Fuvim (¢',9) P [p— d'] P [¢] (5.17)

observe that W has units of p.

To proceed, we shall make an important simplification. As we have seen, the “classical”
equations for the correlations eqs. (4.42), (4.46), (4.52) are local in time. We assume that
the main loop corrections to these equations are those that are local in time too. Therefore
we shall seek only the singular terms in the self energy and the noise kernel, namely the
terms which are proportional to § (¢t —¢'). Since the propagators themselves are regular
functions, any such singular term can only result from the asymptotic large |¢'| region of
the integration domain. In this region wy and w,_, are both real. In principle different
schemes, such as BRSSS [3, 114], DNMR [115], Anisotropic Hydrodynamics [4] or DTTs,
may lead to different UV behaviors and, moreover, different procedures can be adopted

—97 —



to regularize the large momentum contribution to the Feynman graphs. Therefore, the
ensuing discussion is predicated on our choice of DTTs and dimensional regularization.
(V1)

To compute Ophys We keep only the terms which are slow and not zero in the coincidence
limit

cos [ wp—q (t —1') = pp—q] cos [wy (t = 1) + ¢¢]
~ 5 08 [(wpg ) (¢~ )] cos [p-g] cos [y (5.18)

So

(V1) 3 lp—4|
aphy8~4/dq'W[pq] o

pP—q

cos [ (wp—q —wqy) (t—=t")] cos [gp—g] cos [py] (5.19)

Assume again the p/ = (0,0, p). Then w,_, — w, vanishes when ¢’ = (qr,p/2), with ¢r in
the x,y plane. We write ¢’ = (qr,p/2 + dq3) to get (where explicit, ¢ = (qr,p/2))

2
cyp

WAt

q

~

p—q — Wqg = —

w 0gs3 (5.20)

Evaluating the prefactors at g3 = 0 we may integrate over dgs to obtain the singular part
of the self-energy

/

vy T 2 q 2
Ophys ~ 7‘/5 (t—t )/ d*qr W [p,q] o8 [¢q] (5.21)
where, in the free-streaming limit 7 — oo,

14 cos |2, 1
cos? [ipg] = 2[%] —-1— 152 ~1 (5.22)
q

The remaining task is to compute (we neglect terms proportional to a?)

gV — 7T/ Pqr W [p q/] (—i/
26%/ T
™ dqr [—q7 + 343 0* — 597 p* + 155 47 1] (5.23)
2pey, 2, p2)° p? 12 .
(qT—i_Z) (q +Z 4c2 7'2)
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We compute them in the scheme of dimensional regularization in D = 2 — e dimensions.
Following [116, 117] we get

1—¢/24n|'[3/2+¢/2 —n]
TC[2]T[1/2]T [1 — €/2]

1 1 1 ) o n—e/2—3/2
;f/o dz (1 — x)z {4 <p — C%/T2>:| . (5.25)

As we see the limit ¢ — 0 is well defined for any integer n, so we take ¢ = 0 (D = 2)

Sn(p) — 7_[_176/2 F[

straightforwardly. Further in the free-streaming limit 7 — oo, we get

J(Vl) _ 493 7T2 p4

180 &2 (5.26)
v
Vi 493\/§7T2 1 aT? p4
EEﬂm) (-p,qt—t') = 2560 (27)° c%fo— 8 (p—q)8(t —t) Strjim(p) (5.27)

We now consider the other graph

S (pa o) =i IS (529
SYrr?" (=p,t) 0Z11™ (0, 1)

Repeating the same steps as in the previous case we get

V9 aT2e2 e—(t—tl)/T Vo
Siim (=10t ) = == s Ot =)0(p= )y (.t =) Staam(p)- (5:29)
To compute O‘I()Z}?S) we keep only the terms which are slow and not zero in the coincidence
limit
(v2) N T o [ Pho 3K+ R+ kip" + Gk — ep”]
oy o(pt—t) =~ —0(t—1t) (5.30)
phys 9 62 j 9 2\ 2
' (2 + %)
Finally, in the free-streaming limit, we get
V2 1772 pt
oD (pt —t') = Ls(t—t) (5.31)

60 ci)’/
and

17\/§ 2 aT02p4 )
T390 @rp 2o 0P D) Srrjun(p) - (5:32)

S (~paat —t) =

The total physical self-energy induced by vector fluctuations reads, in the free-
streaming limit,

e V3aTZp!

V) A /
Ejklm (_p7 q,t—t ) - (271,)3 40%/ o 0 (p - Q) 5(t —t ) STTjklm(p) (533)
where .
187 =
= ——— .34
7= 384 (218 (5-34)
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5.3 Tensor noise-kernel

The derivation of the noise kernel begins with

Nijtim (—p g, t —t') = —2i < Tq (5.35)

§ (Yrr/* (—p,t) Yor'™ (¢, ')

As before, we may split the noise kernel into two contributions, one with only vector
propagators in internal lines, and the other with one vector and one tensor propagator.
Since the latter is momentum independent, we shall compute the former only:

N](]‘C/l'zn (_p’ gt — 75/) _ <(S (SYTTVV'Ij_ SYTTVZT) 0 (SYTTVVZ:L_ SYTTVZT) > (5.36)
5YTT] (*p, t) 5YTT (Qa t/)

It is understood that after computing the functional derivatives one must project back onto
tensor proper modes.

The terms involving Sy;..vv are suppressed by one power of 7 and will not be com-
puted. In consequence the noise kernel reads

R
SYrr/k (—p,t) 6Yrr!™ (¢, 1)

As before, we seek the singular part of the noise kernel. The calculation follows the same
steps as the self-energy computation. We get

NV N (T8N e I s v) 5.38
jklm (_p7 g,t—1 ) = o 4(27‘(’)6T[§30'2 (p - Q) TTjklm(p) nphys ( : )
To compute n;‘gs we keep only the terms which are slow and not zero in the coincidence
limit
P 26 P W 2 2\’ '
Finally, in the free-streaming limit, we get
2 4
% N 73T P ,
nphys(p, t—t) = 540 c:{’/ S(t—1t) (5.40)
and
24 4
V) n_ IN 3a”Tgp B .
where
73 72
= — 5.42
TN T 320 (27)3 (542)
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5.4 Nonlinear tensor correlations

Adding the singular self-energy term to the classical equation (4.52) we get the one-loop
corrected equation for the causal tensor propagator

aT05 d 1
Do th + TJ G Zpryer =0 (t— 1) (5.43)
where
1 P 4
— == |14+s (> ] (5.44)
T1 T pT
and 1/4 1/4
T3 3
pr = (CV“ 0) _ <pL> , (5.45)
T Cy T

with pr, in (3.27), being the largest value of p that makes the loop expansion consistent.
Since cyT ~ /7 /T, in the free-streaming limit (7 — o0) we get pr < pr,.
Therefore the causal correlation becomes (cfr. eq. (4.53))

2x /
GZTTYTT = aizgei(tit )/7'1(_,) (t _ t/) , (546)

and the symmetric tensor correlation, analogous to the eq. (4.63), reads

3a’ T} p* 20 \? T /
G =|N+ 0 eTlt=tl/m
1ZrrZrr [ INTUE, 02 ](ﬂ@) 2 °

14y <p’;>4] . (5.47)

Within the free-streaming approximation, we have two ranges of interest p < pr and

2 IR T1
e~ lt=t'l/m 2L

3
ol

pr < p < pr. For the former we recover the spatially flat spectrum in (4.63) and for the
latter we obtain

G 4T (7’1 )2
1ZrrZrr = g \ —
TraTT UTS’ T

4
149y (;;) ] 5t —t) (5.48)

4 c
= IV s (i—). (5.49)
T P
The previous analysis clearly shows a transition from a flat spectrum for p < pr to a
power law spectrum p*4 for pr < p < pr.

5.5 Entropy and EMT fluctuations

Having found the tensor correlations in the free-streaming limit (7 — 00), we can easily
derive the fluctuations in the viscous EMT, the energy density and the entropy density.
Since for large wavelengths we recover the zeroth order propagators and therefore the
Landau-Lifshitz expression for the fluctuations of IIfiy, cfr. eq. (4.65), we only quote the
expression for the viscous EMT for pr < p < pr,, which reads

16y &02T8 :
8 2INKT 205 (p + ) Serd™m [p] 6 (t— 1) (5.50)
3'72 p

<HTTjk (p,t) Tpp™ (q,t’)> = (2m)
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The contribution to the energy density in this model is
1 T,k
p= O'TO 1+ EZTT ZTTjk: . (551)

To compute the expectation value of Zpp/ kZTTjk in the equal time limit we use the full
form eq. (5.47) to get

4
7 By LHv (E
(p) = 0T} |1+ / P (”T> (5.52)
g

3 3 4
T en oy (2)
T

The spectrum is flat for both regimes p < pr and pr < p < pr, but in the latter the
amplitude is diminished by a factor

N~ 0.47. (5.53)

)

We may find the spectrum of entropy fluctuations in a similar way. The entropy density is

4 9 .
s = §O’Tg |:1 + 8ZTT]kZTTjk:| . (554)
Therefore .
4 9 dp 1w (,,%)
= —oT3 |1 5.55
(s) =30 T 2013 /( (5.55)

3 4
o (7)

Of course, these are the spectra induced by irreducible tensor fluctuations only; the full
energy and entropy spectra will also have contributions from vector modes.

These nontrivial spectra show that there is a definite redistribution of entropy among
the short wavelength modes because of nonlinear effects. Although this equilibrium analysis
does not allow us to determine the direction of the energy and entropy flows, the fact that
when equilibrium is reached the short wavelength spectrum is depleted with respect to the
linear case suggests the existence of an inverse cascade of entropy [102].

6 Conclusions and discussion

In this paper we began the study of the non-linear hydrodynamics of a real relativistic con-
formal fluid within the framework of Divergence Type Theories, which have the advantage
that the Second Law of Thermodynamics is satisfied non-perturbatively.

In Second Order Theories such as DTTs, the fact that non-ideal effects are described
by a new independent tensor variable permits to enlarge the set of hydrodynamic effects,
as now quadrupolar oscillations represented by purely tensor modes are allowed in the flow,
besides the scalar and vector ones already present in First Order theories.

This fact was previously exploited in [49] to investigate the induction of primordial
gravitational waves by the presence of these modes in the Early Universe plasma, and also
in [50] in the context of Early Universe magnetogenesis.
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In this manuscript we began to develop the nonlinear hydrodynamics of real relativistic
fluids by studying in a self-consistent way thermally induced tensor fluctuations.

We consider a simple situation where tensor modes are excited by a Gaussian noise with
a white spectrum. As was just said, this noise is due to the fluid own thermal fluctuations
and the spectrum can be computed from the fluctuation-dissipation theorem.

From the analysis in subsection 3.1 this means that there appears an explicitly stochas-
tic source in the conservation equation for the non-equilibrium current A#*?, while the
energy-momentum conservation equation is unmodified. This may be interpreted as if
entropy is added to the system, while keeping constant its energy content.

Using techniques borrowed from Quantum Field Theory to study non-linear hydrody-
namics, such as the Two-Particle-Irreducible Effective Action and the Martin-Siggia-Rose
formalism, we wrote down the evolution equations for the retarded and Hadamard prop-
agators for both the vector and tensor sectors. We first found the lowest linear order
expression for the two-point functions and latter non-linear fluctuations around equilib-
rium were considered. It was found that the non-linearities renormalized the relaxation
time of the theory in a way that induces a depletion of the tensor correlations in the range
pr < p < pr (eq. (5.45)), with pr, the largest value of p for which the loop expansion is
consistent. Stated otherwise, we found that tensor fluctuations have a flat spectrum for the
largest scales, which turns to a power law p~* spectrum in the small length-scale sector.

In view of the exponentially decreasing time dependence of the two point functions,
these corrections to the tensor fluctuation spectrum are significative for times shorter than
the macroscopic relaxation time, or else on scales of the order r < 7 which are the relevant
ones at the initial stages of a heavy-ion collision.

Concerning the entropy to lowest order, the correction to the entropy density is
quadratic in the fluctuations and consequently it is also diminished in the large p range.
This result suggests that tensor modes could sustain a turbulent inverse cascade of en-
tropy [102], and we intend to study this issue in a forthcoming work.

Besides the studies mentioned just above, other systems where fluid tensor modes can
play an important role are Neutron Stars [5-7] and Early Universe plasmas [8], to mention a
few. In both systems, the fluids are non-ideal relativistic plasma. Therefore it is important
to have a solid hydrodynamic theory in order to understand the features of those systems.
This work is a small step toward that goal and sets the basis for more complete studies of
tensor turbulence where energy injection can also be taken into account.

A Scaling of the relevant diagrams

In this appendix we discuss the scaling rules of the subset of diagrams that build the
different propagators. We perform a general analysis in which we consider an arbitrary
number of loops L and find the condition over a particular combination of parameters that
makes the loop expansion valid.

It is usual to draw the higher loop corrections in Quantum Field Theory as Feynman
diagrams [113, 118]. In any scheme the vertices correspond to the interaction action Siyt
and the internal lines to the propagators.
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Let us take the noise kernel as an example. Diagrammatically the noise kernel has two
external vertices of the same kind: (Ypr-V-Zr) with Y7 in the external lines. In order
to simplify, we shall consider that in the internal structure of the noise kernel we just have
the fields Y, V and Zt and vertices of the type (Y -Zp-Zt) or (Y -V-V). In this case the
internal lines are (VV), (VY), (VZr), (Z1Y) and (Z1ZT).

Let us call the number of internal vertices v and internal lines j of the different types
as v(YVV), v(YZrZy), j(VV), 5(VY), 5(VZr), j(Z7Y) and j(ZrZr). If the number of
loops is L we must have the following constraints

2420YVV)=25VV)+35VY)+35(VZy)
2+20(YZrZr) =2j(ZrZr) + j(Z7Y) + j(VZ1)
JVV)+j(VZr) +j(ZrZr) = L+1 (A1)
Every component of the structure (internal lines, internal and external vertices and loop-
integrals) has a scaling factor. The complete diagram scales as the product of the scaling
factors of each component. From tables 1 and 2 we extract the rules for the propagators,
namely
<VV> — Cyy ~ (O'Tg’)il
<VY> — CVY ~ (UTSL)_1
(VZy
-1
(Z1Y) = Czyy ~ (0T p)

(ZvZ1) — Cprzy ~ (0T3p?) " (A.2)

~ Cyz, ~ (0T3p)

)
)

From eqgs. (4.28) and (4.30) we get the vertex scaling
(YVV) = Vyyy ~ oTyp
(YZrZr) — Vy 2320 ~ 0Typ°. (A.3)
We must also add a factor of p? for each loop integral and a factor 1/cyp for each integral
over the time labels attached to the internal vertices. We extract the singular part of the

time-dependence, thereby introducing a new overall factor d(¢t — t')/(cyp). So finally the
complete diagram scales as

2T7p p3 L
S(p — p)o(t — 1) L0 . A4
(p p)( ) cvo c%,aTg’ ( )

If we define p?ﬁ = c%/aTS, the condition to make the loop expansion consistent reads p < pr..
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