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Exotic Massive 3D Gravity (EMG) is a higher order generalization of Topologically Massive Gravity. As 
in other theories of this sort, the conserved charges associated to the asymptotic diffeomorphisms that 
preserve the boundary conditions in AdS3 spacetime span two copies of the Virasoro algebra with non-
vanishing central charges. Here, we discuss the values of these central charges and the corresponding 
conformal anomaly in relation to the phase space of the theory.
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1. Introduction

Chiral Gravity (CG) [1] is a parity-odd theory of massive grav-
ity in 3 dimensions around Anti-de Sitter (AdS) space whose mass 
parameter takes a value such that either the left-moving or the 
right-moving central charge of the dual conformal field theory 
(CFT) vanishes. The vanishing of one of the central charges is usu-
ally associated to the emergence in the bulk of a massless graviton 
mode, which produces a long range interaction characterized by a 
logarithmic fall-off near the boundary [2,3]

h ∼ log(r) . (1)

This log-mode has negative energy in the bulk, and it makes the 
dual CFT2 to be non-unitary. This is the reason why, in order to 
define CG in a consistent way, one needs to impose strong asymp-
totically AdS3 boundary conditions that suffice to eliminate modes 
like (1) [4]. These boundary conditions are the Brown-Henneaux 
asymptotic conditions, i.e. the same as in general relativity (GR) 
[5]. If such boundary conditions are imposed, then the dual theory 
turns out to be a chiral CFT2.

CG was originally formulated as a particular case of Topo-
logically Massive Gravity (TMG) [6,7] with negative cosmological 
constant. However, it can be easily generalized by adding to the 
TMG field equations other contributions, also representing sensible 
massive deformations of Einstein equations, such as New Massive 
Gravity (NMG) [8,9], Minimal Massive Gravity (MMG) [10], or the 
recently proposed Exotic Massive Gravity (EMG) [11], all these be-
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ing particular cases of a more general set of models [12]. In a 
series of recent papers [13–16], EMG coupled to TMG around AdS3
was studied and the properties of its dual CFT2 were analyzed (see 
also [17–20]). In particular, the values of the central charges were 
obtained and the special features the theory exhibits when those 
charges vanish were studied. This is the problem we want to re-
visit here.

2. Exotic massive gravity

In the metric formalism,1 EMG is defined by the following field 
equations [11]

Rμν − 1

2
Rgμν + �gμν + 1

μ
Cμν = Tμν , (2)

where the Cotton tensor is

Cμν = 1

2
ε

αβ
μ ∇α

(
Rβν − 1

4
gβν R

)

+ 1

2
ε

αβ
ν ∇α

(
Rβμ − 1

4
gβμR

)
, (3)

and where

Tμν = 1

m2
ε

αβ
μ ∇αCβν − 1

2m4
ε

αβ
μ ε

γσ
ν Cαγ Cβσ . (4)

The limit m → ∞ of this theory leads to TMG, and the limit 
μ → 0 gives the 3D conformal gravity. For |μ| < ∞ the theory 

1 The theory also admits a Chern-Simons like formulation in terms of the vielbein 
ea
μ , the spin connection ωab

μ and auxiliary fields; see [11,16] for details.
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Fig. 1. μ
 (vertical axis) as a function of m
 (horizontal axis); m2 > 0 is assumed here. Red curves correspond to μ = μcrit,1± , where c± = 0; blue curves correspond to 
μ = μcrit,2± , where c± = 0 too. In the large |m
| limit one recovers the chiral points of TMG 
μcrit,2± = ±1. At |m
| = 1 the critical value 
μcrit,2± diverges and c− = c+ = 0. 
The case m2 < 0 does not exhibit poles, and the behavior 
μcrit,2± → ±1 is recovered when |m
| is large.
does not have a definite parity since while GR and the Exotic terms 
are parity-even, the Cotton tensor is parity-odd.

Equations (2) do not follow from a variational principle as they 
are covariantly conserved only on-shell; see [12] for details about 
this mechanism.

As in the case of other massive deformations of 3-dimensional 
Einstein theory, the conserved charges associated to the asymptotic 
diffeomorphisms in AdS3 span two copies of the Virasoro algebra 
[5]; namely

[L±
m, L±

n ] = (m − n)L±
m+n + c±

12
m(m2 − 1)δm+n,0 , (5)

with [L+
m, L−

n ] = 0. The central charges c± , according to the com-
putation of [16], are given by

c± = 3


2G

[
−
m2

μ
±

(
1 + m2

μ2
− 1


2m2

)]
, (6)

where 
 = 1/
√−� is the radius of AdS3. This result for c± differs 

from the one obtained in [14]

c± = 3


2G

(
1 − 1

m2
2
∓ 1

μ


)
. (7)

In particular, the charges (6) exhibit two set of critical points; 
namely

μcrit,1± = ±m2
 , μcrit,2± = ± m2


m2
2 − 1
, (8)

where either c− or c+ vanishes; see Fig. 1. In [14], in contrast, only 
the points μcrit,2± were identified as critical points of the theory, 
while nothing special was observed at μcrit,1± . In [16], being aware 
of the fact that logarithmic modes typically appear when either c−
or c+ vanishes, the authors pointed out that it would be interest-
ing to see whether the logarithmic solutions that EMG exhibits at 
μcrit,2± are also solutions at μcrit,1± . We answer this question be-
low.
3. Exotic waves on black holes

We will consider a generalization of the Bañados-Teitelboim-
Zanelli (BTZ) solution [21] that describes gravitational waves prop-
agating on a stationary black hole geometry. This includes AdS-
waves as a particular case. We will study systematically all the 
possible long distance behavior of such solutions near the AdS3
boundary, showing that no log-modes appear at μcrit,1.

3.1. Deformed BTZ geometry

Let us start by considering the extremal BTZ metric with mass 
parameter M and spin parameter J = ∓ M
; namely

ds2
M,∓
M = −

(
r2 − r2+

)2


2r2
dt2 + 
2r2(

r2 − r2+
)2

dr2

+ r2


2

(

dϕ ± r2+

r2
dt

)2

, (9)

where t ∈ R, ϕ ∈ [0, 2π ], r ∈ R≥0, and where r+ = 4GM
 is the 
black hole horizon, with G being the Newton constant. Now, per-
form a deformation of (9) of the type2

ds2 ≡ gμνdxμdxν = ds2
M,−
M + h(x+, r)(dx+)2 , (10)

where x± = t ± 
ϕ . In order to solve EMG field equations, a wave 
profile of the form h(x+, r) = f (x+) F (r) must satisfy the following 
linear equation

(
p1(r)

d

dr
+ p2(r)

d2

dr2
+ p3(r)

d3

dr3
+ p4(r)

d4

dr4

)
F (r) = 0 , (11)

where the coefficients pi(r) are given by

2 Similarly, one may consider the extremal BTZ solution with J = +
M deformed 
with a piece h(x−, r)(dx−)2.
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p1(r) = −1
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2
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2
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− (r2 − r2+)2(r2 + 3r2+)

m2
2r5
,

p4(r) = −1

2

(r2 − r2+)3

m2
2r4
.

(12)

For generic values of the coefficients, such an equation has so-
lutions of the form F (r) = A (r2 − r2+)� , leading to the indicial 
polynomial

�(� − 1)

[
�2 −

(
1 − m2


2μ

)
� + 1

4
− m2
2

4
− m2


4μ

]
= 0 , (13)

which, generically, has four different roots � = {0 ,1 ,�− ,�+}, 
with

�± = 1

2
− m2


4μ
± m2


4μ

√
1 + 4μ2

m2
. (14)

Then, the complete solution for the wave profile h(x+, r) reads

h(x+, r) = D(x+) + C(x+)(r2 − r2+) + B(x+)(r2 − r2+)�+

+ A(x+)(r2 − r2+)�− , (15)

with A(x+) , B(x+) , C(x+) , D(x+) being four arbitrary functions 
that depend only on x+; that is, ∂− A(x+) = 0, ∂−B(x+) = 0, 
∂−C(x+) = 0, ∂−D(x+) = 0. The constant and quadratic terms in 
(15), corresponding to � = 0 and � = 1 respectively, can be re-
moved by local diffeomorphisms [22], i.e. they are solutions that 
are already present in 3D Einstein theory. In contrast, the modes 
�± correspond to massive modes of EMG and are associated to 
the local degrees of freedom of the theory. Solution (15) general-
izes the solutions found in [14] at the chiral points μ = μcrit,2± . 
Geometry (10) with (14)-(15) represents a gravitational wave on 
an extremal black hole. The wave co-rotates with the black hole, 
having an off-diagonal term

gϕt = r2+



+ 


2
h(x+, r). (16)

Assuming �+ > 0 and �− < 0, this includes an asymptotically 
AdS3 solution like

ds2 =
(

2r2+



+ 
A(t + 
ϕ) (r2 − r2+)�−

)
dϕ dt + . . . (17)

where the ellipses stand for the diagonal terms. This moves clock-
wise as the black hole. The geometry is wound around the horizon 
and the effect of the deformation h(x+, r) get diluted near the 
boundary. The full geometry has scalar invariants

Tr(Ricn) ≡ R μ2
μ1 R μ3

μ2 . . . R μ1
μn = −6(−2)n−1


2n
, (18)

which are those of AdS3 space, although it is not locally equivalent 
to AdS3. In fact, for A(x+) �= 0 or B(x+) �= 0, the geometry is not 
conformally flat.
In conclusion, the propagating waves (10) can be seen as a fully 
backreacting, massive excitation of the black hole background. To 
reinforce this interpretation, we notice that a perturbation of the 
form φ(t, ϕ, r) = f (x+)(r2 − r2+)� satisfies the wave equation

� (� − K�)φ(t,ϕ, r) = 0 , (19)

where � is the d’Alembert operator of the full deformed geometry 
(10), and where the effective mass K� is

K� = 4


2
�(� + 1) , (20)

which, taking into account (14), reads

K� = 3


2
+ m2
(m2
 − 4μ + 2μ2
)

2μ2
2

± (4μ − m2
)m2


2μ2
2

√
1 + 4μ2

m2
. (21)

For generic K� �= 0, the space of solutions to the wave equation 
(19) is the direct sum of the kernels Ker(� − K�) + Ker(�). At the 
chiral points μ = μcrit,2− , K� vanishes, two roots of the indicial 
polynomial become zero, and a new logarithmic solution to (19)
appears. This logarithmic solution is in the difference of kernels 
Ker(�2) − Ker(�), as usual with confluent differential equations.

Below, we will discuss systematically the different confluent 
points of the wave equation to see where logarithmic solutions 
actually occur. To organize the discussion, we will classify the con-
fluent points in terms of their degree of degeneracy of the roots 
of (13). The different cases are: (a) the roots �± collide, that is 
�+ = �−; (b) one of the roots �± goes to either 0 or 1; (c) the 
limiting case where both �− and �+ coincide with either 0 or 1. 
The case (a) occurs where m2 = −4μ2 and we will refer to it as 
the ‘degenerate point’ or the ‘confluent point’. The case (b) corre-
sponds to the chiral point μ = μcrit,2± and, therefore, we will refer 
to it as the ‘chiral point’. The case (c), to which we will refer as the 
‘double confluent point’, happens when μ = μcrit,2± = ±1/(2
). Fi-
nally, we will analyze the point μ = μcrit,1± , for which no special 
behavior is observed.

3.2. Topologically massive gravity

Let us start by studying the TMG limit of the general solutions, 
which corresponds to m2 → ∞. In this limit, the exponents reduce 
to �+ = (1 + μ
)/2 and �− → −∞, yielding

h(x+, r) = B(x+)(r2 − r2+)(1+μ
)/2 , (22)

together with the modes � = 0 and � = 1 of GR. These are a 
generalization of the so-called AdS-waves of TMG [3,22]. For B =
const, solution (22) is a stationary deformation of the BTZ black 
hole; and it is worth mentioning that this is not in contradiction 
with the Birkhoff-like theorems known for TMG [23,24]. In partic-
ular, the existence of solution (22) is consistent with a conjecture 
in [4], which states that, at the chiral point μ
 = −1, all stationary 
TMG solutions that satisfy the Brown-Henneaux boundary condi-
tions are Einstein manifolds, cf. [25]. In fact, when μ
 = −1, the 
solution can be seen to be a solution of GR. For μ
 < −1, the 
deformation satisfies the Brown-Henneaux asymptotic boundary 
conditions [5] and so it represents an asymptotically AdS3 non-
Einstein space. The case μ = 0 is special as the geometry with 
h(x+, r) = B(x+)(r2 − r2+)1/2 turns out to be conformally flat with-
out being an Einstein manifold, so it corresponds to a non-trivial 
solution of 3D conformal gravity exhibiting the typical linear be-
havior h ∼ r at large distance.
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3.3. Confluent points

When m2 = −4μ2, the roots �± collide, i.e.

�+ = �− = 1

2
+ μ
 . (23)

Since these solutions coincide, a new linearly independent solution 
to (11)-(12) must emerge. As probably expected, this new solution 
has a logarithmic behavior; more precisely

h(x+, r) = B(x+)(r2 − r2+)1/2+μ


+ A(x+)(r2 − r2+)1/2+μ
 log(r2 − r2+) . (24)

Depending on whether μ
 < −1/2 or μ
 > −1/2, the function 
h(x+, r) that controls the deformation of the BTZ geometry di-
verges at either the black hole horizon r = r+ or at the boundary 
r = ∞, respectively. At infinity, the behavior may actually be reg-
ular: The solution corresponding to the B-mode in (24) obeys the 
Brown-Henneaux boundary condition if μ
 < −1/2.

3.4. Chiral points

More relevant for our discussion are the points μ = μcrit,2± , 
where one of the roots �± of the indicial polynomial degenerates 
to either 0 or 1 and where one of the central charges (6) vanishes. 
There, again, new solutions to (11)-(12) that involve logarithms ap-
pear. Such solutions to EMG were already studied in ref. [14]. They 
can be of two types:

First, consider μ = μcrit,2+ , which yields c+ = 0. At this point, 
�+ = 1 and the deformation (10) takes the form

h(x+, r) = B(x+)(r2 − r2+)(1−m2
2)/2

+ A(x+)(r2 − r2+) log(r2 − r2+) . (25)

For m2
2 ≥ 1, the B-mode of (25) respects the Brown-Henneaux 
boundary conditions and so it gives an asymptotically AdS3 solu-
tion. The A-mode, in contrast, neither respect the strong [5] nor 
the weakened [2] asymptotically AdS3 boundary conditions.

Second, consider the other chiral point, namely μ = μcrit,2− . In 
this case, �− = 0 and, again, a new logarithmic mode appears. In 
this case, the wave profile h(x+, r) takes the form3

h(x+, r) = B(x+)(r2 − r2+)(1+m2
2)/2 + A(x+) log(r2 − r2+) . (26)

At μ = μcrit,2− , one finds c− = 0 and K� = 0. In fact, the long 
range mode, namely the logarithmic mode in (26), is interpreted as 
appearing due to the massless graviton: This logarithmic solution 
belongs to Ker(�2) − Ker(�).

The observation that the effective mass K� of the wave equa-
tion (19) vanishes should not be mistaken for statement that so-
lution (26) has vanishing mass. In fact, it is not the case: The 
A-mode in (26) respects the boundary conditions of [2] and so it 
can be thought of as a solution4 in AdS3 with non-vanishing mass. 
Its mass, according to the computation in [14], is given by

M = 1

4πG


(
1 + 1

m2
2

) 2π
∫
0

A(τ )dτ . (27)

3 Logarithmic solutions like (25)-(26) were shown to exist in TMG, NMG, MMG, 
and in theories such as Zwei Dreibein Gravity (ZDG) [26] whenever one of the cen-
tral charges of the dual CFT2 vanishes [27].

4 The B-mode, on the other hand, respects the stronger (Brown-Henneaux) AdS3

boundary conditions provided m2
2 ≤ −1.
This mass is obtained by applying the so-called Abbott-Deser-Tekin 
(ADT) method to EMG. As shown in [15], despite the peculiarities 
of EMG, at linear level the field equations lead to an on-shell con-
served current of the form

Q μ(ξ̄ ) = Q μ
E (ξ̄ ) + 1

μ
Q μ

C (ξ̄ ) − 1

m2
Q μ

H (ξ̄ ) , (28)

which are associated to a Killing field ξ̄ of the background geome-
try ḡμν . This formula receives contributions from the Einstein and 
Cotton tensors, as well as from the exotic terms Tμν in (2), and it 
is constructed as a surface integral that contains the field ξ̄ , as well 
as the deviation hμν = gμν − ḡμν of the actual spacetime with re-
spect to the background metric. The explicit form of Q μ

H (ξ̄ ) can be 
found in [15].

3.5. Double confluent points

Now, let us study the ‘double confluent points’, which cor-
respond to μcrit,2± = ±1/(2
), where three roots of the indicial 
polynomial (13) coincide:

At the point μ = μcrit,2+ = +1/(2
), one finds �+ = �− = 1
and c+ = 0. The wave profile h(x+, r) in this case takes the form

h(x+, r) = B(x+)(r2 − r2+) log(r2 − r2+)

+ A(x+)(r2 − r2+) log2(r2 − r2+) . (29)

This type of h ∼ log2(r) solutions also appear in other higher-order 
generalization of TMG; see for instance [22].

At μ = μcrit,2− = −1/(2
), on the other hand, one finds �+ =
�− = 0 and c− = 0, and, just as in the previous case, two new 
logarithmic modes appear; namely

h(x+, r) = B(x+) log(r2 − r2+) + A(x+) log2(r2 − r2+) , (30)

which, for A = 0, turns out to be asymptotically AdS3 in the sense 
of [2].

3.6. Are any other critical points?

Now, let us analyze the points μcrit,1± = ±m2
, where the 
charges (6) obtained in [16] also vanish. At those points, no log-
arithmic behavior near the boundary of AdS3 seems to occur. 
Consistently, K� does not vanish there. This answers the ques-
tion raised in [16] about the existence of such log-solutions at 
μ = μcrit,1± .

Actually, it is easy to see from (14) that at μ = μcrit,1+ one 
has �± = (1 ± √

1 + 4m2
2)/4 whereas at μ = μcrit,1− one has 
�± = (3 ∓ √

1 + 4m2
2)/4, and so the solution takes the power-
like form

h(x+, r) = B(x+)(r2 − r2+)�+ + A(x+)(r2 − r2+)�− , (31)

with no logarithmic behavior. This might seem puzzling because, 
as we said, in any other massive deformation of 3D gravity that 
had been explored, whenever a central charge of the dual CFT2
vanishes log-modes were shown to appear; this happens, for ex-
ample, in TMG, NMG, MMG, ZDG. This invites us to return to 
the question about the discrepancy between (6) and the central 
charges obtained in [14], the later being non-zero at μ = μcrit,1± .

4. Discussion

A first observation to understand the reason for the discrep-
ancy of the central charges computed in [16] and those computed 
in [14] is that, when taking the limit μ → ∞ in (8) and, after that, 
taking the limit m → ∞, one obtains c+ = −c− = 3
/(2G), which 
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agrees with the central charges of the so-called Exotic Gravity (EG) 
[28]. In contrast, if considers the result of [14] and takes the limit 
μ → ∞, m → ∞ of that then one obtains c+ = c− = 3
/(2G), 
which is the Brown-Henneaux central charge of Einstein gravity 
[5]. This means that the discrepancy between the charges can be 
traced back to the difference of the theories that are being consid-
ered: The papers [16] and [14] are actually dealing with different 
theories; while [16] deals with a Chern-Simons like computation in 
the higher-order extension of the EG [28], [14] deals with an ADT-
like computation5 of the higher-order extension of GR. Therefore, 
it should not come to a surprise that the charges do not agree. To 
understand this better, let us recall how it works in the case of the 
undeformed theory μ = ∞, m = ∞: While the GR Lagrangian in 
terms of the vielbein 1-form ea = ea

μdxμ and the spin connection 
1-form ωab = ωcε

abc = ωab
μ dxμ reads LGR = εabc(Rab ∧ec +ea ∧eb ∧

ec) with Rab being the curvature 2-form (
 = 1), the EG Lagrangian 
reads LEG = εabc(ω

ab ∧ dωc + 1
3 ωa ∧ ωb ∧ ωc) + ea T a with T a be-

ing the torsion 2-form (see also [29]). Both theories yield the same 
field equations (i.e. the 3D cosmological Einstein equations) but 
they yield different charges. Our interpretation is that the same is 
happening here with the massive deformations.

Therefore, we think of the theory defined by the field equations 
(2)-(4) at the chiral point μ = μcrit,2− as the gravity dual of a CFT2

with the central charges [14]

c− = 0 , c+ = 3


G

(
1 − 1

m2
2

)
. (32)

At this point, the solutions of the theory exhibit the typical be-
havior h ∼ log(r) of the Log-gravity [4]. This suggests that, at 
μ = μcrit,2− , provided one considers sufficiently weak AdS3 bound-
ary conditions, the dual CFT2 turns out to be a logarithmic CFT2

[30]; that is, a non-unitary CFT2 whose Virasoro operators L0 and 
L̄0 are not diagonalizable but form a Jordan block. This means that 
in the CFT2 there exists a mixing between primary operators and 
other type of operators, called the logarithmic partners. In partic-
ular, the stress tensor may have a logarithmic partner with which 
it has a non-vanishing 2-point function. This mixing of the stress 
tensor and its partner is controlled by a new anomaly, b, which 
appears in the pole ∼ 1/z4 of the operator product expansion. In 
[31], a simple method to compute this anomaly for the case of a 
logarithmic CFT2 with a massive AdS3 gravity dual was given. Ap-
plying this method in the case of EMG, we find

b = −3


G

(
1 + 1

m2
2

)
. (33)

As a consistency check, we observe that in the limit m → ∞, 
μcrit,2− tends to −1/
, which is the chiral point of TMG; in that 
limit, b tends to −c+ = −3
/G , which is in perfect agreement with 
the anomaly coefficient of the Log-Gravity of TMG [4,31].

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

5 In [16], it is affirmed that the main reason for the disagreement with [14] is 
that in the latter paper the ADT method is applied in the metric formulation while 
the stress-tensor is not the linearized limit of any consistent source tensor for the 
full EMG equations. However, since the linearized field equations of EMG are on-
shell divergenceless, their contraction with a Killing vector of the background leads 
to a well-defined ADT-like conserved current.

Acknowledgements

The authors thank Mariano Chernicoff, Nicolás Grandi, Robert 
Mann and S.N. Sajadi for discussions. The work of G.G. has been 
partially supported by CONICET through a grant PIP 1109 (2017). 
J.O. is partially funded by the grant FONDECYT 1181047.

References

[1] W. Li, W. Song, A. Strominger, J. High Energy Phys. 0804 (2008) 082, https://
doi .org /10 .1088 /1126 -6708 /2008 /04 /082, arXiv:0801.4566 [hep -th].

[2] D. Grumiller, N. Johansson, Int. J. Mod. Phys. D 17 (2009) 2367, https://doi .org /
10 .1142 /S0218271808014096, arXiv:0808 .2575 [hep -th].

[3] A. Garbarz, G. Giribet, Y. Vasquez, Phys. Rev. D 79 (2009) 044036, https://doi .
org /10 .1103 /PhysRevD .79 .044036, arXiv:0811.4464 [hep -th].

[4] A. Maloney, W. Song, A. Strominger, Phys. Rev. D 81 (2010) 064007, https://
doi .org /10 .1103 /PhysRevD .81.064007, arXiv:0903 .4573 [hep -th].

[5] J.D. Brown, M. Henneaux, Commun. Math. Phys. 104 (1986) 207, https://doi .
org /10 .1007 /BF01211590.

[6] S. Deser, R. Jackiw, S. Templeton, Ann. Phys. 140 (1982) 372, https://doi .org /
10 .1016 /0003 -4916(82 )90164 -6, Ann. Phys. 281 (2000) 409, https://doi .org /10 .
1006 /aphy.2000 .6013, Erratum: Ann. Phys. 185 (1988) 406.

[7] S. Deser, R. Jackiw, S. Templeton, Phys. Rev. Lett. 48 (1982) 975, https://doi .org /
10 .1103 /PhysRevLett .48 .975.

[8] E.A. Bergshoeff, O. Hohm, P.K. Townsend, Phys. Rev. Lett. 102 (2009) 201301, 
https://doi .org /10 .1103 /PhysRevLett .102 .201301, arXiv:0901.1766 [hep -th].

[9] E.A. Bergshoeff, O. Hohm, P.K. Townsend, Phys. Rev. D 79 (2009) 124042, 
https://doi .org /10 .1103 /PhysRevD .79 .124042, arXiv:0905 .1259 [hep -th].

[10] E. Bergshoeff, O. Hohm, W. Merbis, A.J. Routh, P.K. Townsend, Class. Quantum 
Gravity 31 (2014) 145008, https://doi .org /10 .1088 /0264 -9381 /31 /14 /145008, 
arXiv:1404 .2867 [hep -th].

[11] M. Özkan, Y. Pang, P.K. Townsend, J. High Energy Phys. 1808 (2018) 035, 
https://doi .org /10 .1007 /JHEP08(2018 )035, arXiv:1806 .04179 [hep -th].

[12] E. Bergshoeff, W. Merbis, A.J. Routh, P.K. Townsend, Int. J. Mod. Phys. D 
24 (12) (2015) 1544015, https://doi .org /10 .1142 /S0218271815440150, arXiv:
1506 .05949 [gr-qc].

[13] M. Chernicoff, G. Giribet, N. Grandi, J. Oliva, J. High Energy Phys. 1808 (2018) 
087, https://doi .org /10 .1007 /JHEP08(2018 )087, arXiv:1806 .06254 [hep -th].

[14] G. Giribet, J. Oliva, Phys. Rev. D 99 (6) (2019) 064021, https://doi .org /10 .1103 /
PhysRevD .99 .064021, arXiv:1901.08457 [hep -th].

[15] R.B. Mann, J. Oliva, S.N. Sajadi, J. High Energy Phys. (1905) 131, https://doi .org /
10 .1007 /JHEP05(2019 )131, arXiv:1812 .09525 [gr-qc], 2019.

[16] E.A. Bergshoeff, W. Merbis, P.K. Townsend, arXiv:1909 .11743 [hep -th].
[17] G. Alkaç, M. Tek, B. Tekin, Phys. Rev. D 98 (10) (2018) 104021, https://doi .org /

10 .1103 /PhysRevD .98 .104021, arXiv:1810 .03504 [hep -th].
[18] M. Ozkan, Y. Pang, U. Zorba, Phys. Rev. Lett. 123 (3) (2019) 031303, https://

doi .org /10 .1103 /PhysRevLett .123 .031303, arXiv:1905 .00438 [hep -th].
[19] E. Kilicarslan, B. Tekin, Phys. Rev. D 100 (4) (2019) 044035, https://doi .org /10 .

1103 /PhysRevD .100 .044035, arXiv:1906 .09429 [hep -th].
[20] H.R. Afshar, N.S. Deger, arXiv:1909 .06305 [hep -th].
[21] M. Banados, C. Teitelboim, J. Zanelli, Phys. Rev. Lett. 69 (1992) 1849, https://

doi .org /10 .1103 /PhysRevLett .69 .1849, arXiv:hep -th /9204099.
[22] E. Ayon-Beato, G. Giribet, M. Hassaine, J. High Energy Phys. 0905 (2009) 029, 

https://doi .org /10 .1088 /1126 -6708 /2009 /05 /029, arXiv:0904 .0668 [hep -th].
[23] A.N. Aliev, Y. Nutku, Class. Quantum Gravity 13 (1996) L29, https://doi .org /10 .

1088 /0264 -9381 /13 /3 /001, arXiv:gr-qc /9812089.
[24] M. Cavaglia, Gravit. Cosmol. 5 (1999) 101, arXiv:gr-qc /9904047.
[25] G. Compere, S. de Buyl, S. Detournay, J. High Energy Phys. 1010 (2010) 042, 

https://doi .org /10 .1007 /JHEP10(2010 )042, arXiv:1006 .3099 [hep -th].
[26] E.A. Bergshoeff, S. de Haan, O. Hohm, W. Merbis, P.K. Townsend, Phys. Rev. 

Lett. 111 (11) (2013) 111102, https://doi .org /10 .1103 /PhysRevLett .111.111102, 
Erratum: Phys. Rev. Lett. 111 (25) (2013) 259902, https://doi .org /10 .1103 /
PhysRevLett .111.259902, arXiv:1307.2774 [hep -th].

[27] E.A. Bergshoeff, A.F. Goya, W. Merbis, J. Rosseel, J. High Energy Phys. 1404 
(2014) 012, https://doi .org /10 .1007 /JHEP04(2014 )012, arXiv:1401.5386 [hep -
th].

[28] P.K. Townsend, B. Zhang, Phys. Rev. Lett. 110 (24) (2013) 241302, https://doi .
org /10 .1103 /PhysRevLett .110 .241302, arXiv:1302 .3874 [hep -th].

[29] S. Carlip, J. Gegenberg, R.B. Mann, Phys. Rev. D 51 (1995) 6854, https://doi .org /
10 .1103 /PhysRevD .51.6854, arXiv:gr-qc /9410021.

[30] V. Gurarie, Nucl. Phys. B 410 (1993) 535, https://doi .org /10 .1016 /0550 -
3213(93 )90528 -W, arXiv:hep -th /9303160.

[31] D. Grumiller, N. Johansson, T. Zojer, J. High Energy Phys. 1101 (2011) 090, 
https://doi .org /10 .1007 /JHEP01(2011 )090, arXiv:1010 .4449 [hep -th].

https://doi.org/10.1088/1126-6708/2008/04/082
https://doi.org/10.1088/1126-6708/2008/04/082
https://doi.org/10.1142/S0218271808014096
https://doi.org/10.1142/S0218271808014096
https://doi.org/10.1103/PhysRevD.79.044036
https://doi.org/10.1103/PhysRevD.79.044036
https://doi.org/10.1103/PhysRevD.81.064007
https://doi.org/10.1103/PhysRevD.81.064007
https://doi.org/10.1007/BF01211590
https://doi.org/10.1007/BF01211590
https://doi.org/10.1016/0003-4916(82)90164-6
https://doi.org/10.1016/0003-4916(82)90164-6
https://doi.org/10.1006/aphy.2000.6013
https://doi.org/10.1006/aphy.2000.6013
https://doi.org/10.1103/PhysRevLett.48.975
https://doi.org/10.1103/PhysRevLett.48.975
https://doi.org/10.1103/PhysRevLett.102.201301
https://doi.org/10.1103/PhysRevD.79.124042
https://doi.org/10.1088/0264-9381/31/14/145008
https://doi.org/10.1007/JHEP08(2018)035
https://doi.org/10.1142/S0218271815440150
https://doi.org/10.1007/JHEP08(2018)087
https://doi.org/10.1103/PhysRevD.99.064021
https://doi.org/10.1103/PhysRevD.99.064021
https://doi.org/10.1007/JHEP05(2019)131
https://doi.org/10.1007/JHEP05(2019)131
http://refhub.elsevier.com/S0370-2693(20)30421-4/bib36D8863709EBBDF24B1533A89FB63FFFs1
https://doi.org/10.1103/PhysRevD.98.104021
https://doi.org/10.1103/PhysRevD.98.104021
https://doi.org/10.1103/PhysRevLett.123.031303
https://doi.org/10.1103/PhysRevLett.123.031303
https://doi.org/10.1103/PhysRevD.100.044035
https://doi.org/10.1103/PhysRevD.100.044035
http://refhub.elsevier.com/S0370-2693(20)30421-4/bib4CFF21CB1E763EC53E4E009B576BE051s1
https://doi.org/10.1103/PhysRevLett.69.1849
https://doi.org/10.1103/PhysRevLett.69.1849
https://doi.org/10.1088/1126-6708/2009/05/029
https://doi.org/10.1088/0264-9381/13/3/001
https://doi.org/10.1088/0264-9381/13/3/001
http://refhub.elsevier.com/S0370-2693(20)30421-4/bib51F83B4A80EEB2123F7985F41B6C2382s1
https://doi.org/10.1007/JHEP10(2010)042
https://doi.org/10.1103/PhysRevLett.111.111102
https://doi.org/10.1103/PhysRevLett.111.259902
https://doi.org/10.1103/PhysRevLett.111.259902
https://doi.org/10.1007/JHEP04(2014)012
https://doi.org/10.1103/PhysRevLett.110.241302
https://doi.org/10.1103/PhysRevLett.110.241302
https://doi.org/10.1103/PhysRevD.51.6854
https://doi.org/10.1103/PhysRevD.51.6854
https://doi.org/10.1016/0550-3213(93)90528-W
https://doi.org/10.1016/0550-3213(93)90528-W
https://doi.org/10.1007/JHEP01(2011)090

	Critical points of the exotic massive 3D gravity
	1 Introduction
	2 Exotic massive gravity
	3 Exotic waves on black holes
	3.1 Deformed BTZ geometry
	3.2 Topologically massive gravity
	3.3 Confluent points
	3.4 Chiral points
	3.5 Double confluent points
	3.6 Are any other critical points?

	4 Discussion
	Acknowledgements
	References


