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Abstract

Birth defects are prenatal morphological or functional anomalies. Associations among them

are studied to identify their etiopathogenesis. The graph theory methods allow analyzing rela-

tionships among a complete set of anomalies. A graph consists of nodes which represent the

entities (birth defects in the present work), and edges that join nodes indicating the relation-

ships among them. The aim of the present study was to validate the graph theory methods to

study birth defect associations. All birth defects monitoring records from the Estudio Colabor-

ativo Latino Americano de Malformaciones Congénitas gathered between 1967 and 2017

were used. From around 5 million live and stillborn infants, 170,430 had one or more birth

defects. Volume-adjusted Chi-Square was used to determine the association strength

between two birth defects and to weight the graph edges. The complete birth defect graph

showed a Log-Normal degree distribution and its characteristics differed from random, scale-

free and small-world graphs. The graph comprised 118 nodes and 550 edges. Birth defects

with the highest centrality values were nonspecific codes such as Other upper limb anoma-

lies. After partition, the graph yielded 12 groups; most of them were recognizable and

included conditions such as VATER and OEIS associations, and Patau syndrome. Our find-

ings validate the graph theory methods to study birth defect associations. This method may

contribute to identify underlying etiopathogeneses as well as to improve coding systems.

Introduction

Birth defects (BD) are prenatal morphological or functional anomalies, classified as major or

minor according to their clinical or biological significance. BD often exert a significant effect

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0233529 May 22, 2020 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Elias D, Campaña H, Poletta F, Heisecke

S, Gili J, Ratowiecki J, et al. (2020) A graph theory

approach to analyze birth defect associations.

PLoS ONE 15(5): e0233529. https://doi.org/

10.1371/journal.pone.0233529

Editor: Diego Raphael Amancio, University of Sao

Paulo, BRAZIL

Received: December 28, 2019

Accepted: May 6, 2020

Published: May 22, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0233529

Copyright: © 2020 Elias et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: JLC received funding from Agencia

Nacional de Promoción Cientı́fica y Tecnológica

http://orcid.org/0000-0002-6576-8569
http://orcid.org/0000-0001-9180-9398
http://orcid.org/0000-0002-3146-5447
https://doi.org/10.1371/journal.pone.0233529
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233529&domain=pdf&date_stamp=2020-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233529&domain=pdf&date_stamp=2020-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233529&domain=pdf&date_stamp=2020-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233529&domain=pdf&date_stamp=2020-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233529&domain=pdf&date_stamp=2020-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233529&domain=pdf&date_stamp=2020-05-22
https://doi.org/10.1371/journal.pone.0233529
https://doi.org/10.1371/journal.pone.0233529
https://doi.org/10.1371/journal.pone.0233529
http://creativecommons.org/licenses/by/4.0/


on the newborn’s health as well as burden on treatment resources. The estimated BD preva-

lence, which has not substantially changed over time, is around 3% worldwide [1,2].

Since the thalidomide episode, BD surveillance has become a public health concern. BD

registries have been created to identify new teratogens and studies, focusing on BD associa-

tions, have been carried out [3–7]. BD associations are defined as the unknown etiopathogen-

esis coexistence of two or more unrelated anomalies.

Mainly two approaches have been used to analyze associations between unrelated BD. One

of them focuses on a specific defect and determines its association degree to other anomalies

in combinations of two, three, or four. For this approach, observed versus expected ratios, and

multivariate methods such as log-linear models have been used [8–10]. The second approach

is based on clustering methods. This method codes each newborn BD using a binary rating

system, and then newborns are clustered into groups. Discriminant analyses are performed to

identify the anomalies significantly associated to each group [11,12].

Graph theory may be considered as another approach to analyze BD associations. A graph

consists of nodes which represent the entities (BD in the present work), and edges that join

nodes indicating the relationships among them [13]. For this approach, a vast amount of clus-

tering algorithms have been designed [14], such as Infomap, which is based on the graph infor-

mation flow [15]. Centrality measures have been designed to characterize each node according

to its associations and those of its neighbors. For example, Degree represents the number of

edges leading to a node, Betweenness evaluates the number of shortest paths that pass through

a node, and Eigenvector considers the number of associations of a node, as well as those of the

nodes it is connected to [13]. Thereby, the graph theory methods allow to focalize the whole

set of BD, to characterize each BD according to its centrality value, and to identify groups.

The graph theory approach has been applied to social networks allowing to identifying

influencers [16], and the propagation and impact of fake news [17]. Further networks have

focused on protein interactions leading to identify the human interactome [18], genetic inter-

actions defining the cell map of yeasts [19], and association between diseases with common

genetic mutations [20], or common symptoms [21]. However, to our knowledge, the graph

theory approach has not yet been applied to analyze BD associations. Although experimental

as well as epidemiologic studies have been and are still being carried out to unravel pathogenic

paths underlying BD associations, most of them have been unsuccessful [22].

The aim of the present study was to verify the ability of the graph theory methods to identify

already known BD associations, and thereby to consider its inclusion as a further tool used in

BD surveillance.

Material and methods

Ethical aspects

The study protocol was approved by the Ethics Committee “Centro de Educación Médica e

Investigaciones Clı́nicas (CEMIC)” (DHHS-IRB #1745, IORG #1315). Written and signed

informed consents are obtained from all subjects participating in the Estudio Colaborativo

Latinoamericano de Malformaciones Congénitas (ECLAMC) program before data collection.

Furthermore, ECLAMC pediatricians adequately explain the written informed consent con-

tent to the mother or legal guardian of the newborn. All data were fully anonymized prior to

their utilization. All written consents are available in the ECLAMC coordination headquarters.

Data collection

For the present work, ECLAMC BD database was used. ECLAMC is a hospital-based BD mon-

itoring system that has been operating in twelve Latin American countries since 1967 [23]. It

PLOS ONE Graph theory and birth defect associations

PLOS ONE | https://doi.org/10.1371/journal.pone.0233529 May 22, 2020 2 / 13

(ANPCyT) PICT 2016-0952. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0233529


records all major and minor anomalies diagnosed at birth or before the infant’s hospital dis-

charge. Between 1967 and 2017, around 5 million live and stillborn infants have been exam-

ined; 170,430 cases (around 3%) had one or more BD.

Written and signed informed consents are obtained from all subjects participating in the

ECLAMC program before data collection. Furthermore, ECLAMC pediatricians adequately

explain the written informed consent content to the mother or legal guardian of the newborn.

The ECLAMC BD classification system combines ICD8 and specific ECLAMC codes for

major and minor anomalies, as well as for some chromosome anomaly syndromes.

For the present work, codes recorded in the whole ECLAMC BD set of live and stillborn

infants were used.

Representation of BD associations as a graph

To study BD associations using the graph theory, anomalies were represented as nodes and their

associations as undirected weighted edges. Edges were weighted using the association strength

volume-adjusted Chi-Square (VA-Chi2) (S1 Appendix). VA-Chi2 can be interpreted as a dis-

tance from independence; a value close to zero indicates that events are independent [24].

The number of edges in the BD graph (BDG) was defined based on a minimum number of

cases with two defects (I parameter = 18), and considering the edges with the strongest associa-

tion (VA-Chi2) (A parameter = 550). Parameters I and A were selected based on the average

codeword length described in S1 and S2 Figs.

Graph partition

Graph partition was performed with the Infomap method (version 0.19.21) [15]. Nodes could

only belong to one group of the obtained in the partition (Infomap default setting). The Info-

map algorithm is based on the information flow tendency within well connected groups.

Groups composing a network are identified by the definition of an optimally compressed

description of the way information flows in the network. The Huffman code [25] is used to

describe the information flow through an infinite random walk, considering it as a proxy of

the flow in the network.

Two measures were used to evaluate the graph partition quality:

Modularity. It reflects the concentration of edges within groups compared to a random

distribution of edges; its values range between -1 and 1. The closer to 1, the higher is the parti-

tion quality [26].

Average codeword length. It is an information-theoretical approach that uses a measure

based on the Huffman code length of a random walker whose values are greater than zero. The

lower the value, the higher is the partition quality [15].

Network characteristics. The following metrics were analyzed [27]:

Density (D). Density of a graph indicates the number of associations between nodes. It is

calculated as the number of observed associations over the number of all possible associations:

D = edge number x 2/nodes x (nodes-1)

D values range between 0 and 1.

Degree assortativity (DA). It represents the Pearson correlation coefficient of degree

between pairs of linked nodes. Its values range between -1 and 1 [28]. Nodes with values closer

to 1 tend to associate to nodes with similar degree values; those with low values tend to associ-

ate to nodes with different numbers of associations.

Clustering coefficient (CC). It measures the connection degree among neighbors of a

node. In a graph, it is calculated as the number of triplets of fully connected nodes over all pos-

sible triplets. It ranges between 0 and 1, where 1 indicates a fully connected graph.
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Average short path length (ASPL). It indicates the average of the minimum number of

steps (edges) among all node pairs.

Small-World index. Small-World is a kind of graph. Telesford et al. (2011) designed an

index to measure the belonging of a graph to the Small-Word kind [29]. The index compares

network clustering to an equivalent lattice network, and path length to a random network. Its

values range from -1 to 1, where -1 indicates that the graph has features of a lattice graph, zero

means that it has characteristics of a Small-World graph, and 1 that it has appearances of a ran-

dom graph.

To characterize BD, based on their position in the graph, three centrality indexes were

used:

Degree. Number of edges of a node.

Strength. Sum of edge weights of a node.

Eigenvector (EV). Its values arise from a reciprocal process where the centrality of each

node is proportional to the sum of centralities of the nodes it is connected to. Algebraically,

the EV centrality refers to the values of the first EV of the graph weighted with the adjacency

matrix. A normalized EV value between 0 and 1 was used. Nodes with values close to 1 indicate

a high number of associated nodes as well as its connection to nodes with a high number of

associations.

Validation of the results was based on clinical evaluation and interpretation of BD groups

obtained in the partitioned graph.

Results

The complete BDG comprised 118 nodes and 550 edges (S1 and S2 Tables). Its edge density

was 0.08, and its degree and EV centralities were 0.28 and 0.78, respectively. This BDG differed

from the three models taken as reference (Table 1). The median BDG values (CC, DA, and

ASPL) were not within the 95% confidence interval of the random graphs generated with

Erdos & Renyi (ER) [30], and Barabási & Albert (BA) [31] models, nor within random graphs

generated with the same degree and weight distributions (SDD); meanwhile, the Telesford

et al. (2011) small-world index for the BDG was -0.30. BDG degree distribution was closer to a

Log-Normal distribution (Kolmogorov-Smirnov distance: 0.05, P-Value: 0.23) than to other

distributions such as Power and Poisson (S4 Table).

BDG partition yielded 12 groups (Fig 1, S3 Table). Ten groups represented known BD asso-

ciations, syndromes, or clinically consistent complexes, while two of them (groups 9 and 10)

did not.

Nodes that showed the highest degree, EV and strength values were Other upper limb anom-
alies and Microretrognathia (S5 Table). The three strongest associations were Localized edema
with Turner syndrome, Proboscis with Cyclopia, and Liver and bile duct defects with Other
spleen defects (S1 Table).

Table 1. Comparison between the birth defects graph and three graph models. Erdos & Renyi, Barabási & Albert, and Same Degree Distribution data correspond to

the median of 1000 graphs. The models were created with the same number of nodes, edges, and weight distribution as the birth defects graph.

Features Birth Defect Graph Erdos & Renyi Barabási & Albert Same Degree Distribution

Clustering Coefficient 0.41 0.08 0.21 0.30

Degree Assortativity -0.05 -0.02 -0.29 -0.12

Average shortest path length 2.72 2.36 2.31 2.50

Modularity 0.32 0.19 0.06 0.07

Average codeword length 5.28 6.31 6.04 6.03

https://doi.org/10.1371/journal.pone.0233529.t001
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Minor BD presented a median EV centrality of 0.10, greater than the observed for major

BD (0.03) (Wilcoxon p-value 0.0004). Minor BD also presented greater degree (7.50 vs. 5.00)

and strength (0.60 vs. 0.44) values but their significance was lower than major BD values (Wil-

coxon p-value 0.0559 and 0.0396, respectively).

Group 1 showed the highest number of nodes (35), 62% were minor BD; it included syn-

dromes such as Edwards and Other autosomal chromosome anomalies (Fig 1).

Following, Groups 2, 3, and 5 are described as examples.

Fig 1. Birth defects graph. Each node represents a birth defect code. S2 Table depicts code names. Color of nodes and

edges indicates the partition group to which they belong. Edges between groups are gray and dotted.

https://doi.org/10.1371/journal.pone.0233529.g001
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Group 2, shown in Fig 2, comprised 16 nodes and 50 edges; its density, degree, EV, and CC

centrality values were 0.41, 0.45, 0.50, and 0.59, respectively. Nodes with the highest degree

and EV values were Ambiguous genitalia, Anus atresia, and Spinal anomalies (S3 Table). The

three strongest associations were Ambiguous genitalia with Anus atresia, Epispadias with

Exstrophy of urinary bladder, and Other abdominal wall defect with Umbilical cord anomaly
(S1 Table). The following subgroups could be identified: VATER and OEIS associations, Sire-

nomelia complex, Abdominal wall defect (which included the Limb-body wall-complex and

Short cord), and Congenital adrenal hyperplasia.

Group 3, shown in Fig 3A, comprised 16 nodes and 40 edges; its density, degree, EV and

CC centrality values were 0.33, 0.53, 0.57, and 0.51, respectively. Nodes with the highest degree

values were An/Microphthalmia and Holoprosencephaly; those with the highest EV values were

Patau Syndrome and An/Microphthalmia (S3 Table). The three strongest associations were

Proboscis with Cyclopia, Aplasia cutis vertex with Patau syndrome, and An/Microphthalmia

Fig 2. Subgroups and associated anomalies identified in Group 2.

https://doi.org/10.1371/journal.pone.0233529.g002
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with Patau syndrome (S1 Table). The following subgroups could be recognized in Group 3:

Patau syndrome, Craniofacial disruption, Holoprosencephaly complex, and Microcephaly
+Cataract. When a graph was created excluding the Patau syndrome code (with parameters

I = 18 and A = 350), most of the previously found BD still appeared while others, such as Trun-
cal heart anomalies, Encephalocele, Microcephaly, Cataract, and Cleft lip without cleft palate,

did not (Fig 3B).

Group 5, shown in Fig 4, comprised 12 nodes and 15 edges; its density, degree, EV and CC

centrality were 0.23, 0.68, 0.70, and 0.20, respectively. The node with the highest degree value

was Syndactyly, while those with the highest EV values were Constriction band scar, and Ampu-
tation (S3 Table). The three strongest associations were Constriction band scar with Amputa-
tion, Limb hypoplasia with Pectoralis muscle defect, and Limb hypoplasia with Syndactyly (S1

Table). Two subgroups (Poland and Amniotic band complexes) could be identified. Syndactyly
also independently associated to each one of a number of Limb reduction defects and

Polydactylies.

Discussion

The usual way to characterize a graph is by comparing it with other networks and models to

identify specific features of the phenomenon under study [32].

In the present work, one of the compared features was degree distribution. The BDG

showed a better adjustment to a Log-Normal distribution, which is in accordance with Broido

& Clauset (2019) who observed this distribution in most empirical networks [33]. However,

the BDG differed from ER graphs widely used as the backbone of null models [34], and whose

degree distribution follows a Poisson law [30]. This difference with ER graphs suggests that the

association probability between two BD is not constant. Furthermore, the BDG Log-Normal

distribution also determined its difference from scale-free graphs whose distribution follows a

Power law. Scale-free graphs are characterized by the presence of few nodes with a degree that

greatly exceeds the average (i.e. World Wide Web network) [35]. Finally, small-world graphs

Fig 3. Subgroups and associated anomalies identified in Group 3. (A) With Patau syndrome code. (B) Without Patau syndrome code.

https://doi.org/10.1371/journal.pone.0233529.g003
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present a high clustering coefficient and a small characteristic path length implying the pres-

ence of sub networks and a global reachability property [36]. Many real networks meet these

characteristics [37–39], while the BDG has differed.

That the BDG did not adjust to any of these models is an indicator of its singularity which

would require further studies of the BD registry characteristics.

Graph partition

The graph partition showed a modularity greater than zero and greater than the observed in

ER and SDD graphs, as well as a lower code length. These characteristics suggest a modular

structure where each group (or module) could associate to different clinical conditions. That

several related conditions were detected within each group is in accordance with this

observation.

In group 2, at least five overlapping conditions could be recognized, with Anus atresia act-

ing as the link among them. Although Ambiguous genitalia also showed high centrality values,

Fig 4. Subgroups and associated anomalies identified in Group 5.

https://doi.org/10.1371/journal.pone.0233529.g004
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some of its associated BD, such as a Persistent cloaca or Congenital adrenal hyperplasia, are

pathogenetically related and therefore redundant.

In Group 3, the highest centrality values for An/Microphthalmia point to this defect as the

most common one to the observed overlapping conditions (meaning the strongest link among

them), and probably to other outlying groups as well. It was followed by Holoprosencephaly,

which appeared as the link between BD related to the Holoprosencephaly complex (Single nos-
tril, Absent nose, Proboscis, and Cyclopia) and Patau syndrome.

In group 5, two overlapping conditions (Poland and Amniotic band complexes) could be

recognized linked by Syndactyly. The observed association between Syndactyly and Craniosyn-
ostosis probably represents a group of syndromes known as Acrocephalopolysyndactylies.

The congruence between obtained BDG groups and clinical conditions demonstrates the

ability of the graph theory approach to identify known associations. This ability is further

highlighted by the fact that even after excluding the Patau syndrome code in Group 3, the

obtained defects still suggested this diagnosis. The differences between groups with and with-

out the Patau syndrome code may have a biological meaning; however, they could also be due

to operational factors. For example, when justifying the diagnosis of a Patau syndrome, the

operator should be very exhaustive and describe redundant BD such as Microcephaly, which

otherwise, he/she would not. This, in turn, would lead to the appearance of defects these

redundant anomalies are associated to, such as Encephalocele or Cataracts.
The application of the graph theory methods to so far undefined case registries with multi-

ple BD could help establish new associations.

Minor anomalies

While an association is defined as the coexistence of two or more mainly major independent

BD (i.e. VATER, OEIS, etc.), a syndrome refers to a known or suspected condition, with or

without major anomalies, whose recognition often mainly relies on minor BD (i.e. Down or

Edwards syndromes).

The group with the highest number of nodes was the one including syndromes such as

Edwards and other autosomal chromosome anomalies and, as expected, 62% of them were

minor BD.

Minor anomalies often present alone as well as in association with a number of different

conditions [40]. That in our sample minor anomalies showed the highest EV values could indi-

cate a preferential reporting of such BD when they occur in association to others.

Unspecified defects

Some ill-defined BD such as Other upper limb anomalies or Neck anomalies, which often asso-

ciate to other conditions, were also among those with the highest EV values. That the EV val-

ues of some equally unspecific BD, such as Liver and bile duct anomalies or Other adrenal
defects were low could be due to the low overall prevalence (or low detection rate) of such BD

in recognized associations.

Therefore, indexes such as EV could be used to improve coding systems by detecting codes

whose low specification level might interfere when interpreting the network.

Limitations

The present results were mainly determined by the established significance thresholds (I and A

parameters), which were selected after evaluating the graph partition quality, as well as by the

recognition of known associations. The latter was prioritized, given the exploratory nature of
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this work; therefore, lax thresholds were selected. However, even when using tighter thresh-

olds, known clinical conditions could still be identified.

Conclusions

The findings of this work suggest the graph theory as a new approach to study BD associations,

as well as a tool to evaluate and improve coding systems. Its main advantage is the ability to

analyze relationships among defect complexes and associations which may lead to the identifi-

cation of common pathways and, eventually, to their etiopathogeneses. With this aim, a num-

ber of studies are being planned which could identify associations that have not yet been

described, and may add information to those already known.

Supporting information

S1 Fig. Median average codeword length by minimum number of cases with both birth

defects. The median average codeword length corresponds to the partition of weighted graphs

generated with the VA-Chi2 function and different threshold values: I) minimum number of

cases with both defects between 10 and 30, with a step of 1; A) number of edges (with greater

strength of association) included in the graph, between 50 and 800 with a step of 25. The blue

dot was the threshold selected in this work.

(TIF)

S2 Fig. Variation of average codeword length (ACL) by number of edges. The average code-

word length corresponds to the partition of weighted graphs generated with the VA-Chi2

function, a minimum number of cases with both defects of 18, and number of edges (A) (with

greater strength of association) included in the graph, between 50 and 800 with a step of 25.

The variation of ACL for each value of A was calculated with respect to the previous value of A

(ordered from highest to lowest). A positive variation indicates a decrease in the ACL. The

blue dot was the threshold selected in this work.

(TIF)

S1 Table. Edges included in the birth defects graph. Chi2: Chi-Square independence test.

VA-Chi2: volume-adjusted Chi-Square independence test. Group: Partition group, edge

between groups has empty value.

(XLSX)

S2 Table. Description of birth defects codes.

(XLSX)

S3 Table. Nodes of each partition group and their centrality indices with respect to their

group.

(XLSX)

S4 Table. Function adjustment to the degree distribution of the graph. KS Dist: Kolmogo-

rov-Smirnov distance. X min: Initial grade where adjustment begins.

(XLSX)

S5 Table. Node centrality indices with respect to complete graph.

(XLSX)

S1 Appendix. Methodological details.

(DOCX)
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