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Searching metabolic pathways that relate two compounds is a common task in bioinformatics. This is
of particular interest when trying, for example, to discover metabolic relations among compounds
clustered with a data mining technique. Search strategies find sequences to relate two or more states
(compounds) using an appropriate set of transitions (reactions). Evolutionary algorithms carry out
the search guided by a fitness function and explore multiple candidate solutions using stochastic
operators. In this work we propose an evolutionary algorithm for searching metabolic pathways
between two compounds. The operators and fitness function employed are described and the effect of
mutation rate is studied. Performance of this algorithm is compared with two classical search strategies.

Source code and dataset are available at http://sourceforge.net/projects/sourcesinc/files/feamp/
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1. Introduction

Using search strategies to solve different problems is common
in many areas of knowledge. In many cases, employing classical
strategies for sequential state space exploration allows to find
solutions rapidly. When all possible solutions are exhaustively
explored the strategies are called uninformed search strategies,
and this is the case of breadth first search (BFS) and depth first
search (DFS) algorithms [1]. It is a well-known fact that there
are problems in which a very high number of solutions must be
explored, making classical methods practically inapplicable. For
example, in KEGG database [2] there are around 17,000 com-
pounds with approximately 14,000 connections among them, and
a high branching factor. There are different approaches to address
these problems, among which evolutionary algorithms (EAs) have
an important place. The main difference with DFS and BFS is that
EAs do not explore the state space exhaustively, but rather
use several heuristics to select the most promising regions to
explore. These methods are grouped in four families: Genetic
Algorithms [3], Evolutionary Strategies [4], Genetic Programming
[5] and Evolutionary Programming [6]. Each one was originated by
different motivations, and they differ mainly by their representa-
tion schemes, and operators of selection and reproduction [7].
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Although the convergence for genetic algorithms is guaranteed by
the schema theorem [8], real values codification is limited by the
number of bits used. Instead, the evolutionary strategies directly
use real values to encode the problem variables, but their con-
vergence depends on the operators used. Evolutionary algorithms
use stochastic search based on the evolution of a population of
candidate solutions, applying a set of operators and a fitness
function that evaluates the quality of the solutions generated.
Some interesting aspects about these techniques are the simplicity
of the operators used, the possibility of using fitness functions
with very few formal requirements, and the ability to explore
multiple points of the search space in each iteration [9]. These
characteristics make them an attractive alternative to deal with
several problems in biology [10-12].

Different search strategies to find metabolic pathways that
relate compounds have been recently proposed. The algorithm
described by Ogata et al. [13] is based on BFS and builds pathways
between pairs of compounds by the combination of allowed
relations (metabolic reactions). The method of Linked Metabolites
[14] first builds an integrated graph and then performs the path-
way search specifying a maximum number of reactions between
source and target compounds. Metabolic PathFinding Tool [15]
assigns to each operator a cost equal to the number of reactions
where the compound participates. McShan et al. [16] use the A*
search algorithm to explore the solutions space guided by a cost
function based on the Manhattan distance and a heuristic function
that uses structural information of compounds to generate char-
acteristic descriptors. A more recent algorithm based on BES is
proposed by Heath et al. [17], where a metabolic pathway linking
two compounds is found preserving a specified number of atoms
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(atom tracking) between the beginning and ending compounds.
However, these last two algorithms require information about the
molecular structure of the compounds to be used, and BFS-based
methods require a significant amount of memory to store all the
search tree. Furthermore, given that methods based on BFS look
for a specified number of pathways, the order in which the nodes
of the tree are visited can bias the search to particular solutions
(unless the successors are selected using randomized traversals).
Another alternative is based on elementary modes. These methods
use stoichiometry of reactions and several restrictions to identify
minimal sets of enzymes that can operate at steady state, with all
irreversible reactions used in the appropriate direction [18,19].
Computing all elementary modes is expensive, even for small
networks [20]. There also exist retrosynthesis-based methods that
build new metabolic pathways to produce a compound of interest
in an organism [21]. These methods begin with the desired
compound and use reverse enzymatic reactions to synthesize a
metabolic pathway from simpler compounds. Although the pro-
blem being addressed in those works is close to our own, their
objective differs from the one proposed in this paper.

Finding relationships between two given compounds is not an
easy task, in particular when data come from different sources such
as metabolic and transcriptional profiles.! In this case, one possible
approach is to create clusters from the combined sources using a
data mining tool [22]. This way, applying the “guilt-by-association”
principle [23,24] genes and metabolites that vary coordinately can
be found. Since the relationship among metabolites and transcripts
is mainly given by metabolic pathways,” the following step would
be searching such pathways with the available data. Traditionally,
metabolic pathways search was manually performed, but the
current increase in the volume of data demands for computational
tools to perform the search automatically [17]. Many efforts have
been made to automate the process, but obtained results are not
biologically feasible. For example, in [25] a search for metabolic
pathways with up to 9 reactions among glucose and pyruvate was
performed and approximately 5 x 10° metabolic pathways were
found, many of them biologically not possible.

The main contribution of this work is the proposal of
an evolutionary algorithm to find metabolic pathways, capable of
relating two compounds in a common and valid reaction chain. To
achieve this, a data mining tool was used to generate clusters from a
real biological dataset, and pairs of compounds within the clusters
were used for the genetic search of metabolic pathways. Afterwards,
objective measures were defined to quantify the performance of the
algorithms, and the effect of the mutation rate on the evolution was
studied. Finally, the proposed algorithm was compared with two
methods based on classical search algorithms.

The paper is organized as follows: Section 2 describes the
proposed algorithm for the evolutionary search of metabolic
pathways between two compounds. The data used, the objective
measures, and the results obtained are briefly described in Section
3. Finally, Section 4 presents the conclusions of this work.

2. Proposed algorithm

This section presents the proposed algorithm, that we will call
evolutionary algorithm for the search of metabolic pathways
(EAMPs)°. First, the state space and search operators employed

! Metabolic profile: measurement of concentration levels of small molecules.
Transcriptional profile: measurement of activity levels of a set of genes.

2 A metabolic pathway is a sequence of chemical reactions that transform a
substrate into one or various products through a series of intermediary compounds.

3 Source code and dataset are available at http://sourcesinc.sourceforge.net/
eamp/

are defined. Then, the structure of the chromosomes and the way
the information is coded is presented. Afterwards, the genetic
operators used and their functioning are described. Finally, the
fitness function employed is presented, the terms that compose
it are analyzed and the effect that each of them produces on the
search is described.

There are different approaches to explore the space of all the
possible metabolic pathways linking two specific compounds. One
proposal consists of generating a list of compounds that must be
excluded from the search [26]. However, incorrect definitions can
exclude compounds necessary to produce results of biological
interest. A different approach was proposed in [27]| where sets of
“substrate-product” binary relations were used to represent the
reactions and each relation was labeled according to its function
inside the reaction. The main stream of the pathways was built
using only the relations containing information about the trans-
formation of the substrates.

Following that idea, the state space is defined as the set C of all
metabolic compounds in the KEGG database. This database con-
tains information of genes, proteins and metabolic compounds of
hundreds of different organisms and the allowed binary relations
between compounds are describe by transformations r. The
compound on which the transformation is applied will be called
substrate s, and p will be the product or new resulting state.
Transformations will be represented as ordered pairs r; = (S;, p;),
with s;,p; e C and s; # p;. In addition, the substrate and product of
r; will be identified using the notation s; and p; respectively, being §
the initial compound and p the final compound of the metabolic
pathway. In this way, a metabolic pathway is built as a sequence
of transformations that produce p starting from $. Finally, the
sequence of possible states q=[S,py.ps.....p] is defined as the
sequence of compounds that take part in the transformation.

2.1. Structure of the chromosomes

The sequence of transformations r leading to the production of
p from § is coded in the chromosome as c=[ry,72,...,Tj,...,Tn],
where N indicates the number of genes and the sequence is read
from left to right. In this context, the term chromosome indicates a
data structure such as a vector, and should not be interpreted in a
biological way. This value can vary in the range [1,Ny], where
Ny is the maximum number of reactions the metabolic pathway
can contain. When the number of reactions exceeds this level, the
chromosome truncates to contain only the first Ny, reactions.

2.2. Genetic operators

This section describes the genetic operators* designed for the
EAMP. Due to the requirements of this application in particular, it
has been necessary to make various changes to classical genetic
operators, which, if directly applied, would limit the convergence of
the algorithm. In order to facilitate their explanation, four sets
of transformations are defined. R* contains the complete set of
allowed transformations, R! = {r;\r; = (8, p;)} ~ R! c R* contains only
those transformations that use §, RY = {r;\r; = (s;, p)} A RY c R* con-
tains all transformations that produce p, and R* =R! U RN contains
the union of the two previous sets. The algorithm finds a solution
when it reaches a predefined maximum number of generations or
when the fitness of an individual takes the value 1, indicating that it
encodes a metabolic pathway that relates the indicated compounds.

4 This general term indicates operations applied over chromosomes. For
example, the crossover operator combines genetic information of two chromo-
somes to produce a new one.
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Moreover, if maximum number of generations is reached, the
algorithm is stopped and returns the best individual found.

Initialization: The algorithm is initialized by defining the number
of individuals M that the population contains and a value N; < Ny, for
each individual, which indicates the maximum number of genes a
chromosome can initially have. Chromosomes can be built in two
ways. If a random initialization strategy is used, transformations are
selected according to

TI'GRJr

c={ [rurilrieR.rjeRY

if N=1,
if N=2, 1)

1 %k N
[Fis- s Ths Tl Ti€R T eR*, ;e R if N> 2,

where every gene 1 is a transformation randomly selected from the
corresponding set. When a valid initialization strategy is employed,
transformations are selected according to

reR* ifN=1,
=1 coTitjhrieRL T eRY sj=p;y ifN=2. @

All transformations that are already part of the chromosome are not
selected again to be inserted into the sequence. When valid initi-
alization is forced to set a chromosome with N, genes, it will be
called fixed-length valid initialization, and the chromosome will be
completed up to contain the specified number of genes.

Selection: In this algorithm the traditional roulette method was
used [9]. This method is based on assigning a value f to each
individual that is proportional to its contribution to the fitness
mean of the population. Tournament selection with 3, 5 and
7 competitors was also tested. In an independent experiment, six
searches were performed, each one with 30 runs. Results show
that roulette uses searching times significantly lower than tourna-
ment (p < 0.05). Elitism is employed to guarantee the preservation
of the fittest individuals in each generation. The parameter &
determines the number of individuals that will be preserved
and that will pass to the following generation without any
modification.

Crossover: This operator presents an important modification
compared to the classical one, because it promotes the formation
of valid bonds of the genetic material. The crossover point ¢ for
each parent (cq,c;) is randomly selected from a set containing
pairs of positions (¢;.¢,) that satisfy &(s;,p;) =1, where 6 is the
Kronecker delta function, which takes value 1 when s; ec; and
p; € €3 are equal. Fig. 1 shows a diagram of the functioning of the
operator in the case of two parents that are not completely valid
(see definition of validity later). Each block represents a gene and
codes a chemical reaction in which letters represent the substrates
and products of each relation. It can be noticed that if a simple
crossover method is applied without considering the sequence of

reactions, the validity of the generated offspring would probably
diminish. However, if the crossover is carried out in one of the
highlighted pairs of positions (¢, ¢,), the validity of the offspring
will increase. When there is not a feasible crossover point, two
different progenitors are selected.

Mutation: This operator replaces a chromosome gene by
another one where s or p of the new gene is p of the previous
gene or s of the following gene, respectively. Each chromosome
has a probability u of being mutated in a single randomly selected
position. The new gene is obtained according to

reR* if N=1,
reR! ifN>1Ai=1,

mut(rj)={ reR" if N>1Ai=N, 3)
reR*/p=si,; ifN>1TAl<i<NAu<0.5,
reR*/s=p;; ifN>1Al<i<Nau>0.5,

where s and p are, respectively, the substrate and product of the
new gene r; S;, 1 is the substrate of the gene that is located in the
position next to the mutated gene r;, and p;_; is the product of the
gene that is in the position previous to the mutated gene. Value
u is randomly selected in the range [0,1]. Fig. 2 presents a diagram
of the functioning of this operator. The choice of a new gene can
result in a wide range of possible chromosomes. It is observed that
in the chromosome placed at the top of the figure the gene
selected to mutate has a valid relation with the previous gene,
but not with the next one. Transformations that replace the
gene to mutate should use the compound r as a substrate,
the compound z as a product or both in the best case (bottom of
the figure).

If a classical mutation operator is applied, there is high
probability that the validity of the chromosome will diminish,
because the new gene would not establish a valid union with their
neighboring genes. On the contrary, if a valid mutation strategy is
applied like in (3), it is more probable that the chromosome will
increase its validity, as it can be seen in the chromosome at the
bottom of the figure. Although in some cases the validity of the
new chromosome might decrease, it is the cost to pay to be able to
explore distant regions of the search space and leave local minima.

2.3. Fitness function

To evaluate the desired characteristics of the solutions, a fitness
function f was built taking into account features of biochemical
reactions, and it was employed to direct the search. The function f for
the chromosome c is defined as f(c) = a[V(c)+ fE(c)+Q(c)+I(c)],
where o = 1/(3+ /) is a normalization constant driving the function
to the range [0,1] and S determines the relative contribution of
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Fig. 1. Diagram of the functioning of the crossover operator. Each block corresponds to a gene encoding a transformation. In each gene, substrate and product are
represented by letters at left and right of each arrow, respectively. Shaded elements indicate pairs of positions (¢, ¢,) where a valid crossover can be made.
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Fig. 2. Diagram of the functioning of the mutation operator. The selected gene to mutate is marked with a black rectangle. Top: Chromosome with a selected gene to be

mutated. Bottom: Possible resulting chromosomes after mutation.

E measure. This function takes value 1 when a valid metabolic
pathway, without trivial cycles, that produces p from § is found.
In case of having information about the relative abundance
of compounds, this function could be modified to weight the
reactions according to the probability of occurrence, which is directly
associated with the abundance of the compounds involved. The four
measurements that are part of the function are described below.

Validity (V): It quantifies the number of valid concatenations
present in the chromosome, defining them as those consecutive
pairs of transformations where the product p; of r; is the substrate
s, 1 of the transformation r;, ;. Based on this, validity is calculated
as

_ 83,51 +8(py, D)+ XN 16(Si 1, D)
- N+1

It varies in the range [0,1], being 1 when all operators are
concatenated and the compounds s; and py are the ones desired.

Valid extremes (E): This term evaluates the transformations ry
and ry to verify they contain the desired § and p compounds. The
calculation is done according to E(c) = 1[5(5,51)+8(py, P)]. This term
varies in the range [0,1] and reaches its maximum value when the
compounds s; and py are the ones desired. This plays an important
role when the size of the metabolic pathways exceeds Ny,.

Unique reactions rate (Q): This term penalizes the repetition of
transformations in the chromosome. Function ¢ is defined for its
calculation, which evaluates a sequence and returns the number
of unique elements present in it. The rate is calculated as
Q(c)=(¢p(c)—1)/(N-1) and it is defined Q(c)=0 when N=1. It
varies in the range [0,1] and reaches its minimum value when the
sequence contains a unique element repeated N times (¢(c)=1).

Unique compound rate (I): This term penalizes the repetition
of compounds in the pathway. The rate is calculated as
I(c)=(p(q)—2)/(N—1) and it is defined I(c)=0 when N=1. It
varies in the range [0,1] and reaches its minimum value when
the chromosome contains transformations that only produce s; or
pi (chromosomes containing repetitions of the transformations of
s;i—p; and p; —s;). For example, in the metabolic pathway codified
in the chromosome c¢=[a— b][b—a]la— b][b—d] the number of
reactions is N=4 and the sequence of states associated to it is

V(©) - C))

q=[a,b,a,b,d] (see definition on page 2) where only three
compounds are unique (¢(q) = 3). In consequence, I(c)=1.

To illustrate the calculation of the fitness function, the lower
chromosome in Fig. 1 will be used. If it is assumed that §=a
and p =e, then V(c) =1 and E(c) = 1 because the substrate of each
reaction is produced by the previous reaction and the terminal
compounds (a and e) are the compounds to relate. Q(c)=1
since each gene in the chromosome is unique; and given that
the sequence of compounds is q=[a,b,q.y,r,e], results ¢(q)=6
and I(c)=1, since all the compounds appear only once in gq.
Therefore, f(c) = 1. Instead, if we now assume that the third gene
of the chromosome is [b—gq], then V(c)=2% and E(c)=1 because
there are 2 invalid reactions (between genes 2-3 and 3-4) and
the terminal compounds are the same; Q(c)=3 since there is
a gene repeated in the chromosome (third gene); given that
now q=I[a,b,q.q.r.e], results ¢(q)=5 and I(c)=3. Therefore,
f(c)~0.792.

3. Results and discussion

This section presents the results obtained in the evaluation of
EAMP and its comparison with two classical search methods. First,
the data used in the experiments are described. Then, the measures
employed to compare the algorithms are presented. Afterwards,
EAMP behavior is analyzed using different mutation rates. Finally, a
comparison is made between the measures obtained with the
different algorithms during the search of metabolic pathways.

The set of valid compounds to generate metabolic pathways
and the possible chemical reactions among these compounds were
extracted from the KEGG database.” This source was used because
it is widely cited in the literature, and it contains information of a
wide variety of organisms. In KEGG each compound is identified
by means of a single code and chemical reactions store the
information of the transformations using this coding. In addition,
chemical reactions are stored as sets of “substrate-product” binary
relations, where each one is labeled according to the function

5 http://www.genome.jp/kegg/.
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which the pair fulfills inside the chemical reaction. The relations
labeled “main” were the ones selected to conduct the experiments
since they contain the information about the transformations s —p
[28]. The dataset used in the experiments was built by extracting
and filtering all main pairs in order to preserve only one copy
of each one. Each one was splitted into a backward and a for-
ward reaction. After processing the data, 14,346 transform-
ations relating 5936 compounds were extracted from the KEGG
database.® Moreover, there is a subset of compounds (=~ 5% of
dataset) with a high branching factor that reaches values up to 118.

Suppose that, for example, two clusters are found from a
dataset with a data mining tool, and that we want to find a
metabolic pathway relating two compounds belonging to each of
those clusters. Then, we could use an algorithm for searching
metabolic pathways and a set of possible transformations to link
them. In this work, the dataset used consisted of metabolic and
transcriptional profile data from tomato fruits cultivated under
controlled conditions and harvested during maturation process
[29]. A data mining tool based on a neural model [30] was selected
to obtain the clusters. This tool is based on a self-organized map
and uses the principle of “guilt-by-association” to build clusters of
metabolites and transcripts with high probability of participating
in the same biological process. It is important to remark that the
use of a data mining tool is not a requirement of the algorithm.
Compounds to relate could be selected using other criteria, for
example, they could be manually selected. Transformations
extracted from KEGG were used for linking compounds. Pairs of
compounds belonging to each cluster were used to perform the
search and test the algorithms. Table 1 presents details of the
compounds belonging to the clusters. [somers detailed in this table
were considered as different compounds, so cluster A contains
6 compounds and cluster B contains 12 compounds. To simplify
the notation, each compound code will be used without consider-
ing the letter and zeros preceding the number.

3.1. Performance measures

To compare the results obtained with different algorithms, the
time required to find a metabolic pathway (t) was measured,’ as
well as the number of transformations (L) that the pathway
contains and the number of compounds () belonging to the
cluster of the pair of compounds which are part of the pathway. In
the case of the EAMP, the number of generations used to find a
pathway (G) was also evaluated. For each pair of compounds, 20
runs were carried out. For each run the maximum value (indicated
by subscript M), the minimum value (indicated by subscript m)
and the median (indicated by the symbol indicated by the symbol
“ ") for several measures were determined. These runs were
carried out to evaluate the diversity of pathways found with
different algorithms. In most measurements the median was used
instead of the mean since it is a more robust measure for
asymmetric distributions, as it happens in these cases.

To evaluate the proportion of cluster compounds in the metabolic
pathway, we define the explanation rate of the cluster as

max{y}
A = DXVl 5
T4 )

where k indicates the run number, v, is the number of cluster
compounds included in the pathway found in the run k, and |¥] is
the total number of cluster compounds. This rate varies in the range
[0,1] and indicates the proportion of cluster compounds present in
the metabolic pathway. Values of A close to 1 indicate that

6 The last free available version of KEGG data was downloaded in May, 2011.
7 Experiments were conducted using a PC INTEL Pentium IV 3 GHz.

Table 1
Clusters selected to search for metabolic pathways.

Cluster A Cluster B
Compounds Isomers Compounds Isomers
I 11 I 11
Arginine C00062 C00792 Asparagine C00152 C01905
Glycerate C00258 Glycine C00037
Lysine €00047 Histidine C00135
Ornithine C00077 C00515 Isoleucine C00407
Serine C00065 C00740
Tyrosine C00082
Threonine C00188 C00820
Valine C00183 C06417
500
‘ A random initialization
250 ® valid initialization +
T m fixed—length valid initialization +
\ 4 +
100 I
i

Time [seg]
w
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L
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Fig. 3. Influence of the mutation rate on the searching time required by EAMP
to find a solution using three different initialization strategies. Triangles, circles
and squares indicate the median time of the dataset for each initialization and
vertical bars represent the corresponding 95% confidence interval. Triangles
indicate random initialization, circles indicate valid initialization and squares
indicate fixed-length valid initialization. Times are plotted in logarithmic scale.

the pathway relates a great number of cluster compounds. The
Wilcoxon signed-rank test was used to perform the statistical analysis
of data [31].

3.2. Mutation rates and initialization strategies

To evaluate the influence of the mutation rate, this parameter was
studied in the range 0.01-0.1, for the compounds marked in Table 1.
Applying elitism (e =1) the best solution in each generation was
preserved. In all runs a population of M=1000 individuals, a max-
imum chromosome size of Ny; =100 genes, an initial maximum
number of genes per chromosome of N;=50, and a crossover
probability y = 0.8 were used. Preliminary tests were performed with
values of y in the range [0.5, 0.9] and a step of 0.05. The best results
were obtained for y =0.8. Random initialization, valid initialization
and fixed-length valid initialization, were tested employing those
parameters. For this last one, initial number of genes was set to
Ny =Npy.

Results for the searching time and the number of generations were
similar in both cases. To evaluate normality of the distributions of the
time data, the Jarque-Bera test [32] was used. It performs an
hypothesis test to compare a metric relating symmetry and kurtosis
values of the distribution tested versus a normal distribution. In all
cases, data showed non-normal distributions. Given that a median
value is better than an average value to characterize asymmetric
distributions, the first one was employed for each distribution of the
time data and a confidence interval using bootstrap technique [33]
was estimated. Confidence intervals for each distribution data are
shown in Fig. 3. The symbols (triangles, circles and squares)
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correspond to the median of the time values for each initialization
strategy and the vertical lines represent the corresponding 95%
confidence interval calculated by the bootstrap technique. Triangles
correspond to results for random initialization, circles indicate valid
initialization and squares correspond to fixed-length valid initializa-
tion. All times are shown in logarithmic scale. The minimum searching
time for each strategy was associated to the lowest value of the
median for all mutation rates. In addition, it was considered that
overlapped confidence intervals did not present statistically significant
differences.

Fig. 3 shows that valid initialization and fixed-length valid initi-
alization have only small differences between them but they produce
significant improvements compared to random initialization. For all
the initialization strategies a solution was found for every run.
Minimum searching time for random initialization was found at
Pm=0.04 with no significant differences in the range 0.02-0.05. For
valid initialization strategy the minimum was reached at 0.02 and
there were no significant differences in the range 0.01-0.05. Fixed-
length valid initialization strategy only has a lowest searching time
at p,,=0.01.

These results may be due to how the mutation operator works.
In the context of random initialization, two phases for the
mutation operator can be identified. In the first phase, the
operator helps building blocks of genes to increase the average
population validity. In the second phase, when there are a few
blocks per individual, these blocks are modified by the mutation
operator in a way that allows the crossover operator to generate a
feasible solution. As a consequence, the first phase can be delayed
by low probabilities, while the second phase can be slowed by
high probabilities because they would introduce a high variability
in the searching process. Therefore, it is expected that intermedi-
ate probability values produce the best results.

When both valid initialization strategies are analyzed, the effect
of the mutation rate on them is different and high mutation values
slow the search. Thus, given that chromosomes are completely valid
at the beginning and due to crossover operations also produce valid
chromosomes, the incorporation of a high number of mutations
slows the searching of solutions. Therefore, although mutations
prevent the search from stopping at a local minimum, they drive
it away from the region of the initial feasible solutions.

The differences between the valid initialization strategies could
be explained by the initial number of genes in the population.
Since fixed-length valid initialization has a larger number of genes
at the beginning, small increases in the mutation rate produce
larger effects. This is because the number of genes to mutate is
proportional to the number of genes in the population. In addition,
given that at the beginning all chromosomes are valid, the number
of cross points increases and the speed at which unnecessary
genes are eliminated is reduced.

An exponential increase in the searching time, in the range 0.05-
0.1, was seen for random and valid initialization strategies because of
the variability effect introduced by elevated mutation rates. The range
of probabilities for fixed-length valid initialization was broader
probably because the initial number of genes to mutate is larger than
for the other strategies, increasing the influence of high mutation
rates. In reference to the metrics for the evaluation of the pathways (L,
w and A), similar values were found among the three strategies. This
indicates that the use of any valid initialization strategy improves
searching time without producing significant effects on the charac-
teristics of the solutions found.

In summary, the use of a valid initialization strategy significantly
improves the searching time, driving exploration of the search space
toward where it is more probable to find a solution. Since shorter
searching times were obtained with a valid initialization, this
strategy will be used for future comparisons between EAMP and
other techniques. Although for fixed-length valid initialization

strategy searching time at p,,=0.01 was similar to valid initialization
in the range 0.01-0.05, this last one will be used because it is less
sensitive to changes in the mutation rate. Finally, p,,=0.04 will be
employed because the major difference between the three strategies
is achieved with this value.

3.3. Comparison between classical search strategies
and the proposed evolutionary algorithm

To compare the performance of EAMP against classical BFS and
DFS algorithms, measures obtained for the search of metabolic
pathways were compared. The EAMP was evaluated applying the
parameters values set in the previous subsection.

BFS and DFS algorithms were modified to incorporate a control of
repeated states, that allows to discard operators producing com-
pounds previously generated in the pathway. In the case of the DFS,
the maximum depth for the search was limited to 100 transforma-
tions to apply the same restriction as the one set for the EAMP.

Both classical algorithms explore the state space by building a
search tree, where each node is a compound and the connections
represent possible reactions among them (parent nodes are the
substrates and child nodes are the products). Therefore, a pathway
consists of a set of compounds and reactions that link them.
However, while BFS explores all nodes with depth d(pathways
with d—1 reactions) before those of depth d+1, DES takes every
pathway until it reaches a leaf node.

Since the set of solutions found by BFS and DFS algorithms is
influenced by the order in which operators are applied, a single
search may generate biased solutions due to their initial ordering.
To avoid this effect, we use as many randomizations or randomized
traversals as pathways searched by EAMP. For each randomization,
the first pathway found was considered. Metrics for each algorithm
were calculated as an average value over randomizations.

Results regarding the search time and the diversity in the
lengths generated with the three methods are shown in Fig. 4.
Boxplots for search times are shown in white and the length of the
pathways found are shown in gray. In each diagram, the body of
the box contains the central 50% of the data and the complete
diagram reflects the variability of the analyzed measure. The box
bottom and top limits correspond to the quartiles Q; and Qs
respectively, and the segment dividing each box into two halves
shows the position of the quartile Q, (median). As it can be
observed in the figure, DFS found pathways in times close to 1 s,
but the length of the pathways was biased to the maximum
allowed value. Because metabolic pathways relating only two
compounds and containing 100 transformations have no biological
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Fig. 4. Boxplot showing the search time and the length of the pathways for the
results of EAMP, BFS and DFS algorithms. Search times are expressed in seconds
and are shown in white; the length of the pathways found are expressed in number
of transformations and are shown in gray. Time is plotted in logarithmic scale. Each
box represents the central 50% of the data. Circles indicate atypical measurements.
Segments extending outside the boxes indicate the maximum and minimum limits
from which values are considered atypical.
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Table 2
Comparison between BFS and EAMP. Time { is expressed in seconds and L in
number of transformations. |¥| indicates the number of compounds in each cluster.

Search — 1 2 3 4 5 6
|#|— 6 12
Compounds to relate — 62-47 258-77 47-258 37-82 135-65 135-82

t EAMP 17.6 8.6 83 3.4 15.2 8.4
BFS 16.1 77.5 142.0 10.2 12.6 12.9

Ly EAMP 13 11 17 9 19 18
BFS 4 5 5 3 5 5

i EAMP 6.5 7 8 5 9 6
BFS 4 5 5 3 5 5

L EAMP 4 5 5 3 5 5
BFS 4 5 5 3 5 5

WM EAMP 3 3 2 4 3 4
BFS 2 2 2 3 2 2

W EAMP 24 21 20 23 21 21
BFS 20 20 20 24 20 20

A EAMP 050 0.50 033 033 033 0.33
BFS 0.33 0.33 033 025 017 0.17

interest (high energetic inefficiency), results obtained with this
algorithm were excluded from subsequent analyses.

Fig. 4 shows similar values for searching time, with mean
values slightly lower for BFS (45.2 s) than for EAMP (51.2 s). This
result is mainly due to a few cases where EAMP used searching
times higher than 500 s. For practical purposes, they could be
considered equivalents. EAMP found metabolic pathways with
intermediate lengths to those of BFS and DFS. This result is
interesting because, apart from finding the shortest pathways
between compounds, it also found pathways with more diversity
of sizes, offering alternatives that might be of interest for a
biological analysis. For example, if the shortest pathway has
5 reactions, pathways with greater length could incorporate
additional compounds of interest to produce the desired final
compound through alternative pathways.

In order to analyze the results generated by EAMP and BFS in
more detail, Table 2 shows measures obtained with each algorithm
for each pair of compounds. The rows in the table correspond to the
median of the search time (f); the maximum, minimum, and median
number of transformations (L, L, and L respectively); the maximum
and mean number of cluster compounds incorporated into the
pathway (y,, and y respectively); and the explanation rate of the
cluster (A). Columns indicate different pairs of compounds numbered
from 1 to 6; the number of compounds in each one of the clusters
previously found; and the compounds used in every run.

Table 2 shows that BFS uses similar or higher times than
EAMP. Only for Searches 2, 3 and 4 these differences were
significant (p < 0.05). The minimum pathways size was similar
for BFS and EAMP showing that both algorithms can find the
shortest pathways. Besides, EAMP found larger pathways than
BFS, leading to the median be significantly greater (p < 0.001).
This is desirable because indicates that EAMP finds metabolic
pathways with reactions not included in the shortest pathways,
providing information about alternative mechanisms to synthe-
size a metabolite. Measures related to the number of cluster
compounds included into the pathways were similar for both
algorithms, differing only in the Search 1 where EAMP related
more cluster compounds than BFS (p <0.01). The explanation
rate of the clusters reflects that none of the algorithms pre-
sented a preference for incorporating cluster compounds into
the solutions. However, EAMP presented slightly higher values

for some cases as a result of the variability in the number of
transformations of the solutions.

For a preliminary biological evaluation of the algorithms,
the search of a metabolic pathway linking compounds C00103
(a—D-glucose—1P) and C00631 (glycerate-2P), both characteristic
of glycolysis, was performed. Fig. 5 shows the classical glycolysis
pathway and those found by EAMP (short dashed lines) and
BES (long dashed lines). Initial and final compounds are drawn
as bold hexagons. Large gray rectangles indicate different path-
ways. Compounds (circles) and reactions (arrows) are shown with
the KEGG codification. Dotted circles indicate compounds that are
present in more than one pathway.

The pathway found by BFS employs five reactions, one less than
the standard pathway of glycolysis, by taking a shortcut through
the pentose pathway. The glycolysis and the pathway found
with EAMP use six reactions for linking the compounds of interest.
However, reactions for this last one belong to two different known
pathways. Furthermore, only one reaction belonging to the glyco-
lysis pathway (not participating in the sequence linking the
desired compounds) is used by EAMP. When comparing both
pathways found, it can be seen that although the pathway found
by BFS contains fewer steps, it just replaces three of the six original
reactions belonging to glycolysis. Instead, the pathway found with
EAMP replaces all reactions from the standard pathway by reac-
tions belonging to alternative routes, and uses only one reaction
from glycolysis. The last one is very interesting because it provides
a novel pathway employing a set of reactions different to the
well-known glycolysis. Furthermore, this result indicates that the
production of a compound may occur through different mechan-
isms than those already known.

Although solutions found by EAMP are biologically possible, the
incorporation of additional information would lead the search
towards solutions of particular interest. For example, the use of
“atom tracking” as presented in [17] would allow to find metabolic
pathways where a predefined fraction of the substrate has to be
conserved into the product.

Finally, given that the fitness function and many parts of the
algorithm can be easily modified, it could be applied to a wide
range of applications. For example, it could be used to eliminate
gaps in metabolic pathways [26,34,35] or the construction of
heterologous pathways in metabolic engineering [36-38].

4. Conclusions and future work

This paper proposed an evolutionary algorithm for searching
metabolic pathways between two compounds. The structure of the
chromosomes was defined as a sequence of chemical transforma-
tions. Specific operators of crossover and mutation for the applica-
tion domain were defined, to favor concatenation of related
transformations. Different metrics were also proposed to compare
the performance of the algorithms and assess the features of
pathways found. It was noted that the use of a valid initialization
reduces the search time, and that mutation rates lower than 0.05
favor this decrease. In the comparison of EAMP with BFS and DFS it
was noted that the proposed algorithm used similar times to BFS.
Although DFS is the fastest, as it would be expected, in most cases
this algorithm founds pathways with the maximum allowed
length, which strongly influences their usefulness. It must be
highlighted that the EAMP generated a higher dispersion of
lengths in the pathways, with intermediate values to those of
the solutions found by the other two algorithms. From a biological
point of view, this result is interesting because it shows that our
algorithm can explore alternative mechanisms for the production
of compounds. These alternatives include reactions belonging to
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Fig. 5. Metabolic pathways linking compounds C00103 and C00631 found using EAMP (short dashed line) and BFS (long dashed line). Initial and final compounds are drawn
as bold hexagons. Large gray rectangles indicate different pathways and their compounds (circles) and reactions (arrows), shown with the KEGG codification.

different metabolic pathways, which is well-known that could be
involved in the metabolism.

As future work, we are considering the use of an initialization
strategy that builds the chromosome starting from both com-
pounds to relate. Furthermore, next steps will involve finding
metabolic pathways linking more than two compounds, also
incorporating information of enzymes and taking into account

non-trivial cycles. In addition, other multi-objective evolutionary
strategies will be considered.
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