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Abstract

This work studies the dependence of percolation properties of bidimensional arrays of poly-
dispersed disks on the distance separating the walls of the container holding them. Data for
percolation probabilities using di�erent wall separation is analyzed for two extreme values of
polydispersity. Conclusions on the e�ect that the container width has on the behavior of those
properties are presented and discussed.
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1. Introduction

Arrays of solid particles are physical systems representing many basic and tech-
nological problems in granular matter 9eld. They present the beauty and “apparent”
simplicity of familiar situations but, at the same time, o�er the complexity of a many
body problem without exact solutions.
From pharmaceutical to mining engineering processes, all scales of grains and con-

tainers holding them are implied, with lots of operating setups and with needs of
a good characterization in order to optimize mixing, transport and packing of the
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particles. Many works have attended the above-mentioned problems and much progress
have been done in this direction but there are still many questions to answer
[1–8].
Ippolito et al. [5] studied the dispersion properties of individual spherical small

particles moving under gravity in a random packing of large spheres of diameter D.
They analyze dispersion in the direction parallel and transverse to the mean velocity
by studying the beads distribution in the x–y plane at the exit of the packing, while
varying the height of the bed. Di�usion behavior was found in both directions and the
dispersivity length was determined. They found that the path length was controlled by
the diameter of the large beads, and that the dispersivity length increased with D, the
diameter of the beads in the packing. Cooke and Bridgwater [6] developed an analytical
framework to describe the motion of particles through an array of solid surfaces such as
may be encountered in spontaneous percolation or in the design of mixers or blenders
having no moving parts. By means of numerical simulations they study the inGuence
of the restitution coeHcient, particle diameter and bar spacing on the performance of
the disperser. They found that the characteristic jump length decreases with the size of
the beads.
In a recent paper, Bruno et al. [7] have studied, both experimentally and numerically,

a gravity-driven Gow of disks through a hexagonal lattice of obstacles, a Galton board.
During the fall, particles su�er dissipative collisions that scatter them in random direc-
tions: as a consequence particles trajectories are aleatory and a driven-di�usion regime
is achieved. A characteristic length of the motion and the dependence with geometrical
parameters of the system was analyzed in the steady regime for single particle and
many particles Gow experiments.
In the cited works, particles can percolate spontaneously by gravity in the medium,

that is, they cannot be trapped by the geometry (the size of the percolating particles is
suHciently small compared to that of the packing particles). Inter-particle percolation
can be induced too by applying a shear [8,9]. In all cases, the arrays of obstacles (or
experimental media) were supposed to be large enough in order to avoid boundary or
wall e�ects.
In this work we perform simulations of granular packings in 2-D by throwing disks

into dies of varying width to represent the actual experiment of poured grains into
a rectangular container until it is completely full. These simulated experiments will
allow measuring percolation properties associated with the passage of small particles
through the packings. The 9rst aim of the present work is to 9nd the dependence of
those measured properties on the distance between the walls of the container where
they are deposited. The second objective is to make a contribution to understand the
dynamics of the process of mixing when percolation is present and that, otherwise,
become diHcult to measure in a real experiment.
In a previous paper [10], we have already reported an exhaustive characterization

of similar arrays of disks as a function of their polydispersity. We found two impor-
tant aspects. First, we established the dependence of a percolation parameter (critical
shrinking factor bc, de9ned further) on the radii dispersion (�) of the packed disks.
A power-law dependence was found. For small dispersion values, the system presents
an abrupt crossover from non-percolative to percolative regimes. For greater values of
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�, the crossover smoothes. Second, relaxations produce a redistribution of stresses and
displacements, lowering their strength.
In this scenario, which would be the role of the walls of the container in the dynamics

of percolation? Does their e�ect depend on the value of �?
In the following sections, we will present numerical results characterizing the per-

colative–non-percolative regimes for small particles di�using through 2-D arrays of
disks. We will show the e�ect of die walls on the crossover between those two
regions. Moreover, we will get some conclusion on the way that the system will behave
when mixing particles of di�erent sizes.

2. Numerical aspects

In order to generate the packings, we employed the same computer algorithm already
used in Ref. [10]. This algorithm has been programmed in a way that allows to generate
packings of disks sampled from any desired size distribution. The time needed to set
a packing of 10,000 disks and to obtain all the quantities of interest is just a few
seconds, even on a Pentium III PC.
First, a radii distribution for the disks is selected and the desired number of disks

that will form the pack, Ntotal, is selected. In the present simulations, disks radii were
randomly chosen from a gaussian distribution with dispersion �. First, the bottom of the
packing is built by putting a number N of disks to ensure the desired wall separation.
They are placed side by side.
After the bottom is 9lled, the remaining disks, Ntotal − N , are poured one at a

time from the top of the die, at the middle point between the lateral walls of the
container. Each grain falls down following a steepest descent algorithm: each new
vertical position is updated by checking the maximum distance the disk can move
down without overlapping an already deposited disk. At the 9rst time it touches an
already deposited disk, it rolls over it clockwise or counter clockwise, depending on
the relative positions among the center of mass of the two touching disks. When the
disk is rolling, we maintain a touching point over the surface of the already deposited
disk and check for the presence of another disks in the way it is rolling through. If
it 9nds a disk, we stop the rolling procedure and maintain the new point of contact
with the second disk surface. Thus, the falling disk has two contacts: one with the 9rst
disk it touched as it was falling down vertically, and the other with the second disk it
found as it was rolling. At this stage, we check whether a stable condition is ful9lled.
We de9ne a stable position when the center of mass of the disk falls in between the
two points of contact of the disk with the other two already deposited grains. If it is
the case, the grain is 9xed in that position for the rest of the simulation run. If not, it
will continue rolling, depending on the relative positions of its center of mass and the
touching points. The rolling procedure goes on until another grain is touched and the
stable position checking is performed again. This procedures is repeated until a stable
con9guration is attained by the particle.
Two di�erent widths were used for the die. For each width, we run simulations

for two extreme values of �, i.e., 0.001 and 0.9. The scaling of the complete array of
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particles was conserved, i.e., the total number of particles poured into the die depended
on the separation between walls in order to ensure the same number of layers in
the system. This number of layers was of the order of 100, the same one used in
Ref. [10]. In this way, we built up packings with Ntotal = 800 and 1500 disks, for
bottoms containing N = 8 and 15 disks, respectively, and for both values of sigma.

3. Results and discussion

Suppose we have a packing of disks whose radii are randomly sampled from a
gaussian distribution of mean Rm and dispersion �, truncating its width to 4�, i.e., the
extreme possible values for the radii of the disks are Rmax=Rm+2� and Rmin=Rm−2�.
The small percolating particle has a radius Rp. To compare present results with the
referred previous ones, we used the same values for Rm = 2 arbitrary units (a.u.) and
Rp = 0:2 a:u: These values were kept 9xed for the rest of our study.
Let us call L, the mean separation between lateral walls of the die, also measured

in a.u. As explained above, we simulated four sets of arrays. Their parameters were,
respectively, � = 0:9; L= 60; � = 0:9; L= 32; � = 0:01; L= 60; � = 0:01; L= 32.
For each set, a great number of equivalent samples was done to ensure that statistical

deviations are small. Thus, statistical errors are smaller than any of the symbols used
in all our plots.
Once the packing is generated, a shrinking process is started on disks radii to create

empty space for the small particle to move through the array, i.e., each disk radius,
Ri, is replaced by bRi, where b∈ (0; 1) and is the same for all Ri, i.e., the shape of
the radii distribution is unchanged. We call bc to the critical value of b necessary for
percolation through the die to occur.
After the shrinking process is performed, the small particle is launched from above.

Assuming the die belongs to the XY plane, the little particle initial X position was
ever 9xed at X = L=2, and its initial Y position was at the top of the die. We did not
allow random launching because, in that case, wall e�ects would be shadowed.
Because the size of the die a�ects the percolation threshold, we 9rst looked for

the possible shifts that previously calculated values of bc could have. In Ref. [10] we
determined that bc was 0.7783 and 0.8992 for � = 0:9 and 0.01, respectively. For the
present values of L, we found that bc was una�ected when � = 0:01, whatever will
be the value for L, and resulted to be equal 0.7690 and 0.6949 for L = 60 and 32,
respectively. This means the di�using particle has less number of ways to go through
the packing when the walls are closer, making percolation harder.
Once bc is determined, we studied the crossover from non-percolative to percolative

regimes for the four sets of arrays.
In order to help the reader to understand the features of a typical packing of disks,

we present four snapshots in Fig. 1 for both values of �, and for the cases b¿bc and
b¡bc, as indicated. There, we show the system of disks as they are “seen” by the
percolating particle, once the shrinking process has been performed.
We recorded the exit distributions for all the sets, i.e., exit frequency as a function

of the transversal coordinate Xp. If particles are in the percolation regime, Xp is their
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Fig. 1. Snapshots of part of typical packings of disks where little percolation particles go through. The values
for dispersion and parameter b are respectively indicated.

9nal x-position at the exit. If particles are in the trapping regime Xp represents its 9nal
x-position, independently of their 9nal y-position.
We repeated the measurements for several values of b close around bc. Each dis-

tribution was then 9tted with the theoretical function that resulted the best one for
this purpose. The dispersion, �, corresponding to each 9tting function was then plotted
against b as depicted below.
Fig. 2 presents the results for �=0:9, parts (a), (b) and (c) corresponds to L=32; 60

and, 400, respectively. They are all normalized in order to be compared and it is also
important to explain the scale criteria used here for the transversal coordinate, Xp,
in order to analyze the results correctly. The values for Xp in part (c) represent the
coordinates of the particles in a container of 400 a:u., placing the container down left
corner at the origin of the X -axis. In the plot, we just show the central part of the
container, the one important for our measurements. For that reason, the center of the
plot is at 200 a:u., coinciding with the center of the die. In part (b), we are still using
the same “origin” of coordinates and place our die (with L = 60) with its down left
corner at coordinate X = 170, in such a way that the center of this die coincides with
the center of the die with width L=400. The same criteria is used in part (a), but for
L= 32, i.e., the down left corner of this die is at coordinate X = 184, in such a way
that the center of this die coincides with the center of the other two dies.
As seen, part (c) shows the results for extremely separated walls, already obtained

from Ref. [10]. Lines represent 9tting functions. As clearly observed and indicated,
there is a great amount of disks trapped at the walls for L= 32 and 60. This number
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Fig. 2. Exit distribution functions for � = 0:9, (a) for L = 32, (b) for L = 60 and (c) for L = 400. The
corresponding b values for each histogram are indicated and the dot line serves as a guide to distinguish
the percolating regime from the non percolating one. The minus and plus symbols over bc indicate that the
distribution corresponds to 9nal Xp of trapped particles (b+c ) and 9nal exit Xp of percolating particles (b−c ).
Lines represent 9tting functions.

increases as b → bc because more and more disks get the chance of touching the
walls. As b changes, qualitative behavior of distributions for di�erent L is similar. As
b decreases, the dispersion of distributions increases. We will discuss the details of
this e�ect below. When 9tting the distributions at the trapping region for L = 32 and
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Fig. 3. (a-c) Crossover that su�ers the width of exit distribution functions as b goes around bc for � = 0:9.

60, we observe that the proximity of walls breaks down the gaussian behavior. The
shape of the distributions is closer to a lorenzian-like shape. We should mention here
that 9tting functions do not take into account the trapped particles at the walls.
For b6 bc, i.e., at the percolation region, lorenzian behavior is still present and this

kind of function seems to be the best one 9tting the “tails” of the exit distributions. This
e�ect is still present for b¿bc, although gaussians also o�er good 9tting parameters.
It is worthy to remember that, for the case of extremely separated walls, this e�ect
was never present, i.e., exit distributions were always gaussians.
In Fig. 3 we show the dependence of the dispersion of the exit distributions on b.

The crossover from trapping to non-trapping regimen can be appreciated. Like before,
parts (a), (b) and (c) corresponds to L = 32; L = 60 and L = 400, respectively, part
(c) being the results obtained in Ref. [10]. The crossover is steeper as the walls are
closer. For lower separation, the gap for � is twice greater than for walls well apart.
This feature is due to the reinsertion of particles from the walls, and becomes stronger
as the walls get closer to each other. This e�ect is important when a mixture of
particles of very di�erent sizes is desired. In Fig. 4 and 5 we show the corresponding
results for � = 0:01. The results show some qualitative common aspect compared to
the case � = 0:9, but important distinctions should be highlighted. For both values of
L, there is no entrapment of particles at the walls. The reason for this behavior is that
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Fig. 4. Exit distribution functions for � = 0:01, (a) for L = 32, (b) for L = 60 and (c) for L = 400. The
corresponding b values for each histogram are indicated as they were in Fig. 1. Lines represent 9tting
functions. A can be seen, there are no trapped particles around the walls.

percolation likelihood for the particles is “step-like” for � = 0:01, i.e., there exists a
poor penetration when b¡bc (abrupt increase of penetration depth around bc, found in
Ref. [10]). Thus, the particles do not get the chance to “see” the walls of the die. For
that same reason, it was found that the shape of the exit distributions is gaussian-like
as it was for extremely separated walls (Fig. 4, part (c)). We may say that, for poor
polydispersity of the packing, wall e�ects become less important in the trapped region
of penetration.
In the percolation region for L=60, all 9tting functions were gaussian in shape and

they did not practically depend on b.
In the non-trapping region for L = 32 a curious behavior is observed. The exit

distributions present a double peaked shape. This e�ect is caused by the feedback of
particles returned by walls. Because of small polydispersity, arrays are quite ordered
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Fig. 5. (a-c) Crossover that su�ers the width of exit distribution functions as b goes around bc for �=0:01.

and there are diagonal ways back to the center of the packing and oriented in the same
way. This e�ect was not observed for high polydispersity due to the disorder of the
assembly of particles. This disorder allows a wider variety of ways back to the center
of the array. Thus, the 9nal exit x-position of the percolation particle could attain any
value.
In Fig. 5 we show the crossover behavior for �=0:01 and di�erent values of L. For

the case of L = 32; � was considered as the width of the double peak 9tting curve.
Here the step in the crossover is practically independent of L. This feature is related
to the fact that bc does not change with the dimension of the die. This, of course, is
due to the low polydispersity of the system.
Comparing the crossover behavior for di�erent values of �, we see that ordered

packings present a practically constant dispersion � in the non-trapping region, while
packings with greater polydispersivity, decrease the values of � as b is smaller. This is
easily understood if one takes into account that, once percolation is possible for ordered
packings, more open ways for the particle to di�use do not produce any changes in
their trajectories. On the other hand, in disordered systems, lower values of b create
new ways for di�usion, dispersing the percolating particle.
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4. Conclusions

In this paper we have studied the dependence on wall separation of percolation prop-
erties in two-dimensional arrays of disks. The present model does not take into account
friction e�ects and it reports the pure steric response of packings to the di�usion of
small particles. We found that, as the walls are closer, they produce a more pronounced
crossover from non-percolation to percolation regimes. The reinsertion (feedback) of
particles is the main cause of this e�ect and it is stronger for high values of polydis-
persity.
The proximity of walls changes the shape of the exit distribution functions of small

particles, both in trapping and non-trapping conditions. The shape of these functions
seems to be lorenzian-like in stead of the classical gaussian-like behavior found earlier.
Particles get trapped at the walls when polydispersity � is high due to the fact that

they can percolate easier and their likelihood to touch lateral walls is higher than for
low values of �.
Finally, ordered packings (low �) present double-peak exit distributions in the perco-

lation regime. This feature is due to the periodic-like con9guration that these packings
have, i.e., particles get back to the center of the packing once they touch the walls
almost in the same way (lack of disorder) contributing to the formation of those peaks
in the exit distributions. Further e�orts still are needed to better characterize the pas-
sage of small particles through two-dimensional packings. The addition of friction and
bouncing are the next steps to explore in our present model of percolation.
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