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Tunneling conductance of long-range Coulomb interacting Luttinger liquid
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The theoretical model of the short-range interacting Luttinger liquid predicts a power-law scaling of the
density of states and the momentum distribution function around the Fermi surface, which can be readily tested
through tunneling experiments. However, some physical systems have long-range interaction, most notably the
Coulomb interaction, leading to significantly different behaviors from the short-range interacting system. In
this paper, we revisit the tunneling theory for the one-dimensional electrons interacting via the long-range
Coulomb force. We show that, even though in a small dynamic range of temperature and bias voltage the
tunneling conductance may appear to have a power-law decay similar to short-range interacting systems, the
effective exponent is scale dependent and slowly increases with decreasing energy. This factor may lead to
the sample-to-sample variation in the measured tunneling exponents. We also discuss the crossover to a free
Fermi gas at high energy and the effect of the finite size. Our work demonstrates that experimental tunneling
measurements in one-dimensional electron systems should be interpreted with great caution when the system is
a Coulomb Luttinger liquid.
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I. INTRODUCTION

Luttinger liquids emerge from interacting one-dimensional
many-electron systems where the Fermi surface is two dis-
crete points rather than a connected surface as in higher-
dimensional cases. Two and three-dimensional interacting
systems are conventionally described by the Fermi liquid
model where the excitations are individual quasiparticles with
renormalized properties (e.g., effective mass) from the bare
particle. Fermi liquids manifest qualitative resemblance to
the free Fermi gas, for example, the discontinuity of the
momentum distribution through the Fermi momentum and
singularities in the spectral function representing quasipar-
ticles. However, in one-dimensional systems, quasiparticle
excitations are replaced by collective excitations even for very
weak interaction, leading to the complete disappearance of
the one-to-one correspondence with the noninteracting Fermi
gas. Most remarkably, the momentum distribution function is
continuous through the Fermi point and the density of states
displays a pseudo gap at the Fermi energy. These features
indicate the breakdown of the quasiparticle picture. More
non-Fermi liquid phenomenon include charge-spin separation
and power-law scaling of charge and spin correlations [1–4].
Assuming a zero-range (or short-range) interaction (e.g., a
Dirac delta function), the density of states decays as (E −
EF )α , where α is a finite and nonuniversal constant since it
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depends on the actual interaction strength. In addition, this
constant α also shows up in the tunneling conductance, giving
it a distinct power-law decaying behavior. Specifically, if the
tunneling is between a Luttinger liquid characterized by the
exponent α and an ordinary Fermi-liquid metal, the tunneling
conductance at temperature T and bias voltage V0 is G =
dI/dV0 ∝ V α

0 for eV0 � kBT and G ∝ T α for eV0 � kBT .
For tunneling between two Luttinger liquids, the exponent
is simply doubled [5–7]. This power-law tunneling behav-
ior is considered a signature of the Luttinger liquid since
in Fermi liquids, G is simply a constant for small values
of T and V0 (as long as kBT, eV0 � EF , where EF is the
Fermi energy). Indeed, tunneling experiments have confirmed
this behavior in many physical systems. Earliest attempts
include chiral Luttinger liquids found in the edge mode of
fractional quantum Hall fluids [7–10] and the power law in
the optical response from quasi-one-dimensional conductors
[11,12], suggesting the Luttinger liquid nature of these sys-
tems. Recently, studies have focused on carbon nanotubes
where extreme isolating conditions can be obtained to create
a strongly correlated nonchiral 1D electron system. Tunneling
experiments on carbon nanotubes also show evidences for
power laws characterizing Luttinger liquids [13–15].

It is instructive to review the theoretical description of the
Luttinger liquid based on the bosonization method, which in
principle can give exact solutions for any types of interactions
provided that the backscattering is ignored and the dispersion
can be linearized. If we assume that the system has only
contact charge-charge interaction with a strength U , i.e.,
Hint = U/2

∫
ρ(x)2dx, the plasmon velocity is renormalized

by g = vF /vρ = [1 + NU/(πvF )]−1/2, where N is system
degeneracy (e.g., N = 2 for spinful systems or N = 4 for
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carbon nanotubes including spin and valley without spin-orbit
coupling). The exponent of the density of states is then αbulk =
(g + g−1 − 2)/2N at the bulk of the system and αbound =
(g−1 − 1)/N at the open boundary [16,17]. For systems with
repulsive interaction, U > 0, so g < 1 and αbound > αbulk > 0.

The simplicity of the short-range interacting Luttinger
liquid model might be attractive, but the model of zero-range
interaction is only an approximation. Most real systems have
long-range interactions, most notably the electronic Coulomb
interaction. If the Fourier transform of the interaction ap-
proaches a finite constant at the zero transfer momentum limit,
the low-energy physics can be described by a short-range
interaction model without great loss of accuracy. However,
the Coulomb interaction is special because of its logarithmic
divergence at small momentum. One way to obtain a short-
range interaction is to consider an appropriately screened
Coulomb interaction [18,19], imagining the carbon nanotube
is placed inside a larger metallic tube with a radius Rs much
larger than the radius R of the nanotube. Then, the interaction
potential is totally screened out and can be considered as the
classical energy of the E -field trapped between the nanotube
and the metallic cylinder Hint = e2 ln(Rs/R)

∫
ρ(x)2dx. This

is exactly the form of the zero-range interaction, so even if
the nanotube has long-range interaction, the Luttinger liquid
considerations from the short-range case still apply with an
appropriate g provided, of course, the nanotube is indeed
enclosed in a metallic cage. However, the ambiguity here is
the value Rs since, in reality, no specific metal tube encloses
the nanotube. Note that the logarithmic divergence of the
effective interaction in Hint as Rs goes to infinity is the well-
known logarithmic divergence of the 1D Coulomb interaction
arising from its long-range nature, which is simply cut off by
taking Rs to be finite.

A more rigorous approach is not to make an ad hoc short-
range interaction approximation, and instead use the long-
range 1D Coulomb interaction itself in the Luttinger liquid
theory, i.e., performing bosonization with the logarithmically
divergent interaction originating from the 1D 1/x Coulomb
interaction. Within this description, the power law behavior is
no longer valid. Indeed, for the density-density correlation, the
4kF oscillation decays as x−√

ln x, slower than any power law
[20,21]. The 1D Coulomb Luttinger liquid is thus an effective
Wigner crystal at finite length with the 4kF density oscillation
decaying very slowly over distance (since the correlation dies
out eventually there cannot be any real long-range order).
Moreover, due to the log divergence, the “effective exponent”
of a Coulomb Luttinger liquid is scale dependent, i.e., α is
also a function of energy [22]. This scale dependence of
the effective Luttinger exponent in the Coulomb Luttinger
liquid, in contrast to the constant exponent for the short-range
interaction model, complicates the description of tunneling
measurement as the effective exponents also depend on the
temperature or voltage scale being studied. It is unclear a
priori how one can investigate the Coulomb Luttinger liquid
simply by mapping it into a corresponding short-range inter-
action model, although this is often done in the interpretation
of the experimental 1D results.

In this paper, we investigate the effect of the long-range
Coulomb interaction on the tunneling conductance using the

long-range interaction description of a scale-dependent expo-
nent. One specific consequence of the scale-dependent expo-
nent of the Coulomb Luttinger liquid may be the manifestation
of the sample-to-sample variations in the measured tunneling
exponent often seen within even a given type of 1D physical
systems. Since the Coulomb Luttinger liquid by definition
does not have a constant exponent (i.e., the exponent varies
slowly over the energy scale of measurements), it is impor-
tant to analyze the tunneling experiment in depth using the
long-range interaction model to figure out how this scale
dependence might manifest in the tunneling spectroscopy.
This is the main goal of the current work. A secondary goal
is to investigate the role of the finite length of the 1D system
(e.g., carbon nanotube or semiconductor quantum wire) in the
tunneling experiments to check whether an implicit or explicit
length dependence affects the tunneling exponent, particularly
in the context of the scale-dependent exponent in the Coulomb
Luttinger liquid.

The rest of the paper is organized as follows. In Sec. II we
provide the theoretical description for a Coulomb Luttinger
liquid with the open boundary condition and compare its
properties with the short-range interacting Luttinger liquid
counterpart. We also discuss the crossover to the free Fermi
gas behavior at high energy, which may not be obvious in
the short-range model but appears naturally in the long-range
Coulomb Luttinger liquid. In Sec. III, we study the effect of
the finite system, finding it to be irrelevant as long as the 1D
system is not too short. We conclude in Sec. IV summarizing
our main findings and discussing possible experimental impli-
cations of our results.

II. THEORETICAL MODEL

A. Bosonization in open-boundary systems

We first present the bosonization study of a 1D N-fold
degenerate system of size L and open boundaries at x = 0 and
x = L which are appropriate for tunneling measurements. Due
to the open boundary condition, the left- and right-moving
electrons are no longer independent operators. Accordingly,
the fermion field can be decomposed as

ψs(x) = ψL,s(x) + ψR,s(x)

= i√
2L

∑
k

e−ikxck,s − i√
2L

∑
k

eikxck,s,
(1)

where s ∈ {s1, s2, . . . , sN } is the electron species (e.g., spin,
valley, etc.) index. The construction implies that ψR,s(x) =
−ψL,s(−x). The linearized Hamiltonian with only charge-
charge interaction in the unit system of h̄ = 1 is

H = vF

∫ ∑
s

ψ†
s

i∂ψs

∂x
dx +

∫
U (x − y)ρ(x)ρ(y)

2
dx dy,

(2)
where ρ(x) = ∑

s ρs(x) is the charge density. It is noted
that, for an open boundary system, the discretized momen-
tum is k = nπ/L instead of 2π/L as in the periodic one.
We define bosonic creation and annihilation operators with
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q = mπ/L > 0 as

a†
q,s =

√
π

qL

∑
k

c†k+q,sck,s,

aq,s =
√

π

qL

∑
k

c†k−q,sck,s, (3)

and [aq,s, a†
q′,s′ ] = δq,q′δs,s′ . The right-moving chiral fermion

field is

ψR,s(x) = lim
ε→0+

−i√
2

Fs√
2πε

e
iπxNs

L eφs (x),

where

φs(x) =
∑

q

√
π

qL
e−εq/2(eiqxaq,s − e−iqxa†

q,s). (4)

Ns is the number operator of the s electrons. Fs is an operator
such that Fs commutes with all bosonic operators, Fs |Ns〉 =
|Ns − 1〉 and F †

s |Ns〉 = |Ns + 1〉. One can perform a unitary
transformation to separate the charge channel from other
channels

a′
q,n = 1√

N

N∑
m=1

e
2iπmn

N aq,sm . (5)

The Hamiltonian is then the sum of separated channels H =∑N−1
n=0 Hn. The interacting charge/plasmon channel (n = 0) is

described by the Hamiltonian

H0 = πv0|N0|2
2L

+
∑
q>0

q

[
vF + NU (q)

2π

]
a′†

q,0a′
q,0

+ q
NU (q)

4π
(a′†

q,0a′†
q,0 + a′

q,0a′
q,0), (6)

where v0 = vF + NU (0)/2π and U (q) = ∫ L
−L U (x)eiqxdx.

For the other noninteracting channels (n = 1, . . . , N − 1),

Hn = πvF |Nn|2
2L

+
∑

q

vF a′†
q,na′

q,n. (7)

After the Bogoliubov transformation, the Luttinger interaction
parameter is defined as

g(q) = e2θ =
[

vF

vF + NU (q)/π

]1/2

(8)

and the collective plasmon mode velocity is

vρ (q) = vF

g(q)
= vF

√
1 + NU (q)

πvF
. (9)

For a short-range interaction, U (q) is a constant and hence
the constancy of g as a Luttinger exponent for a given model,
i.e., a given U . For a long-range interaction, U (q) is obviously
scale dependent as it depends explicitly on the momentum
q, resulting in the remarkable divergence g(q) ∼ ln(1/q) in
the case of 1D Coulomb interaction. The fermion correlation
function is

〈ψs(x, t )ψ†
s (y, 0)〉 = 2 〈ψR,s(x, t )ψ†

R,s(y, 0)〉
− 〈ψR,s(x, t )ψ†

R,s(−y, 0)〉
− 〈ψR,s(−x, t )ψ†

R,s(y, 0)〉 . (10)

Assuming 〈Ns〉 = Ne/N with Ne being the total number of
electrons, the chiral correlation is

〈ψR,s(x, t )ψ†
R,s(y, 0)〉 = eikF (x−y)−iEF tC(x, y; t ), (11)

where

C(x, y; t )

= lim
ε→0+

e
iπ
2L (x−y−vct )

4πε

× exp

[
F (x, y; t ) + iK (x, y; t )

N

][
πt

β sinh(πt/β )

] N−1
N

.

(12)

Here, we define the Fermi momentum kF = (Ne/N +
1/2)π/L, the Fermi energy EF = v0Neπ/(NL), and the
charge gap velocity vc = [v0 + (N − 1)vF ]/N (i.e., the aver-
age over all channels). For brevity, we drop the q argument
in vρ (q) and g(q), and use cosh θ = (g1/2 + g−1/2)/2 and
sinh θ = (g1/2 − g−1/2)/2. We have

K (x, y; t ) =
∑
q>0

e−εq

(
π

qL

)
[cosh2 θ sin q(x − y − vρt )

− sinh2 θ sin q(x − y + vρt )

− sinh 2θ sin q(x + y − vρt )/2

+ sinh 2θ sin q(x + y + vρt )/2],

F (x, y; t ) = −
∑
q>0

e−εq

(
π

qL

)
[1 + 2 fB(vρq)]

×{cosh2 θ [1 − cos q(x − y − vρt )]

+ sinh2 θ [1 − cos q(x − y + vρt )]

− sinh 2θ [cos 2qx + cos 2qy

− cos q(x + y − vρt ) − cos q(x + y + vρt )]/2},
(13)

where fB(z) = (eβz − 1)
−1

is the Bose-Einstein distribution
coming from the bosonic plasmon with z being the excitation
energy and β = 1/kBT being the inverse electron temperature.
Equations (12) and (13) are the exact expressions and do not
assume any specific form of the interaction.

We can perform a quick check on the power law for T =
0, L → ∞ (in that case

∑
q π/L → ∫

dk) and zero-range
interaction g(q) = g. The spinless (N = 1) dynamic chiral
correlation function is

C(x, x; t ) ∝
(

1

t

) g+g−1

2

(
4x2∣∣4x2 − v2

ρt2
∣∣
) g−1−g

4

. (14)

This term is the primary contribution to the correlation func-
tion because the other term C(x,−x; t ) has fast 2kF oscillation
of e2ikF x and is further suppressed by x−g. For vρt � x (near
the boundary), C(x, x; t ) ∝ t−g−1

corresponding to the density
of states ρ(ω) ∝ ωg−1−1 (ω = E − EF ) for ω � vρ/x. For
vρt � x (far from the boundary), C(x, x; t ) ∝ t−(g−1+g−2)/2.
As a result, ρ(ω) ∝ ω(g−1+g−2)/2 for ω � vρ/x. These are
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of course well-known results provided here for the sake of
completeness and to set a context for our work.

B. Coulomb Luttinger effective exponent

In this section, we assume the semi-infinite 1D limit L →
∞ (the effect of finite L is discussed later). We study two
models of interactions in the fourfold degenerate carbon nan-
otube system. (i) Short-range interaction with constant g up to
a cutoff , i.e.,

g(q) =
{

g for q � ,

0 for q > .
(15)

As long as ω < E0 = vF , the density of states ρ(ω) ∝
ω(g−1−1)/4 at the boundary and ρ(ω) ∝ ω(g−1+g−2)/8 in the bulk.
It is noted that the cutoff  is purely artificial; in fact, many
theoretical works only consider the large distance asymptote
and set  ≈ 1/ε → ∞. (ii) The 1D Coulomb interaction
U (x) = e2/(κ

√
x2 + d2), where κ is the dielectric constant

and d is proportional to the transverse size of the nanotube,
which regularizes the 1D Coulomb coupling. The correspond-
ing g is

g(q) =
[

1 + 8e2

κπvF
K0(qd )

]−1/2

, (16)

with vF = 8 × 105 m/s and K0 is the Bessel function. Note
that in Ref. [18], the Coulomb Luttinger liquid is approxi-
mated by an effective short-range interaction model with a
constant g as

g =
[

1 + 8e2

πvF
ln

(
Rs

R

)]−1/2

, (17)

where R is the radius of the tube and Rs is some screening
length; for Rs ∼ 100R, g ∼ 0.2. We emphasize that Rs is
unknown and arbitrary in the experimental systems, and often
used simply as a fitting parameter uncritically.

We begin by studying the tunneling density of states in
the bulk and the boundary of a Coulomb Luttinger liquid.
The following argument is based on Wang et al. [22], and
extended to include the open boundary condition of relevance
to tunneling spectroscopy. The bulk density of states in a
carbon nanotube is given by

ρbulk (ω) = 1

π

∫ ∞

0

1 − cos ωt

vFt
Im(e−�bulk )dt,

�bulk (t ) =
∫ ∞

0

dq

4q

[
(1−eivρqt )

g−1 + g

2
− (1−eivF qt )

]
. (18)

In the phase factor �bulk (t ), when q < A/t with A being
some number, the factor 1 − eiqvt ≈ 0 and, when q > A/t , this
factor is fast oscillating and negligible; thus the leading order
term in the phase factor is

�bulk (t ) ≈ 1

4

∫ ∞

A/t

g(q) + g(q)−1 − 2

2q
dq

≈
√

U0

12
ln3/2

(
qst

A

)
+ 1

4
√

U0
ln1/2

(
qst

A

)

−1

4
ln

(
qst

A

)
, (19)

where we have used the low-q asymptotic form
g(q) = √

U0 ln1/2(qs/q) with U0 = 8e2/(κπvF ) and
qs ≈ 1.12e1/U0/d in the integration instead of the full form
Eq. (16). The power law of the density of states is then

ρbulk (ω) ≈
(

ω

ωs

)γbulk (ω)

,

where

γbulk (ω) =
√

U0

12
ln1/2

(
ωs

ω

)
+ 1

4
√

U0
ln−1/2

(
ωs

ω

)
−1

4
,

(20)

and the scale ωs = 20vF qs
√

U0. Extending the argument to
the limit x → 0, the boundary phase factor is

�bound(t ) ≈ 1

4

∫ ∞

A/t

g(q)−1 − 1

q
dq

≈
√

U0

6
ln3/2

(
qst

A

)
− 1

4
ln

(
qst

A

)
. (21)

Accordingly, the local density of states at the open boundary
is

ρbound(ω) ≈
(

ω

ωs

)γbound(ω)

,

where

γbound(ω) =
√

U0

6
ln1/2

(
ωs

ω

)
− 1

4
. (22)

As γ depends on the energy ω, strictly speaking this is not
a power law. However, we can define an effective exponent
α = d ln[ρ(ω)]/d ln ω for the bulk and boundary tunneling
density of states as

αbulk =
√

U0

8
ln1/2

(
ωs

ω

)
+ 1

8
√

U0
ln−1/2

(
ωs

ω

)
− 1

4
,

αbound =
√

U0

4
ln1/2

(
ωs

ω

)
− 1

4
. (23)

We expect these exponents to appear in the tunneling con-
ductance of the Coulomb Luttinger liquid. We note that the
energy dependence of α as reflected in the explicit appearance
of ω in the right hand side of Eq. (23) leads to an ill-defined
scale-dependent exponent in the Coulomb Luttinger liquid in
contrast to the constant (but nonuniversal) exponent in the
short-range interaction model.

C. Tunneling conductance

Supposing electrons tunnel between systems 1 and 2 at
voltage bias V0, the tunneling Hamiltonian is given by [5,7,23]

Htunnel

∑
s,s′

�s,s′ [ψ†
1,s(x)ψ2,s′ (x) + H.c.], (24)

where ψ1,s and ψ2,s′ correspond to the s and s′ electron
wave function in systems 1 and 2, respectively. Our tunnel-
ing Hamiltonian corresponds to a perturbative point contact,
which is a common experimental setup. One can refer to other
works for more rigorous tunneling conditions, for instance,
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nonperturbative contact [24], backscattering defects [25], or
a Y junction of three nanowires [26–31]. Within the scope
of this paper, the electron species degeneracy reduces the
problem to the tunneling between two single-mode Luttinger
liquids because the electron correlation function is identical
for all electron species [see Eqs. (12) and (13)]. For our pur-
pose, therefore, we do not need to worry about the symmetry
or degeneracy aspects of the Luttinger liquid. The tunneling
current is then given by

I ∝
∫

eieV0t Im[C1(x, x; t )C2(x, x; t )]dt . (25)

Equation (25) is basically the Fermi golden rule expressed in
the Fourier transform. We specify the differential tunneling
conductance G = dI/dV0 in two distinct experimental setups:
the two systems 1 and 2 are two identical Luttinger liquids,
denoted as LL,

GLL ∝ 1 − 2
∫ ∞

0

cos(eV0t )

t

[
πt

β sinh (πt/β )

]2− 2
N

× exp

[
2F (x, x; t )

N

]
sin

[
2K (x, x; t )

N

]
dt, (26)

and system 1 is the Luttinger liquid sample and system 2 is a
conventional 3D Fermi liquid metal contact, denoted as LM,
with C2(x, x; t ) ∼ 1/t (assuming the temperature is much less
than the metal Fermi temperature)

GLM ∝ 1 − 2
∫ ∞

0

cos(eV0t )

t

[
πt

β sinh (πt/β )

]1− 1
N

× exp

[
F (x, x; t )

N

]
sin

[
K (x, x; t )

N

]
dt . (27)

From Eqs. (26) and (27), we can expect that the exponent of
the LL tunneling is two times as large as that of the tunneling
through LM contact. We recall that F (x, x; t ) and K (x, x; t )
are given in Eq. (13).

In Fig. 1, we show the calculated LM tunneling con-
ductance of a short-range interacting Luttinger liquid with
g = 0.2 in the inset and the effective exponent in the main
plot as a function of voltage bias and temperature. There
are three energy scales in the plot: the saturation regime
(eV0 � kBT or kBT � eV0) where G is independent of V0

(or T ), thus the effective exponent approaches zero, the
boundary regime (eV0, kBT � vρ/x) where the power law is
given by the boundary relation α = (g−1 − 1)/4 = 1.0, and
the bulk regime (eV0, kBT � vρ/x) where the power law is
given by the bulk relation α = (g + g−1 − 2) = 0.4. Note that,
although there are noisy fluctuations in the exponent in the
crossover regimes, the bulk and boundary exponents clearly
manifest themselves as constants in Fig. 1.

Because the scale-dependent Luttinger parameter in the
Coulomb Luttinger liquid is an explicit function of the mo-
mentum, we can naturally define an energy scale E0 = vF /d .
In Fig. 2, we show the directly calculated LM effective
exponent of a Coulomb Luttinger liquid with U0 = 5. Sim-
ilar to the short-range case, there are also three distinct
regimes. However, the striking difference is the continuously
increasing effective exponent with decreasing energy. For the
conductance measurement with respect to the voltage bias

FIG. 1. Effective exponent of the LM tunneling conductance
for a short-range interacting Luttinger liquid with g = 0.2 (a) with
respect to eV0/E0 at fixed temperature kBT = 10−5E0 and (b) with
respect to kBT/E0 at fixed voltage bias eV0 = 10−5E0. The energy
scale is E0 = vF . The insets show the tunneling conductance in
arbitrary unit for x = 2000.

eV0 [see Fig. 2(a)], the numerical result is consistent with
Eq. (23). In addition, when eV0 � kBT [see Fig. 2(b)], the
effective exponent of G with respect to T has the same form
as Eq. (23) with ω substituted by kBT and ωs replaced by
Ts = 7vF qs

√
U0.

D. Universal scaling function

Another contrasting property between the Coulomb and
the short-range Luttinger liquid is the universal scaling with
eV0/kBT , i.e., the tunneling conductances of a short-range
Luttinger liquid at different temperatures can collapse into a
single function of eV0/kBT . Using the asymptotic correlation
function (no cutoff), the scaling function with respect to μ =
eV0/kBT is [5,6,14]

GLL ∝ T α sinh(μ/2)|�(1 + α/2 + iμ/2π )|2
×{coth(μ/2)/2 − Im[�(1 + α/2 + iμ/2π )]/π},

GLM ∝ T α cosh(μ/2)|�[(1 + α)/2 + iμ/2π ]|2, (28)

where � and � are the gamma and digamma functions. A
single scaling function is a direct result of a scale invariant
interaction constant g where a conformal transformation can
transform between the voltage and the temperature (corre-
sponding to the real time and imaginary time boundary, re-
spectively). Clearly, the existence of a scale-dependent ex-
ponent for the Coulomb Luttinger liquid rules out such a
universal scaling function uniquely determined by eV0/kBT .
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FIG. 2. Effective exponent of the LM tunneling conductance for
a Coulomb Luttinger liquid with U0 = 5 (a) with respect to eV0/E0

at fixed temperature kBT = 10−5E0 and (b) with respect to kBT/E0

at fixed voltage bias eV0 = 10−5E0. The energy scale is E0 = vF /d .
The dashed lines are the theoretical effective exponent and the insets
show the tunneling conductance for x/d = 2000 in arbitrary unit.

In Fig. 3, we plot the scaled LM tunneling conductance of
a Coulomb Luttinger liquid at different temperatures, which
clearly does not converge to a single function as in the short-
range case. The predictions of Fig. 3 should also be directly
experimentally verifiable using tunneling data provided that
the varying range of the temperature and the bias voltage is of
several orders of magnitudes.

We conclude this section by comparing the tunneling con-
ductance of a short-range Luttinger liquid with two Coulomb
Luttinger liquids characterized by different parameters at
T = 0. As can be seen from Fig. 4, over a range of three

FIG. 3. Scaled LM tunneling conductances of a Coulomb Lut-
tinger liquid with U0 = 5 at different temperatures.

FIG. 4. Scaled LM tunneling conductances of a short-range and
two Coulomb Luttinger liquids (with different interaction parame-
ters) at the bulk and at the boundary. Within one order of magnitude
variation of the independent variable, the distinction among the three
is hardly noticeable.

orders of magnitude, the difference between short-range and
long-range cases is obvious: in the log-log scale the tunneling
conductance of a short-range interacting system is a line
corresponding to an ideal power law while that for a Coulomb
system is a downward bending curve characterizing a scale-
dependent exponent. However, within a narrow range of one
order of magnitude, the two are almost indistinguishable.
Moreover, Coulomb Luttinger liquids of different parameter
sets are also indistinguishable within one order of magnitude
of the tuning parameter. This suggests that we can only
conclusively study the Coulomb Luttinger liquid if the dy-
namic range of the independent variable (i.e., T,V0) is more
than two orders of magnitude. We believe that the existing
experimental literature on tunneling measurements is limited
to a very narrow voltage and temperature range and is thus
insufficient to fully characterize the long-range interacting
nature of Coulombic systems. A true verification of the theory
necessitates the observation of the scale dependence shown
in Figs. 2–4, which would require a large variation in the
dynamical range of temperature and bias voltage. We sug-
gest tunneling experiments be carried out with a substantial
increase in the dynamical range of temperature and voltage so
that the predicted scale-dependent deviation from a constant
Luttinger exponent can manifest itself in the measurement.

E. High-energy crossover to free Fermi gas

If we assume that the interaction vanishes at very high
momentum, which is true for all interactions with ultraviolet
regularization, then the Luttinger liquid can cross over to
the free Fermi gas defined by g → 1. In this section, we
investigate the system near this high-energy crossover. For
the short-range model defined previously, it is obvious that
the crossover energy must be associated with the cutoff mo-
mentum  while, for the Coulomb interaction, the interaction
potential K0(qd ) decays exponentially for q � 1/d so the
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FIG. 5. Scaled LM bulk tunneling conductances of a short-range
Luttinger liquid with g = 0.2 as a function of eV0 (a) and kBT (b).
The scaled LM bulk tunneling conductances of a Coulomb Luttinger
liquid with U0 = 5 as a function of eV0 (c) and kBT (d). The dashed
lines are theoretical predictions without regarding the high energy
crossover.

crossover energy must be related to 1/d . Therefore, for the
Coulomb Luttinger liquid, the crossover energy scale is phys-
ically defined whereas, for the short-range model, it depends
on an ad hoc cutoff. Hence the energy scale we define earlier,
i.e., E0 = vF  for short-range interaction and E0 = vF /d
for Coulomb interaction, is also the high-energy crossover
scale. In Fig. 5, we show the LM tunneling conductance as
a function of the voltage bias and temperature. The usable
region where one can extract a meaningful power law is for
eV0(kBT ) much higher than kBT (eV0) but still less than the
crossover scale E0. As a result, if eV0 is close to E0, one cannot
extract the power law with respect to the temperature and
vice versa. Moreover, in the case of Coulomb Luttinger liquid,
the theoretical scale-dependent exponent already intrinsically
contains a decay at high energy even though it is derived using
low energy assumption. This is because the definition of the
long-range interaction already contains the ultraviolet regu-
larization through the transverse size d . Therefore, the con-
sistency between numerical results and theoretical predictions
extends to much higher energy than the short-range interacting
Luttinger liquid. The fact that the Coulomb Luttinger liquid
has a built-in physical ultraviolet regularization, in contrast to
a completely arbitrary cutoff-dependent regularization in the
short-range model, makes the long-range interaction model
more theoretically meaningful.

III. FINITE-SIZE EFFECT

In this section, we study the effect of finite size (i.e., the
finite length of the 1D system in the experimental tunneling

measurements) on the experimentally extracted properties of
the Luttinger liquid, e.g., the momentum distribution and the
density of states. We will show that the finite system (as
long as the system length is much longer than the ultraviolet
cutoff length d) does not alter the Luttinger liquid properties
except for inducing a discrete peaks pattern to the measured
spectrum. This effect, however, can only be observed if ex-
periments have resolution much better than the level splitting,
which is typically not the case. Since this discreteness has not
been reported in experiments, the finite-size effect may not
be relevant to experiments. Beside the finite resolution, finite
temperature most likely smoothens the level spacing induced
peak structures in the actual experiments. For very short wires,
the system would behave as a quantum dot dominated by
Coulomb blockade and the Luttinger liquid behavior becomes
irrelevant. For simplicity, we consider a fourfold degenerate
1D system with size L and periodic boundary condition. The
use of the periodic boundary condition in this section (in
contrast to the rest of this work) is to separate the finite-size
effect from the nontrivial perturbation of the open boundary.

A. Momentum distribution function

We first consider the chiral static correlation function

C(x, 0) = lim
ε→0+

eiπx/L

L[1 − e(ix−ε)q0 ]
e− ∑∞

n=1 H (n), (29)

where

H (n) = 1 − cos(qx)

n

g(q) + q−1(q) − 2

8
, (30)

q0 = 2π/L, and q = nq0. The momentum distribution at mo-
mentum k with respect to kF is

n(k) =
∫

e−ikxC(x, 0)dx

= 1

2
− 1

2L

∫
sin kx

sin(q0x/2)
e− ∑

n H (n)dx. (31)

To retrieve the infinite-size limit, one can take the limit
q0 → 0, in which q0/[2 sin(q0x/2)] ≈ 1/x + O(qx)2 and the
sum in the exponential is replaced by the corresponding
integral. The difference between the sum and the integral
counterpart is given by the Euler-Maclaurin formula

∞∑
n=1

H (n) −
∫ ∞

0
H (n)dn

=
∫ 1

0
H (n)dn + H (1)

2
− H ′(1)

12
+ O(H ′′(1))

= −q2
0x2α(q0)

24
+ O(q0x)3, (32)

with α(q0) = [g(q0) + g−1(q0) − 2]/8. We emphasize that,
even for the logarithmically divergent α(q0) ∼ ln1/2(qs/q0)
in the Coulomb Luttinger liquid, this divergence is much
weaker than the quadratic decay q2

0. As a result, the finite-size
correction to the momentum density function has the order of
O(1/kL)2.

In practice, measurements have finite resolution (and fi-
nite temperature) that smooths out the physical quantity and
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FIG. 6. Normalized momentum distribution of (a) short-range
interacting Luttinger liquid with g = 0.2 and (b) Coulomb Luttinger
liquid with U0 = 5. The momentum scale k0 =  for the short-range
and k0 = 1/d for the Coulomb Luttinger liquid. The dashed lines are
the corresponding momentum distribution in the limit L → ∞.

removes fine details. The effect of the finite resolution can be
presented by a convolution

nexp(k) =
∫

n(k − k′)S(k′)dk′

=
∫

e−ikxC(x, 0)S̃(x)dx, (33)

where S(k) is a distribution function and S̃(x) is the Fourier
transform of S(k). If we assume S(k) is a Gaussian func-
tion with standard deviation �k, then S̃(x) = e−�k2x2/2. If
�kL � 1, there are several periods of C inside the inte-
gral interval, leading to the peak pattern in nexp(k) at k =
(n + 1/2)q0 with n being an integer. We show in Fig. 6
the momentum distribution of finite-length short-range and
Coulomb Luttinger liquids compared with their infinite-length
counterparts. At the resonant momentum kL = (2n + 1)π , the
finite-size correction ∼1/[(2n + 1)π ]2 is insignificant. There-
fore, the peaks at resonant momentum match the momentum
distribution of the corresponding infinite system as shown in
Fig. 6.

Next, we consider the second case when �kL � 1 and
the measured spectrum is smooth. Then, we can calculate the
effective exponent by taking the first derivative d ln[nexp(k) −
1/2]/d ln(k) and display the results in Fig. 7. An inter-
esting feature is how the finite resolution affects even the
distribution in infinite-length cases. It is known that n(k) −
1/2 ∼ kα has a singularity in the first-order derivative. The
convolution, regardless of the exact form of the distribution
function, always suppresses this singularity, thus making
nexp(k) − 1/2 ∼ k and the effective exponent approaches 1
for k < �k. For the finite-size case, the nontrivial behavior
only manifests for k > �k but the finite-size correction is
of the order 1/(kL)2 < 1/(�kL)2 � 1, rendering its effec-
tive exponent almost identical to that of the corresponding
infinite-size case.

FIG. 7. Effective exponent of the momentum distribution for
(a) short-range interacting Luttinger liquid with g = 0.2 and
(b) Coulomb Luttinger liquid with U0 = 5. This exponent always
approaches 1 for k < �k. The scale k0 is similarly defined as in
Fig. 6.

B. Finite-size density of states

We now study the finite-size effect on the density of states,
which has direct relation to tunneling experiments. Analogous
to the momentum distribution, we mimic the finite resolution
effect by introducing a decaying function e−�E2t2/2 into the
dynamic correlation function

C(0, t ) = lim
ε→0+

e−i(3Eu+Eρ )t−�E2t2/2

L[1 − e(−ivF t−ε)q0 ]
e
∑∞

n=1 −J (n), (34)

where

J (n) = 1 − e−ivρqt

n

g(q) + g−1(q)

8
− 1 − e−ivF qt

4n
, (35)

and the charge gaps

Eu = 1

4

q0vF

2
, Eρ = 1

4

q0vF

2

1 + g(q0)−2

2
. (36)

The first term corresponds to three unrenormalized
spin/valley channels, while the second one represents
the renormalized charge excitation. The density of states as
a function of ω = E − EF is defined through the Fourier
transform

ρexp(ω) = 1

2π

∫
eiωt [C(0, t ) + C(0,−t )]dt . (37)

For the short-range interacting Luttinger liquid, we can eas-
ily see that the C(0, t ) has two periods: t1 = L/vF for the
three unrenormalized channels and the high-energy plasmon
channel when ω � vF , and t2 = L/vρ for the renormal-
ized plasmon channel. As a result, the Fourier transform for
L�E/v � 1 shows two groups of peaks in Fig. 8(a). The
group of major peaks has the gap of q0vρ , corresponding to
the plasmon excitation; the second one of minor peaks has
the gap of q0vF reflecting excitations in the other channels.
Due to this interference, it is not possible to compare the
finite-size ρexp(ω) with its infinite-size counterpart. In fact, if
we revert to the spinless model, i.e., removing other excitation
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FIG. 8. Density of states of (a) short-range interacting Luttinger
liquid with g = 0.2 and (b) Coulomb Luttinger liquid with U0 = 5.
The interference pattern is caused by different existing excitation
propagating velocities.

channels, and push  → ∞ one can fit the peak pattern of the
finite L into ρ(ω) computed in the infinite-size model. For the
Coulomb Luttinger liquid as in Fig. 8(b), the plasmon velocity
is already scale dependent; as a result, the density of state
shows intricate interference pattern.

We now study the smooth regime for L�E/v � 1. The
density of states is given by

ρexp(ω)vF = 1 − vF

L

∫
e−�E2t2/2 cos ωt

sin(q0vFt/2)

×Im(e−∑
J (n)−i(Eρ−Eu )t )dt . (38)

Applying the same technique for estimating the momentum
distribution,

∞∑
n=1

J (n) −
∫ ∞

0
J (n)dn

=
∫ 1

0
J (n)dn + J (1)

2
− J ′(1)

12
+ O(J ′′(1))

= −iq0t

2

[
vρ (q0)[g(q0) + g−1(q0)]

8
− vF

4

]

− (q0t )2

24

[
v2

ρ (q0)[g(q0) + g−1(q0)]

8
− − v2

F

4

]

+O(q0vFt )3. (39)

The first-order term of Eq. (39) exactly cancels the charge
gap term i(Eρ − Eu)t in Eq. (38); thus the finite-size effect
only introduces corrections of the order of (v/ωL)2 or higher
into the density of states. As shown in Fig. 9, even for
infinite-size systems, the effective exponent approaches zero
for ω < �E . This is because the convolution fills out the
singular pseudogap at ω = 0, making this gap effectively a
nonzero constant. For finite-size systems, nontrivial behav-
ior only appears for ω > �E , with a negligible correction
proportional to (v/�EL)2. We note that for a finite system

FIG. 9. Effective exponent of the density of states for (a) short-
range interacting Luttinger liquid with g = 0.2 and (b) Coulomb
Luttinger liquid with U0 = 5. This exponent vanishes for ω < �E .

with open boundaries, the same conclusion can be made;
however, the transition from the bulk to boundary exponent
happens with πv[sin(πx/L)L]−1 replacing v/x as in the limit
L → ∞. In fact, the suppressed influence of the finite size
on the observed density of states has been mentioned in the
literature before [16–18], but our results show quantitatively
that the finite size effects are not a serious problem for 1D
Luttinger liquid studies, either for the short-range or the
long-range model.

IV. CONCLUSION

In this paper, we theoretically compare the tunneling con-
ductance in 1D systems between the short-range and the long-
range interacting Luttinger liquid models. The logarithmic
divergence of the long-range Coulomb interaction gives rise
to a scale-dependent effective exponent which increases at
lower energy. However, this exponent varies slowly, giving
an impression of an actual power law when the dynamic
range (of temperature or bias voltage) is around one or-
der of magnitude or less. The difference between short-
range and long-range Luttinger liquid conductance is more
visible over the range of two or more orders of magni-
tude in the independent variable. We believe that the clear
theoretical difference between short- and long-range Lut-
tinger liquids established in this paper should be experi-
mentally observable provided that the experimental tuning
variables (temperature and bias voltage) are varied over a large
dynamical range.

We also study the effect of the high energy crossover to
the free Fermi gas and the finite-size effect. This high-energy
crossover is due to short-distance behavior of the interaction
and depends on the microscopic ultraviolet regularization.
Near the high-energy crossover, the observed tunneling con-
ductance deviates from the low-energy theoretical prediction
and approaches a constant value. In addition, we show that
the finite size of the system only introduces corrections of the
second order or higher, which are negligible in the measured
spectrum. On the other hand, the finite resolution of the
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FIG. 10. Coulomb Luttinger liquid tunneling conductance fitted to experimental data: (a) L-L boundary tunneling from Fig. 4(b), Ref. [13],
(b) L-L bulk tunneling from Fig. 3(a), Ref. [14], (c) L-L bulk tunneling from Fig. 3(b), Ref. [15], (d) L-L bulk tunneling from Fig. 3(c),
Ref. [15], (e) L-M boundary tunneling from Fig. SM4(a) supplement, Ref. [15], and (f) L-M tunneling from Fig. SM4(b) supplement, Ref. [15].

measurement may replace the true Luttinger power law by
trivial laws, i.e., the exponents of the momentum distribution
and the density of states may approach one and zero, respec-
tively. These features should be taken into account to ensure
that the measured power law is physical and not artifacts of
measurement protocols.

Having considered all factors that may affect the tunneling
conductance, we finally conclude by considering (Fig. 10) a
comparison between theory and experiments. We focus on
carbon nanotube experiments in Refs. [13–15]. The Coulomb
Luttinger liquid has two parameters: the interaction strength
U0 and the energy scale or crossover energy E0 = vF /d . Un-
fortunately, all the reported data have a dynamic range of less
than two orders of magnitude; hence fitting to find both U0 and
E0 is not possible as shown earlier. (In addition, such a small
dynamic range makes any distinction between long-range and
short-range Luttinger liquid models essentially impossible.)
However, we assume that the interaction strength is universal
for all carbon nanotubes while the crossover energy scale can
vary depending on the sample. Therefore, we fix the value
of U0 = 1.7 and treat E0 as the fitting parameter. It is noted
that the choice U0 = 1.7 is arbitrary, as the data range is
insufficient for an accurate fitting; we can also choose another
U0 and the values of E0 will change accordingly. We also add
a rescaling factor so that V → ηV , where η(<1) accounts for
the real voltage across the tunneling contact after subtracting
out the voltage drop along conductors. In Fig. 10, we show
the fitted parameters along with the value g obtained by fitting
the data to a line. This result suggests that different values of
the measured interaction parameter g may rise entirely from
the sample-to-sample variations in the crossover scale E0.
This should be taken into account in future experiments on
Luttinger liquids.

Our theoretical analysis for carbon nanotube assumes
SU(2) × SU(2) symmetry, which is valid under most ex-
perimental conditions. For example, in Ref. [13], a pair of
pentagon and heptagon is inserted to the hexagonal carbon
lattice to create a kink that acts as a semiconductor junction
between two straight nanotube segments. However, the bulk
of each segment is still pristine and the valley symmetry is
not broken in the bulk. The degeneracy of the system indeed
simplifies the problem significantly. In principle, tunneling
between multiple (more than 2) Luttinger liquids is compli-
cated due to a large number of possible tunneling channels
and possibly different behaviors in each channel [26–37].
However, in a degenerate system as in our work, the symmetry
of electron species enforces the same V0, T dependence on
all the channels, thus effectively reducing the problem to
the tunneling between only two Luttinger liquid modes. Al-
though beyond the scope of this paper, the symmetry breaking
situation (e.g., valley polarization) can be straightforwardly
incorporated in the Luttinger liquid formalism. Hence our
theoretical treatment of long-range Coulomb interaction can
be easily generalized to the multiple nondegenerate electron
species situation. As a result, the scale dependence of the Lut-
tinger exponent with decreasing energy, which is the signature
of long-range interaction, should still manifest qualitatively
although some of the quantitative details of our work will
change depending on the precise details of which symmetry
is broken and how it is broken.
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