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agrees with current estimates.

1. Introduction

Cosmic inflation is a widely accepted phenomenon. The detailed particle physics
mechanism responsible for inflation is unknown. The basic inflationary para-
digm is accepted by most physicists, as a number of inflation model predictions
have been confirmed by observation. The inflationary epoch lasted from 107
seconds after the conjectured Big Bang singularity till about 10> seconds after
the singularity [1] [2] [3]. Here we will develop a statistical micro-canonical ar-

gument that seems to indicate that the Pauli principle might perhaps have played
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some kind of role in the inflation process. Our protagonist is the number of mi-
cro-states (multiplicity) Q for N particles of energy E enclosed in a volume V.
We will see that, in the case of fermions, ' can not be arbitrarily small. This ob-

servation motivates a hopefully attractive interpretation of cosmic inflation.

2. Multiplicities Q
2.1. Classical

The multiplicity Q(E,V,N) of an N-particle, mono-atomic, ideal gas with
energy E and volume V is the product of the number of cells of volume Js’
available in position space (that equals V/ ds”) and the number of cells availa-
ble in momentum space [4]. The volume of momentum space through which the
system may move is the p-volume (2675/3N)3N/2 3NR*™'Sp of a one-cell-wide
shell of radius R=~2mE . As a consequence, the number of permissible mo-

mentum-space cells in this shell is (e is the basis of natural logarithms)
Vs = (26/3N)" BN (2mE[3N) 2 (5p /6 p™ ), (1)
so that [4]

Q(EV,N)=(r/ov)" (2ex)" BN (2mE3NY 2 (8p/5p7). @)

After some lengthy considerations, the author of [4] [pp. 56-57] [Egs. (3.8)-
(3.15)] rephrases the above relations as

3/2
b

Q(E/N.V,1)=V (E/N)" (4enm/3h* ) 3)

an equation to be discussed below.

2.2. Fermions

It has been known since at least 1925 that quantum mechanics includes, among
its tenets, the following tree conditions: 1) phase space cells have a size deter-
mined by Planck’s constant A, 2) the energy, momenta, and other dynamical
properties of an isolated system are quantized, and 3) for the purpose of deter-
mining multiplicity, identical particles are, indistinguishable from one another.
Thus, (3) gives the multiplicity Q of an ideal gas composed of N distinguisha-
ble particles that occupy volume Vand share an energy £.

If Q(E,V,N) isthe multiplicity of an ideal gas composed of N distinguisha-
ble particles with total energy £ and placed in a volume V;, it follows that
Q(E/N,V,1) should be the multiplicity of just a single particle of ideal gas,
characterized by £/N and, and occupying volume V. This particle composes a
larger system of N distinguishable particles. A single particle of an ideal gas oc-

cupies Q(E/N,V,1) equally probable microstates. Accordingly,
Q(EV,N)=[Q(E/NV.1)]". (4)

A crucial insight is here gotten: the number of cells that can be occupied by a

single particle of ideal gas must be independent of whether that particle is itself
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distinguishable or indistinguishable from the other particles that compose the
gas system and if indistinguishable whether fermion or boson. A system of N
distinguishable particles of ideal gas may occupy [Q(E/ N ,V,l)]N equally
probable microstates [4].

Focus attention now upon an ideal Fermi gas. Let us call n the number of cells

that can be occupied by a single fermion E/N. We have n/N >1. According to

(3) we have
n=v (E/N)" (4enm/30° )" (5)
with
V= gnr3. (6)

We face the problem of filling n cells with N <n identical fermions. Thus
the multiplicity becomes [4]

n!

" NI(n=N) @

This multiplicity derived above is the result of the so-called average energy
approximation. According to this approximation, each gas particle possesses the
same energy £/ N for all fermions in the system. That the average energy ap-
proximation produces the exact multiplicity when identical particles are consi-
dered distinguishable. The average energy approximation has been extensively
used and produces quite reasonable results [4].

We approximate the Gamma function using the Stirling recipe
1
F(z):\/27'cz Ze’, (8)

and find (® is Heaviside’s step function)

ee(nJrl)ln(n+l)f®(n7N+l)(an+l)ln(anJrl)
Q= (N+1) ’ (9)
V2n(N+1)

and introduce the notationally simplifying definition (change of variables from r

to s)

1 1 1
o= (ﬂf [ﬁj (—4”62’”]2 . (10)
V) \W) 3n

(18 Jin(1+45%) -0 N~ (W=1) | N5 ~(w=1) i Ns* (v -1)
o= i . (11)

2r(N+1)"Y

so that

Of course, it must be

Q>1; In(Q)=0. (12)

From (11) one gets
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In(Q) =(1+Ns*)In(1+ Ns* ) O N5’ =(N=1) ][ N’ =(N 1) ]
<In[ Ns° —(N—l)}+1—%ln(2n)—(N+1)1n(N+1), )

and we ask for a possible vanishing of In(Q). This is the critical novel issue that
we address in this paper.

Since N >1 we are led to answer with the relation

M:f In(s*)-©(s* ~1)(s’ ~1)In(s* ~1) =0, (14)
that has two possible solutions, namely,
s=0, s=1. (15)

Figure 1 shows that the multiplicity Q would be negative for 0<s<1,
which is absurd. We gather that the system is subjected to a kind of “phase tran-
sition” at s=0 and forced to “jump” to s=1. One could putatively associate
this jump to a sort of inflation-phenomenon motivated by the Pauli principle
that would forbid N fermions to be accommodated in a too small volume V. A
critical “accommodating” volume is reached at s =1. Emphasize that this hap-
pens for free fermions micro-canonically described. Equilibrium prevails.

The paper could well finish here. However, it is too tempting to extrapolate a

bit further. We do this below, after discussing Bosons.

2.3. Bosons

The multiplicity is, for n microstates and Nbosons [4],

-1

-6

=7

Figure 1. FERMIONS: The logarithm of the number of microstates InQ versus the NV fermions’ size-indicator s. Note the sud-

den size-increase at the origin, which one might be willing to associate to inflation, that in turn would be motivated by the Pauli

principle.
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Q_(N+n—1)!

_m (16)

The counting performed above is structurally identical to counting the num-
ber of distinct manners of ordering a set of Nidentical balls and n—1 identical
white dividers. If placed in a row, these n—1 dividers separate our N balls into
nordered (distinct) groups [4].

Thus, things are quite different for bosons, not subjected to the exclusion
principle. The above Q, for N bosons of mass m contained in V with total
energy Ewill yield [4]

e(N+Ns3)1n(N+Ns3)e—(Ns3)ln(Nx3)

V2rNY ’

Q=

(17)

with s given by (2).
ln(Q) = (N+Ns3)ln(N+ Ns3)—(Ns3 )1n(Ns3)—%ln(2n)—N1n(N). (18)
From (7) it follows that, in the spirit of last Subsection,

PO (14 9)in(1+5°)-0(s)s n(5*) =0, (19

whose solution is

s=0, (20)
as illustrated in Figure 2.
2.4. A Putative Interpretation

What might have happened when fermions began to emerge at the Big-bang?

-6

=7

Figure 2. InQ versus sfor bosons. Nbosons can be accommodated at the origin. Remaining details are as in Figure 1.
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A tiny fraction of a second after the singularity, some fermions began to
emerge, out of a quark-gluon plasma [5], V of them, at a tiny region of size 1,
whose total fermion-energy was £ (this variables determine a microcanonical
ensemble). This region had to “explode” in order to accommodate them (transi-
tion from s=0 to s=1 above).

If we accept Siegel’s estimate for the Universe’s radius at the end of the infla-
tion period of r=7, =17cm [5], then, from Equation (11), one gathers that

one has for N, when s=1,

3
4n 3 (4mem 2
If we set %: mc® (lower bound for ), with m=1.6x10""kg the baryon

mass, then the fermion number becomes N =1.15x10* at the critical volume
referred to above, a very small number compared to today’s estimate of 107°. Of
course, radiation, neutrinos and plasma predominate at this stage [5].

2.5. Temperature at the End of the Inflationary Period

The entropy at the end of the inflationary period (s =1) reads

S|, =k;InQ_, (22)

with ki the Boltzmann constant. For the temperature 7'we have

.8 , (23)
Tl,., ©OE (V.N.s=1)
or
3
1 :6_83 95| (24)
Ts:l 6S (V,N,.v:l) aE (V,N,s:l)
More explicitly, one has
3
1 2nrykym’c ((4me 2
il :M(Ejz 1n(1+N). (25)
T\, h 3

Using the appropriate values for k,, A, etc., we obtain T =3.9x10" Kelvin
degrees, which agrees with the value estimated in reference [6]. Note that in our

case we are advancing a statistical prediction.

3. Conclusion

We have here introduced a simple, micro-canonical statistical argumentation
purporting to show that, on account of Pauli’s principle, NV fermions can not be
accommodated in an arbitrarily small volume V; as bosons can. We statistically
determined a minimum critical volume-value for N fermions. One is then
tempted to extrapolate the above findings to a cosmological setting and predict a

numerical value for the temperature prevailing at the end of the inflationary pe-
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riod. Our prediction agrees with current estimates.
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