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Abstract 
We study the dependence of the of microstates number (for free fermions- 
bosons) as a function of the volume-size in quantum statistics and fermions, 
and show then that fermions can not be accommodated in arbitrarily small 
volumes V. A minimum minV V=  for that purpose is determined. Fermions 
can not exist for minV V< . This fact might have something to do with infla-
tion. More precisely, in order to accommodate N fermions in a Slater deter-
minant, we need a minimum radius, which is a consequence of the Pauli 
principle. This does not happen for bosons. As a consequence, extrapolating 
this statistical feature to a cosmological setting, we are able to “predict” a 
temperature-value for the final-stage of the inflationary period. This value 
agrees with current estimates. 
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1. Introduction 

Cosmic inflation is a widely accepted phenomenon. The detailed particle physics 
mechanism responsible for inflation is unknown. The basic inflationary para-
digm is accepted by most physicists, as a number of inflation model predictions 
have been confirmed by observation. The inflationary epoch lasted from 10−36 
seconds after the conjectured Big Bang singularity till about 10−32 seconds after 
the singularity [1] [2] [3]. Here we will develop a statistical micro-canonical ar-
gument that seems to indicate that the Pauli principle might perhaps have played 
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some kind of role in the inflation process. Our protagonist is the number of mi-
cro-states (multiplicity) Ω  for N particles of energy E enclosed in a volume V. 
We will see that, in the case of fermions, V can not be arbitrarily small. This ob-
servation motivates a hopefully attractive interpretation of cosmic inflation. 

2. Multiplicities Ω 
2.1. Classical 

The multiplicity ( ), ,E V NΩ  of an N-particle, mono-atomic, ideal gas with 
energy E and volume V is the product of the number of cells of volume 3sδ  
available in position space (that equals 3V sδ ) and the number of cells availa-
ble in momentum space [4]. The volume of momentum space through which the 
system may move is the p-volume ( )3 2 3 12e 3 3N NN NR pδ−π  of a one-cell-wide 
shell of radius 2R mE= . As a consequence, the number of permissible mo-
mentum-space cells in this shell is (e is the basis of natural logarithms) 

( ) ( )( ) ( )3 2 3 1 2 3
p-shell 2e 3 3 2 3 ,N N NV N N mE N p pδ δ−π=        (1) 

so that [4] 

( ) ( ) ( ) ( )( ) ( )3 2 3 1 2 3, , 2e 3 2 3 .N N N NE V N V V N mE N p pδ δ δ−Ω π=    (2) 

After some lengthy considerations, the author of [4] [pp. 56-57] [Eqs. (3.8)- 
(3.15)] rephrases the above relations as 

( ) ( ) ( )3 23 2 2, ,1 4e 3 ,E N V V E N m hπΩ =              (3) 

an equation to be discussed below. 

2.2. Fermions 

It has been known since at least 1925 that quantum mechanics includes, among 
its tenets, the following tree conditions: 1) phase space cells have a size deter-
mined by Planck’s constant h, 2) the energy, momenta, and other dynamical 
properties of an isolated system are quantized, and 3) for the purpose of deter-
mining multiplicity, identical particles are, indistinguishable from one another. 
Thus, (3) gives the multiplicity Ω  of an ideal gas composed of N distinguisha-
ble particles that occupy volume V and share an energy E. 

If ( ), ,E V NΩ  is the multiplicity of an ideal gas composed of N distinguisha-
ble particles with total energy E and placed in a volume V, it follows that 
( ), ,1E N VΩ  should be the multiplicity of just a single particle of ideal gas, 

characterized by E/N and, and occupying volume V. This particle composes a 
larger system of N distinguishable particles. A single particle of an ideal gas oc-
cupies ( ), ,1E N VΩ  equally probable microstates. Accordingly, 

( ) ( ), , , ,1 .
N

E V N E N VΩ = Ω                    (4) 

A crucial insight is here gotten: the number of cells that can be occupied by a 
single particle of ideal gas must be independent of whether that particle is itself 
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distinguishable or indistinguishable from the other particles that compose the 
gas system and if indistinguishable whether fermion or boson. A system of N 
distinguishable particles of ideal gas may occupy ( ), ,1

N
E N VΩ    equally 

probable microstates [4]. 
Focus attention now upon an ideal Fermi gas. Let us call n the number of cells 

that can be occupied by a single fermion E/N. We have 1n N ≥ . According to 
(3) we have 

( ) ( )3 23 2 24e 3 ,n V E N m h= π                   (5) 

with 

34 .
3

V r= π                           (6) 

We face the problem of filling n cells with N n≤  identical fermions. Thus 
the multiplicity becomes [4] 

( )
! .

! !
n

N n N
Ω =

−
                        (7) 

This multiplicity derived above is the result of the so-called average energy 
approximation. According to this approximation, each gas particle possesses the 
same energy E/N for all fermions in the system. That the average energy ap-
proximation produces the exact multiplicity when identical particles are consi-
dered distinguishable. The average energy approximation has been extensively 
used and produces quite reasonable results [4]. 

We approximate the Gamma function using the Stirling recipe 

( )
1
22 e ,

z zz z
− −Γ π=                        (8) 

and find (Θ  is Heaviside’s step function) 

( ) ( ) ( )( ) ( )

( )( )

1 ln 1 1 1 ln 1

1

ee ,
2 1

n n n N n N n N

NN

+ + −Θ − + − + − +

+π
Ω =

+
               (9) 

and introduce the notationally simplifying definition (change of variables from r 
to s) 

1 1 1
3 2 2

2

4 4 ,
3 3

E ems r
N N h

     =      
     

π π                  (10) 

so that 

( ) ( ) ( ) ( ) ( )

( )( )

3 3 33 3 1 1 ln 11 ln 1

1

ee e .
2 1

Ns N Ns N Ns NNs Ns

NN

     −Θ − − − − − −+ +     

+π
Ω =

+
         (11) 

Of course, it must be 

( )1; ln 0.Ω ≥ Ω ≥                       (12) 

From (11) one gets 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3 3 3 3

3

ln 1 ln 1 1 1

1ln 1 1 ln 2 1 ln 1 ,
2

Ns Ns Ns N Ns N

Ns N N N

   Ω = + + −Θ − − − −   

 × − − + − − + +  π
    (13) 

and we ask for a possible vanishing of ( )ln Ω . This is the critical novel issue that 
we address in this paper. 

Since 1N   we are led to answer with the relation 

( ) ( ) ( )( ) ( )3 3 3 3 3ln
ln 1 1 ln 1 0,s s s s s

N
Ω

−Θ − − − =          (14) 

that has two possible solutions, namely, 

0, 1.s s= =                         (15) 

Figure 1 shows that the multiplicity Ω  would be negative for 0 1s≤ ≤ , 
which is absurd. We gather that the system is subjected to a kind of “phase tran-
sition” at 0s =  and forced to “jump” to 1s = . One could putatively associate 
this jump to a sort of inflation-phenomenon motivated by the Pauli principle 
that would forbid N fermions to be accommodated in a too small volume V. A 
critical “accommodating” volume is reached at 1s = . Emphasize that this hap-
pens for free fermions micro-canonically described. Equilibrium prevails. 

The paper could well finish here. However, it is too tempting to extrapolate a 
bit further. We do this below, after discussing Bosons. 

2.3. Bosons 

The multiplicity is, for n microstates and N bosons [4], 
 

 
Figure 1. FERMIONS: The logarithm of the number of microstates lnΩ  versus the N fermions’ size-indicator s. Note the sud-
den size-increase at the origin, which one might be willing to associate to inflation, that in turn would be motivated by the Pauli 
principle. 
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( )
( )

1 !
.

! 1 !
N n
N n
+ −

Ω =
−

                       (16) 

The counting performed above is structurally identical to counting the num-
ber of distinct manners of ordering a set of N identical balls and 1n −  identical 
white dividers. If placed in a row, these 1n −  dividers separate our N balls into 
n ordered (distinct) groups [4]. 

Thus, things are quite different for bosons, not subjected to the exclusion 
principle. The above Ω , for N bosons of mass m contained in V with total 
energy E will yield [4] 

( ) ( ) ( ) ( )3 3 3 3ln ln
e e ,

2

N Ns N Ns Ns Ns

NN

+ + −

=
π

Ω                  (17) 

with s given by (2). 

( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 3 3 1ln ln ln ln 2 ln .
2

N Ns N Ns Ns Ns N NΩ = + −π+ − −   (18) 

From (7) it follows that, in the spirit of last Subsection, 

( ) ( ) ( ) ( ) ( )3 3 3 3ln
1 ln 1 ln 0,s s s s s

N
Ω

+ + −Θ =            (19) 

whose solution is 

0,s =                            (20) 

as illustrated in Figure 2. 

2.4. A Putative Interpretation 

What might have happened when fermions began to emerge at the Big-bang? 
 

 
Figure 2. lnΩ  versus s for bosons. N bosons can be accommodated at the origin. Remaining details are as in Figure 1. 
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A tiny fraction of a second after the singularity, some fermions began to 
emerge, out of a quark-gluon plasma [5], N of them, at a tiny region of size V, 
whose total fermion-energy was E (this variables determine a microcanonical 
ensemble). This region had to “explode” in order to accommodate them (transi-
tion from 0s =  to 1s =  above). 

If we accept Siegel’s estimate for the Universe’s radius at the end of the infla-
tion period of 0 17 cmr r= =  [5], then, from Equation (11), one gathers that 
one has for N, when 1s = , 

( )
3

3 2
2 02

4 4 e .
3 3

mN mc r
h

 
 
 

π π
=                    (21) 

If we set 2E mc
N
=  (lower bound for E), with 271.6 10 kgm −= ×  the baryon  

mass, then the fermion number becomes 481.15 10N = ×  at the critical volume 
referred to above, a very small number compared to today’s estimate of 1079. Of 
course, radiation, neutrinos and plasma predominate at this stage [5]. 

2.5. Temperature at the End of the Inflationary Period 

The entropy at the end of the inflationary period ( 1s = ) reads 

1 1ln ,Bs sS k
= =
= Ω                       (22) 

with Bk  the Boltzmann constant. For the temperature T we have 

( )1 , , 1

1 ,
s V N s

S
T E= =

∂
=
∂

                      (23) 

or 

( ) ( )

3

3
1 , , 1 , , 1

1 .
s V N s V N s

S s
T Es= = =

∂ ∂
=

∂∂
                 (24) 

More explicitly, one has 

( )
3

3 2 20
3

1

21 4 e ln 1 .
3

B

s

r k m c
N

T h=

 = + 
 

π π
              (25) 

Using the appropriate values for Bk , h, etc., we obtain 183.9 10T = ×  Kelvin 
degrees, which agrees with the value estimated in reference [6]. Note that in our 
case we are advancing a statistical prediction. 

3. Conclusion 

We have here introduced a simple, micro-canonical statistical argumentation 
purporting to show that, on account of Pauli’s principle, N fermions can not be 
accommodated in an arbitrarily small volume V, as bosons can. We statistically 
determined a minimum critical volume-value for N fermions. One is then 
tempted to extrapolate the above findings to a cosmological setting and predict a 
numerical value for the temperature prevailing at the end of the inflationary pe-
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riod. Our prediction agrees with current estimates. 
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