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ABSTRACT
Accurate mass-loss rates and terminal velocities from massive stars winds are essential to obtain synthetic spectra from radiative
transfer calculations and to determine the evolutionary path of massive stars. From a theoretical point of view, analytical
expressions for the wind parameters and velocity profile would have many advantages over numerical calculations that solve
the complex non-linear set of hydrodynamic equations. In a previous work, we obtained an analytical description for the fast
wind regime. Now, we propose an approximate expression for the line-force in terms of new parameters and obtain a velocity
profile closed-form solution (in terms of the Lambert𝑊 function) for the 𝛿-slow regime. Using this analytical velocity profile,
we were able to obtain the mass-loss rates based on the m-CAK theory. Moreover, we established a relation between this new
set of line-force parameters with the known stellar and m-CAK line-force parameters. To this purpose, we calculated a grid of
numerical hydrodynamical models and performed a multivariate multiple regression. The numerical and our descriptions lead
to good agreement between their values.
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1 INTRODUCTION

The knowledge of stellar wind properties of massive stars is funda-
mental for understanding stellar evolution processes, different evolu-
tionary scenarios and enrichment of star’s nearby environments.
Accurate wind parameters (mass-loss rate and terminal velocity)

are crucial for the study of the wind properties of massive stars.
Insights into the physics of stellar winds are attained by studying
the effects of wind parameters on the emergent line spectrum and by
comparing the latter with observations. From a theoretical point of
view, this implies to solve highly non-linear equations in which the
radiation field and hydrodynamics are strongly coupled.
Winds of massive stars are driven by the transfer of momentum

from the radiation field to the plasma by scattering processes in the
spectral lines (Lucy & Solomon 1970). Currently, these winds are
best described by the m-CAK theory (Castor et al. 1975; Friend &
Abbott 1986; Pauldrach et al. 1986).
Generally, there are many approximations that reduce consider-

ably the complexity of the computation of the hydrodynamic and the
NLTE radiative transfer solutions. One example is the extensive use
of a simple analytical approximation for the velocity field, the so-
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called 𝛽-law, first proposed by Lamers & Rogerson (1978). A value
of 𝛽 ' 0.8− 1.2, generally agrees very well with the m-CAK numer-
ical hydrodynamic solution (Lamers & Cassinelli 1999). This value
of 𝛽 is determined empirically by fitting the observed line profile
with a synthetic one. This approximation has been proved to be very
effective and efficient to describe the winds of O- and early B-type
supergiants. However, in the case of late B- and A-type supergiants
there is a clear tendency towards higher values of 𝛽, even with values
larger than 3, leading to inconsistencies with respect to the hydro-
dynamic theory (Stahl et al. 1991; Verdugo et al. 1999; Crowther
et al. 2006; Lefever et al. 2007; Markova & Puls 2008; Searle et al.
2008; Haucke et al. 2018). Therefore, accurate analytical approxi-
mations of the m-CAK hydrodynamic equations are indispensable
to have a self-consistent coupling between the hydrodynamics and
multidimensional radiative transfer problems in moving media.
For the case of the fast regime (standard m-CAK solution), this

issue was addressed by Villata (1992), Müller & Vink (2008) and
Araya et al. (2014). The aim of this work is to extend the procedure
of Araya et al. (2014) to the 𝛿-slow regime. The 𝛿-slow solution 1,

1 Previously, Curé (2004) found another type of slow solution for rapidly
rotating stars, called Ω-slow solution.
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2 I. Araya et al.

found by Curé et al. (2011), is based on the m-CAK theory, that
describes the wind velocity profile when the ionization-related line-
force parameter 𝛿 takes higher values than the ones provided by the
standard m-CAK solution (see, e.g., Lamers & Cassinelli 1999, and
references therein). High values of 𝛿, even larger than 1/3, which
corresponds to a wind with neutral hydrogen as a trace element
(Puls et al. 2000), are expected in strong ionization gradients (see
also Kudritzki 2002). The 𝛿-slow solution is characterized by low
terminal speeds (𝑣∞) and might explain the obtained values for late-
B and A-type supergiants. This solution also seems to fit quite well
the observed anomalous correlation between the terminal and escape
velocities found in A supergiants, as well as their correspondingwind
momentum-luminosity relationship (Curé et al. 2011).
With the purpose to have an approximate solution from the hydro-

dynamic, Araya et al. (2014) developed an expression in terms of the
stellar and m-CAK line-force parameters (𝛼, 𝑘 , and 𝛿) and applied
it to the fast regime. This expression, based on the works of Müller
& Vink (2008) and Villata (1992), describes the line acceleration
as function of the radial distance, allowing to solve analytically the
hydrodynamic stationary equation of motion. The use of expressions
for both radiation force and velocity profile as a function of the line-
force parameters can provide a clear view into how the line-driven
mechanism is related with the hydrodynamics.
On the other hand, it is important to obtain a simple represen-

tation of the radiation force and the derived slow solutions under
such different ionization conditions. Therefore, a significant contri-
bution of this work consists in offering a quick way to generate an
analytical expression to estimate mass-loss rates for these alterna-
tive wind regimes. There are currently no parametric expressions
that can be used for this purpose without the need to fully solve the
hydrodynamic equations.
This work is organized as follows: Section 2 presents briefly the

hydrodynamic equations for line-driven winds and the dimension-
less form of the equation of motion. In Section 3, the basic concepts
developed by Müller & Vink (2008) are recapitulated including their
line acceleration term as function of the radial distance. Then, this
line acceleration term is modified with the purpose to obtain a better
agreement with the 𝛿-slow solution. In Section 4, a recipe to obtain
the line acceleration parameters (required by the line acceleration
term) is developed, based on a grid of hydrodynamic models and a
multivariate multiple regression. Then, an analytical expression for
the 𝛿-slow solution is developed and compared with the numerical
models described in Section 5. In Section 6, we give our conclu-
sions. In addition, a recipe to derive the mass-loss rate based on our
expression is provided in Appendix A.

2 THE STANDARD HYDRODYNAMICAL WIND MODEL

The CAK theory for line-driven winds was originally developed
by Castor et al. (1975). This theory describes, for a point source,
a stationary, one-dimensional, non-rotating, isothermal, outflowing
wind with spherical symmetry. Adopting these assumptions, and
neglecting the effects of viscosity, heat conduction and magnetic
fields, the equations of mass conservation and radial momentum
state:

4 𝜋 𝑟2 𝜌 𝑣 = ¤𝑀, (1)

and

𝑣
𝑑𝑣

𝑑𝑟
= − 1

𝜌

𝑑𝑝

𝑑𝑟
− 𝐺 𝑀∗ (1 − ΓE)

𝑟2
+ 𝑔line. (2)

Here 𝑣 is the fluid radial velocity, 𝑑𝑣/𝑑𝑟 = 𝑣′ is the velocity gradient
and 𝑔line is the line acceleration. All other variables have their stan-
dard meaning (for a detailed derivation and definitions of variables,
constants and functions, see Curé 2004).
The so called m-CAK theory, which include the effects of rotation

and a disk-like source, was developed by Friend &Abbott (1986) and
Pauldrach et al. (1986), based on a general expression from Abbott
(1982) for the line force:

𝑔line =
𝐶

𝑟2
𝑓FD (𝑟, 𝑣, 𝑣′)

(
𝑟2 𝑣 𝑣′

)𝛼 (
𝑛𝐸11
𝑊 (𝑟)

) 𝛿
, (3)

where the coefficient 𝐶 (eigenvalue) depends on the mass-loss rate
¤𝑀 and the line-force parameter 𝑘 (see Eq. A5).𝑊 (𝑟) is the dilution
factor, 𝑛𝐸11 is the electron number density 𝑛𝐸 in units of 10−11 cm−3,
and 𝑓FD is the finite disk correction factor. The m-CAK line-force
parameters are: 𝛼 , 𝑘 and 𝛿.
The momentum equation (Eq. 2) can be expressed in a dimen-

sionless form (see e.g., Müller & Vink 2008; Araya et al. 2014)
as:

�̂�
𝑑�̂�

𝑑𝑟
= −

�̂�2crit
𝑟2

+ �̂�line − 1
𝜌

𝑑𝜌

𝑑𝑟
, (4)

with 𝑟 = 𝑟/𝑅∗, �̂� = 𝑣/𝑎 and �̂�crit = 𝑣esc/𝑎
√
2. Here 𝑅∗ is the stellar

radius, 𝑎 is the isothermal sound speed, �̂�crit is the dimensionless
rotational break-up velocity and 𝑣esc is the escape velocity. The di-
mensionless line acceleration reads:

�̂�line =
𝑅∗
𝑎2

𝑔line. (5)

Using Eq. 1 together with the equation of state for an ideal gas
(𝑝 = 𝑎2𝜌), the dimensionless equation of motion is:

(
�̂� − 1

�̂�

)
𝑑�̂�

𝑑𝑟
= −

�̂�2crit
𝑟2

+ 2
𝑟
+ �̂�line. (6)

In general, the calculation of the line acceleration involves the
coupling of hydrodynamics with the radiative transport in NLTE. A
very successful approach is to calculate the line acceleration using
the Sobolev approximation. The pioneering work of Castor et al.
(1975) laid the foundations of CAK theory and later improvements
(m-CAK). A further description was done by Feldmeier (1998) who
extended the CAK approach using a second order Sobolev approxi-
mation, i.e, 𝑔line = 𝑔line (𝑟, 𝑣, 𝑣′, 𝑣′′).
However, in this work, to obtain an analytical expression of the
𝛿-slow solution, we will use a radial dependence for the line accel-
eration following the methodology used by Araya et al. (2014), i.e.,
𝑔line = 𝑔line (𝑟). This approach allows to obtain an analytical expres-
sion for the velocity field in terms of the Lambert 𝑊 function (see
Section 3).

3 LINE ACCELERATION

In this section we review the basic concepts developed by Müller
& Vink (2008, hereafter MV08) to derive, later on, a general ana-
lytical expression for the velocity profile in the frame of the 𝛿-slow
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Analytical Wind Solutions II: The 𝛿-slow Regime 3

radiation-driven wind regime for massive stars. We demonstrate that
this expression enables to integrate the equation of motion (Eq. 6)
leading to an analytical expression for the 𝛿-slow wind velocity pro-
file.

3.1 The Fast Regime Approximation

In the framework of m-CAK stellar wind theory, MV08 present a
mathematical expression for the line acceleration via a parameterized
description that depends only on the radial coordinate. Using Monte
Carlo multi-line radiative transfer calculations (de Koter et al. 1997;
Vink et al. 1999) and a velocity profile from a 𝛽-law, these authors
computed the line acceleration. Then, the numerical line acceleration,
which collect all the physicallymotivatedmathematical properties for
the radiative line acceleration term, is expressed by by the following
function:

�̂�lineMV08 (𝑟) =
�̂�0

𝑟1+𝛿1

(
1 − 𝑟0

𝑟 𝛿1

)𝛾
, (7)

where 𝑔0, 𝛿1, 𝑟0, and 𝛾 are the MV08 line acceleration parameters.
It is important to note that these parameters, lack of any physical
meaning, and besides, are not directly related to 𝑘 ,𝛼 and 𝛿 parameters
from m-CAK theory.
Replacing Eq. 7 in Eq. 6, the dimensionless equation of motion

are derived and a fully analytical velocity profile is obtained (see
MV08 for details about the methodology used to obtain this solution)
by means of the Lambert W-function (Corless et al. 1993, 1996;
Cranmer 2004).
The line acceleration expression given by MV08 (Eq. 7) results in

a good approximation for the m-CAK line force for 𝛿 ≤ 0.2, but this
expression fails for 𝛿-slow solutions, when 𝛿 & 0.25. Overall, this
approximation gives a poor agreement with respect to the numerical
𝛿-slow solution (from m-CAK theory). The numerical solutions are
obtained from the stationary hydrodynamic code Hydwind (Curé
2004).
Araya et al. (2014) developed an analytical solution for the ve-

locity of the fast wind regime in terms of the stellar and m-CAK
line-force parameters combining the methodology from MV08 and
the line acceleration proposed by Villata (1992). Unfortunately, this
expression also fails when the line force parameter 𝛿 is higher than
about 0.3, because in this case a term from the proposed line acceler-
ation expression turns complex. From a mathematical point of view,
high values of 𝛿 would require high values of 𝛼 in order to obtain
an expression with real values, but such kind of 𝛼 values would be
totally unphysical.

3.2 The New 𝛿-slow Regime Approximation

In view of the unsatisfactory results obtained when applying the
approximate description of the wind velocity for the 𝛿-slow case, we
decided to modify the functional form of the line acceleration given
by MV08 in order to obtain a better description of the 𝛿-slow wind.
Thus, our proposed line acceleration is the following:

�̂�linenew (𝑟) =
�̂�0

𝑟1+𝛿1

(
1 − 1

𝑟 𝛿2

)𝛾
, (8)

where �̂�0, 𝛿1, 𝛿2, and 𝛾 are the new set of line acceleration parameters.
The new expression follows the same mathematical properties as

MV08’s but the inclusion of the 𝛿2 parameter yields to a better

agreement with the numerical line acceleration from the m-CAK
model.
Based on this new definition for the radiation force, the new di-

mensionless equation of motion reads:

(
�̂� − 1

�̂�

)
𝑑�̂�

𝑑𝑟
= −

�̂�2crit
𝑟2

+ 2
𝑟
+ �̂�0
𝑟1+𝛿1

(
1 − 1

𝑟 𝛿2

)𝛾
. (9)

The same methodology developed by MV08 is employed to solve
the new equation of motion and the solution is given through the
Lambert𝑊 function,

�̂�(𝑟) =
√︃
−𝑊 𝑗 (𝑥(𝑟)), (10)

with

𝑥(𝑟) = −
(
𝑟c
𝑟

)4
exp

[
−2 �̂�2crit

(
1
𝑟
− 1
𝑟c

)
−2

(
𝐼�̂�line (𝑟) − 𝐼�̂�line (𝑟c)

)
− 1

]
, (11)

where

𝐼�̂�line ≡
∫

�̂�line (𝑟)𝑑𝑟

= −
𝑔0 𝑟

−𝛿1 2𝐹1
[
−𝛾, 𝛿1

𝛿2
, 1 + 𝛿1

𝛿2
, 𝑟−𝛿2

]
𝛿1

, (12)

being 2𝐹1 the Gauss hypergeometric function. Note that the constant
of integration vanishes due to the subtraction between the integrals
at 𝑟 and 𝑟c. The critical (or sonic) point, 𝑟c, is obtained numerically
making the RHS of Eq. 9 equal zero.
Finally, taking into account the numerical solution fromHydwind

as reference, a good agreement is obtained with our expression (Eq.
10) for the velocity profile.

4 LINE ACCELERATION PARAMETERS

In Araya et al. (2014) a relationship between the MV08 line-force
parameters (𝑔0, 𝛿1, 𝑟0, and 𝛾) and the stellar and m-CAK line-
force parameters was given. This relationship is an easy-to-use and
versatile method to compute the velocity profile analytically, because
both stellar and m-CAK line force parameters are already available
for a wide range of spectral types (see, Abbott 1982; Pauldrach et al.
1986; Lamers & Cassinelli 1999; Noebauer & Sim 2015; Gormaz-
Matamala et al. 2019; Lattimer & Cranmer 2021).
To derive a similar relationship, now for the 𝛿-slow regime, we cre-

ated a grid of m-CAK hydrodynamic models and develop that rela-
tionship applying a multivariate multiple regression (MMR Rencher
& Christensen 2012; Mardia et al. 1980).

4.1 Grid of Hydrodynamic Models

We built a Hydwind grid of stellar models for 𝛿-slow solutions.
The grid points were selected to cover the region of the 𝑇eff–log 𝑔
diagram where the B- and A-type supergiants are located.
For each given pair of stellar parameters (𝑇eff , log 𝑔), the stel-

lar radius was calculated from 𝑀bol by means of the flux-weighted
gravity-luminosity relationship (Kudritzki et al. 2003, 2008), but in
addition we added 20 values for stellar radius (from 5 𝑅� to 100

MNRAS 000, 1–8 (2021)
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Figure 1. Location of the grid models in the𝑇eff–log 𝑔 plane. Blue and green
dots represent the non-converged and converged solutions, respectively. Red
solid lines represent the evolutionary tracks for stars of 7𝑀� to 60𝑀�
without rotation (Ekström et al. 2008), while the black lines correspond to
the zero age main-sequence (ZAMS) and the terminal age main-sequence
(TAMS).

Table 1. Ranges of the m-CAK line-force parameters for the grid of models.

Parameter Range

𝛼 0.45 – 0.69 (step size of 0.02)
𝑘 0.05 – 1.00 (step size of 0.05)
𝛿 0.26 – 0.35 (step size of 0.01)

𝑅� in steps of 5 𝑅�). The surface gravities comprise the range of
log 𝑔 = 2.7 down to about 90% of the Eddington limit, in steps of
0.15 dex. We considered 22 effective temperature grid points, rang-
ing from 9 000K to 19 500K, in steps of 500 K. These 𝑇eff and log 𝑔
ranges were adopted to describe mainly the wind of intermediate and
late B supergiants.
Them-CAK line-force parameters used for each set of (𝑇eff , log 𝑔)

values are given in Table 1. We considered only high values of 𝛿 in
order to obtain 𝛿-slow solutions.
Then, a huge combinations of parameters were executed in Hy-

dwind, considering the standard boundary condition at the stellar
surface, for the optical depth, 𝜏∗ = 2/3. In addition, it is worth not-
ing that only some combinations of all parameters used in Hydwind
converged to a physical stationary solution, i.e., we obtained 141 067
𝛿-slow solutions from our initial set (about a 2% of our initial input).
In the 𝑇eff–log 𝑔 plane, see Fig. 1, we show in green dots all con-
verged models, whereas blue dots indicates that no 𝛿-slow solution
was achieved for the given combination of parameters. Furthermore,
the number of converged 𝛿-slow solutions, in the 𝑇eff–log 𝑔 plane,
shows that most of the models are concentrated in the region of
log 𝑔 ≥ 1.65, with a peak around 𝑇eff = 14 kK and log 𝑔 = 2.4.
Also, few models converged with values of 𝛿 ≤ 0.28 and 𝛼 ≥ 0.57.
This behavior must be considered at the moment to define the limits
of our approximation for 𝛿-slow solutions.
Finally, for each hydrodynamicmodel we fitted (Least Squares) the

m-CAK line acceleration (�̂�line) with our proposed line acceleration
expression (Eq. 8) in order to obtain the corresponding new line
acceleration parameters (�̂�0, 𝛿1, 𝛿2, and 𝛾).

4.2 Multivariate Multiple Regression

To derive the relationship for the new line acceleration parameters
(�̂�0, 𝛿1, 𝛿2 and 𝛾) as function of stellar (𝑇eff , log g, 𝑅∗/𝑅�) and
m-CAK line-force parameters (𝑘 , 𝛼, 𝛿) a MMR is applied to our grid
of models.
A multiple multivariate regression model is:

𝑌 = 𝑋𝐵 + 𝑍 (13)

where 𝑌 is a 𝑛 × 𝑝 matrix of data in the 𝑝 dependent variables, 𝑋 is
a 𝑛 × (1 + 𝑞) matrix of regression: a first column of 1’s and in the
remaining columns the data of the 𝑞 independent variables, 𝐵 is a
(1+ 𝑞) × 𝑝 matrix of parameters (the intercept and 𝑞 parameters, one
for each of the 𝑞 independent variables), and 𝑍 is a 𝑛 × 𝑝 matrix of
measurement error.
Themodel is the same for each dependent variable (𝑦𝑖 , 𝑖=1, . . . , 𝑝),

but with different coefficients (𝛽𝑖 𝑗 , 𝑖=0, . . . , 𝑝; 𝑗=0, . . . , 𝑞), i.e.,

𝑦𝑖 = 𝛽𝑖0 + 𝛽𝑖1 𝑇eff + 𝛽𝑖2 log g + 𝛽𝑖3 𝑅∗/𝑅� + (14)
𝛽𝑖4 𝑘 + 𝛽𝑖5 𝛼 + 𝛽𝑖6 𝛿 + 𝑧 for 𝑖 = 1, . . . , 𝑝

where 𝑧 represents the measurement errors. Each row of𝑌 represents
an observation of each of the 𝑝 measured response variable. Addi-
tional assumptions in the model are that the expectation of𝑌 is given
by 𝐸 (𝑌 ) = 𝑋𝐵 or 𝐸 (𝑍) = 0, and the covariance matrix of the vectors
in the rows of𝑌 is Σ, that is, the columns in𝑌 can be correlated. Also,
there is an assumption of normality about the response variables that
allows to perform the hypothesis testing in regression.
For our problem, the dependent variables are �̂�0, 𝛿1, 𝛿2 and 𝛾, and

the independent variables are 𝑇eff , log g, 𝑅∗/𝑅� , 𝑘 , 𝛼 and 𝛿. The
database has 𝑛 = 141 067 records.
A data transformation is necessary to obtain a good fit of the linear

model. Thus, a Box-Cox transformation (Seber & Lee 2012) is ap-
plied to each dependent variable. This application is performed with
the public domain softwareRCore Team (2013). The transformations
are: �̂�0 → �̂�0.270 , 𝛿1 → (𝛿1 + 1)5.3, 𝛿2 → 𝛿0.452 , 𝛾 → (𝛾 + 1)−3.56.
Finally, the estimated parameters are:

�̂�0.270 = −4.548 − 1.890 × 10−4 𝑇eff + (15)

4.393 log g + 3.026 × 10−2𝑅∗/𝑅� −
4.802 × 10−3 𝑘 + 3.781𝛼 − 3.212 𝛿,

(𝛿1 + 1)5.3 = −4.623 − 3.743 × 10−4 𝑇eff + (16)
1.489 × 101 log g + 1.148 × 10−1𝑅∗/𝑅� +
2.415 𝑘 + 9.553 × 101 𝛼 − 1.320 × 102 𝛿,

𝛿0.452 = 5.359 + 8.262 × 10−5 𝑇eff − (17)

1.327 log g − 8.327 × 10−3𝑅∗/𝑅� +
2.181 × 10−1 𝑘 + 9.618 × 10−1 𝛼 − 2.296 𝛿

and

(𝛾 + 1)−3.56 = −1.031 + 7.254 × 10−6 𝑇eff + (18)
2.994 × 10−1 log g + 3.097 × 10−3𝑅∗/𝑅� +
1.836 × 10−1 𝑘 − 4.828 × 10−1 𝛼 + 1.254 𝛿,

with 𝑅2 values (proportion of variability of the dependent variable

MNRAS 000, 1–8 (2021)
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Table 2. Coefficient of determination (𝑅2) of the estimated models.

Model 𝑅2

�̂�0.270 0.9443
(𝛿1 + 1)5.3 0.6016
𝛿0.452 0.3408
(𝛾 + 1)−3.56 0.7122

explained by the regression) given in Table 2. Therefore, the regres-
sion explains almost all the variability of �̂�0.270 , a large amount of the
variability of (𝛿1 + 1)5.3 and (𝛾 + 1)−3.56, and a minor proportion of
𝛿0.452 .
After fitting the MMR, the estimated values for each dependent

variable, �̂�0.270 , (𝛿1 +1)5.3, 𝛿0.452 , (𝛾 +1)−3.56, are obtained and later
transformed into �̂�0, 𝛿1, 𝛿2, and 𝛾 through their respective inverse
functions.
This new relationship for the line acceleration parameters (�̂�0, 𝛿1,

𝛿2 and 𝛾) as function of stellar and m-CAK line force parameters is
valid only for 𝛿-slow solutions, specifically for values of 𝛿 between
0.29 and 0.35. Therefore, it cannot be compared or used with others
parametrizations obtained using an approximation for the velocity
profile of fast solution (see e.g. Muĳres et al. 2012).

5 THE APPROXIMATIVE SOLUTION

Once we know the relationship (estimated model) between the line
acceleration parameters as a function of the stellar and m-CAK line-
force parameters, we can use Eq. 10 to obtain the velocity profile of
the 𝛿-slow wind in terms of the Lambert W-function.
We point out that considering the number of converged models for

some values of 𝛼 and 𝛿, we limit our approximation to values of 𝛼
between 0.45 and 0.55, and values of 𝛿 between 0.29 and 0.35. In
addition, we could expect a lower precision for values of log 𝑔 lower
than 1.65.
In the following of this section, we discuss the accuracy of the

terminal velocities and the derivation of mass-loss rates obtained
using this analytical treatment.

5.1 Terminal Velocity

To measure the goodness of fit of the estimated model, the terminal
velocity obtained by Hydwind is compared with our formulated
solution.
We consider two terminal velocity vectors: 𝑣H∞ defined as the

terminal velocity calculated with Hydwind (hereafter “true terminal
velocity") and 𝑣A∞ as the terminal velocity obtained from the our
solution at 𝑟 = 𝑟/𝑅∗ = 100, i.e.,

𝑣A∞ = 𝑎 �̂�A∞ = 𝑎
√︁
−𝑊−1 (𝑥(100)). (19)

The relative error of the estimated terminal velocity 𝑣A∞ with respect
to the true terminal velocity is calculated by:

Relative Error[%] = 100 × |𝑣H∞ − 𝑣A∞ |
𝑣H∞

, (20)

We obtain that the 0.90 quantile of the distribution of the relative
error are below 21%, and the 0.95 quantile of them are below 27%
(𝑞0.95 = 27.32).

5.2 Mass-loss Rate

Although our solution is developed to obtain a wind velocity profile,
we can derive a recipe to obtain a mass-loss rate. This recipe is based
on the m-CAK theory, specifically the work of Curé (2004), where
the velocity profile is described by our proposed solution (Eq. 10).
The full procedure is explained in Appendix A.
Then, similar to the procedure performed for the terminal velocity,

we measure the goodness of fit of the estimated mass loss rates of the
models by comparing the values (vector) calculated with Hydwind,
¤𝑀H, and the ones obtained with our solution, ¤𝑀A.
The relative error of the estimated mass-loss rate ¤𝑀A with respect

to the true mass-loss rate ¤𝑀H was calculated analogously to the
velocity error (Eq. 20). In comparison with the terminal velocities,
the mass-loss rates have slightly higher relative errors. We observe
that most of the data are below ∼ 63%. The 0.90 quantile of the
distribution of the relative error is below 39% and the 0.95 quantile
is about 46% (𝑞0.95 = 46.40).
Finally, the recipe for the calculation of the estimated mass-loss

rate as a function of stellar and m-CAK line-force parameters (𝑇eff ,
log 𝑔, 𝑅∗/𝑅� , 𝑘 , 𝛼 and 𝛿) is the following:

(i) Compute �̂�0, 𝛿1, 𝛿2 and 𝛾 from Eqs. 15 through 18, calculating
their respective inverse functions.
(ii) Calculate 𝑣(𝑟) from the analytical expression given in Eq. 10.
(iii) Obtain ¤𝑀A using 𝑣(𝑟) from (ii) and its gradient in them-CAK

theory (see Appendix A).

6 DISCUSSION AND CONCLUSIONS

In the frame of the 𝛿-slow wind regime, we have proposed a new ap-
proximate expression for the line force based on the MV08 method-
ology. This new expression is a pure function of the radial coordinate
and depends on the following parameters: �̂�0, 𝛿1, 𝛿2, and 𝛾. With
this line-force we derived an analytical expressions for the velocity
profile, terminal velocity and a recipe for mass-loss rate (based on
m-CAK theory and our velocity approximation). Furthermore, after
generating a grid of hydrodynamic models, we apply a multivari-
ate multiple regression to obtain a relationship among these new
line-force parameters with the stellar (𝑇eff , log 𝑔, and 𝑅∗/𝑅�) and
m-CAK line-force parameters (𝛼, 𝑘 , and 𝛿).
The m-CAK line force parameters should be in principle self-

consistently calculated coupling the hydrodynamics with the contri-
bution to the line-acceleration from hundreds of thousand spectral
lines (Lattimer & Cranmer 2021; Gormaz-Matamala et al. 2019;
Pauldrach 2003, and references therein). This type of calculations
has not been performed for the 𝛿-slow regime, so far. Nevertheless,
based on preliminary line-profile fittings, using the 𝛿-slow solution,
Cidale et al. (2017) found that the value of 𝛼 is in the same range as
in the fast regime, while 𝑘 is a factor 2-3 lower.
Notwithstanding we can perform a test of our solution using 𝛼

and 𝑘 parameters from the fast regime. To this purpose, we consider
stellar and wind parameters from the work of Curé et al. (2011),
where they explore the influence of ionization changes throughout
the wind in the velocity profile for theoretical models of A-type
supergiant stars. Thus, we select the models that match our grid
extension (dismissing the region where 𝛿 ≤ 0.28 and 𝛼 ≥ 0.57)
in order to compare it to our expression. In addition, with purpose
to test the full range of our work, we also consider the parameters
frommodels of Venero et al. (2016), where they perform a numerical
study of hydrodynamic solutions within the 𝛿-slow domain, based
on fundamental parameters of typical B supergiants stars.
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The stellar and wind parameters from the mentioned works are
listed in Table 3. This table also gives the values of the mass-loss rate
and terminal velocity obtained from our analytical solution together
with those values calculated from hydrodynamic results (Hydwind
code). All hydrodynamic models are calculated without stellar rota-
tion.
The accuracy of our approach is reflected in the low relative

errors for the mass-loss rate and terminal velocity obtained from
our solution and the hydrodynamical code. For the terminal
velocity we obtain a relative error mean and median of 15.6%
and 15%, respectively. In the case of the mass-loss rate a relative
errormean andmedian of 10.4% and 7.8% are obtained, respectively.

The use of approximate expressions that describe closely the hy-
drodynamics of stellar winds give the advantage of solving the radia-
tive transfer problem for moving media in an easy way. In particular,
this new expression might properly describe the winds of late B- and
A-type supergiants, without considering a 𝛽-law with high values (𝛽
& 3) that lack of any physical justification in the frame of m-CAK
fast solution.
The new expressions for the 𝛿-slow solutions together with the

previously derived expression for the fast solutions (Araya et al.
2014) provide an easy-to-use procedure to calculate m-CAK wind
hydrodynamics.
Furthermore, it is important to remark that these expressions that

represent the hydrodynamics of the wind can be also applied to stellar
evolution codes, where mass loss rates are necessary to estimate the
evolutionary phases of a star.
In future we plan to consider the stellar rotation into our expres-

sions and, in addition, compare the synthetic line profiles calculated
from wind velocity profiles using a hydrodynamic code and our so-
lutions.
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Table 3. Comparison of the wind parameters obtained via the new analytical solutions (𝑣A∞ , ¤𝑀A) with hydrodynamic calculations from Hydwind (𝑣H∞ , ¤𝑀H).
The models with prefix R and T are from Curé et al. (2011) and Venero et al. (2016), respectively.

Model 𝑇eff log 𝑔 𝑅∗ 𝑘 𝛼 𝛿 𝑣H∞ 𝑣A∞ ¤𝑀H ¤𝑀A

(kK) (dex) (𝑅�) (km s−1) (km s−1) (10−6 𝑀� yr−1) (10−6 𝑀� yr−1)

R01 11.0 2.0 70 0.37 0.49 0.29 210 188 0.0052 0.0048
R02 11.0 2.0 70 0.86 0.49 0.33 201 179 0.20 0.19
R05 11.0 2.0 60 0.86 0.49 0.34 185 148 0.15 0.16
R07 10.0 2.0 60 0.37 0.49 0.30 207 161 0.00051 0.00042
R08 10.0 2.0 60 0.86 0.49 0.33 187 155 0.017 0.017
R11 10.0 1.7 80 0.37 0.49 0.30 157 116 0.0092 0.0091
R12 10.0 1.7 80 0.86 0.49 0.34 152 106 0.52 0.61
R15 9.5 2.0 60 0.37 0.49 0.30 193 162 0.00015 0.00014
R16 9.5 2.0 60 0.86 0.49 0.33 136 157 0.0048 0.0047
R19 9.5 1.7 100 0.37 0.49 0.30 175 185 0.0038 0.0031
R20 9.5 1.7 100 0.86 0.49 0.34 168 178 0.15 0.11
R23 9.0 1.7 100 0.37 0.49 0.33 167 180 0.00025 0.00019
R24 9.0 1.7 100 0.86 0.49 0.33 171 179 0.047 0.037

T15a 15.0 2.11 52 0.32 0.50 0.30 200 158 0.90 0.92
T15b 15.0 2.11 52 0.32 0.50 0.33 191 150 0.84 0.92
T15c 15.0 2.11 52 0.32 0.50 0.35 186 144 0.78 1.00
T17a 17.0 2.24 56 0.34 0.50 0.30 236 202 6.1 6.2
T17b 17.0 2.24 56 0.34 0.50 0.33 225 192 7.5 8.0
T17c 17.0 2.24 56 0.34 0.50 0.35 220 186 9.0 10.0
T19a 19.0 2.50 40 0.32 0.50 0.30 270 233 2.8 2.7
T19b 19.0 2.50 40 0.32 0.50 0.33 257 222 3.3 3.3
T19c 19.0 2.50 40 0.32 0.50 0.35 251 216 3.8 4.1

the study of Curé (2004). From this work, we can obtain the location
of the singular point and the mass-loss rate using the singularity and
regularity conditions (expressed with a set of new variables). In our
case, the variables related to velocity are obtained from our proposed
solution. It is important to note that this singular point is the m-CAK
one and not the critical point that can be obtained from Eq. 9 that
corresponds to the sonic point.
The change of variables introduced are:

𝑢 =
−𝑅∗
𝑟

, �̂� =
𝑣

𝑎
, and �̂�′ =

𝑑�̂�

𝑑𝑢
. (A1)

Considering these new variables, the equation of motion reads:

𝐹 (𝑢, �̂�, �̂�′) ≡
(
1 − 1

�̂�2

)
�̂�
𝑑�̂�

𝑑𝑢
+ 𝐴 + 2

𝑢

−𝐶 ′ 𝐹𝐶 𝑔(𝑢) (�̂�)−𝛿
(
�̂�
𝑑�̂�

𝑑𝑢

)𝛼
= 0, (A2)

where

𝐴 =
𝐺 𝑀 (1 − Γ)

𝑎2𝑅∗
=

𝑣2esc
2𝑎2

, (A3)

𝐶 ′ = 𝐶

( ¤𝑀𝐷

2𝜋
10−11

𝑎 𝑅2∗

) 𝛿
(𝑎2𝑅∗) (𝛼−1) , (A4)

𝐶 = Γ𝐺𝑀𝑘

(
4𝜋

𝜎𝐸 𝑣𝑡ℎ ¤𝑀

)𝛼 (
𝐷 ¤𝑀
2𝜋

) 𝛿
, (A5)

and

𝑔(𝑢) =
(

𝑢2

1 −
√
1 − 𝑢2

) 𝛿
. (A6)

The constant 𝐷 is defined as:

𝐷 =
(1 + 𝑍He𝑌He)
(1 + 4𝑌He)

1
𝑚𝑝

, (A7)

where 𝑚p is the mass of the proton, 𝑌He is the helium abundance
relative to hydrogen (𝑛He/𝑛H) and 𝑍He is the number of free electrons
provided by helium.
To calculate the location of the singular point 𝑢𝑐 , and the eigen-

value, 𝐶 ′, it is necessary to satisfy simultaneously, the singularity
condition,

𝜕

𝜕�̂�′
𝐹 (𝑢, �̂�, �̂�′) = 0 , (A8)

and the regularity condition,

𝑑

𝑑𝑢
𝐹 (𝑢, �̂�, �̂�′) = 𝜕𝐹

𝜕𝑢
+ 𝜕𝐹

𝜕�̂�
�̂�′ = 0. (A9)

Now, utilizing the change of variables

𝑌 = �̂� �̂�′, and 𝑍 =
�̂�

�̂�′
, (A10)

Eqs. A2, A8 and A9 are expressed, respectively, as:(
1 − 1

𝑌𝑍

)
𝑌 + 𝐴 + 2

𝑢
− 𝐶 ′ 𝑓1 (𝑢, 𝑍)𝑔(𝑢)𝑍−𝛿/2𝑌 𝛼−𝛿/2 = 0, (A11)(

1 − 1
𝑌𝑍

)
𝑌 − 𝐶 ′ 𝑓2 (𝑢, 𝑍)𝑔(𝑢)𝑍−𝛿/2𝑌 𝛼−𝛿/2 = 0 (A12)(

1 + 1
𝑌𝑍

)
𝑌 − 2𝑍

𝑢2
− 𝐶 ′ 𝑓3 (𝑢, 𝑍)𝑔(𝑢)𝑍−𝛿/2𝑌 𝛼−𝛿/2 = 0, (A13)

See Curé (2004) for the definition of 𝑓1, 𝑓2 and 𝑓3. The set of
equations A11 to A13 are valid for all known solutions from m-CAK
theory.
Variables 𝑌 and 𝑍 are known from our proposed solution (Eq.
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10). Now from Eqs. A12 and A13 we can solve the singular point
location, 𝑢 = 𝑢𝑐 . Note that 𝑢𝑐 & 0.1 to assure a 𝛿-slow solution
(Curé et al. 2011).
Finally, the mass loss rate is solved from the eigenvalue, 𝐶 ′, when

the singular point is replaced in Eq. A2.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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