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ABSTRACT

Root architecture depends on the development of the main root and also on the number and density of
lateral roots. Most molecular knowledge about the development of lateral roots was acquired studying
primary roots, and it was implied that high order roots follow the same pattern. Recently, we informed
that AtHB23 is differentially regulated in primary and secondary roots. Here we show that LBD16, a target
of AtHB23, also is differentially regulated; it is expressed in the tip of secondary and tertiary roots but
not in primary ones. Moreover, the key hormone auxin exhibits a different distribution pattern in
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secondary and tertiary roots, according to the reporter DR5. Finally, we show that in Col 0 and Ler
ecotypes development of secondary and tertiary roots exhibits significant variations. Altogether, we can
conclude that different genetic programs govern secondary and tertiary roots development and such

processes are dependent on the Arabidopsis genotype.

Introduction

Plant adaptation to soil depends on root architecture and
the latter is defined by the length of the main root together
with the number and density of lateral roots (LRs). LRs
develop from de novo meristems dependent on auxin and
this process can be repeated several times in higher-order
LRs." Notably, most studies were focused on the formation
of secondary roots from primary roots and tacitly accepted
that the molecular mechanisms involved are subsequently
repeated.

Most knowledge about LR development has been acquired
in the model dicot Arabidopsis thaliana. This process involves
transcription factors (TFs) as main players, particularly those
from the Lateral organ Boundaries Domain (LBD) and Auxin
Response Factors (ARF) families, and auxin as the hormone
responsible for the integration of many internal and external
signals.

AtHB23 is a homeodomain-leucine zipper (HD-Zip) I TF’
expressed at the base of the secondary LR primordium and we
showed by Chromatin Immunoprecipitation assays (ChIP-
qPCR) that it directly controls the expression of the auxin
carrier LAX3 and the TF LBDI6." LBDI16 is a TF associated
with the acquisition of LR founder cell polarity and cell cycle
activation®” and it is directly modulated by ARF7
SUMOylation in response to water availability.®

Using mutant lines, it was revealed that tertiary roots do
not develop from secondary roots following the same mole-
cular pathways that the latter from the primary ones because

the expression of the HD-Zip I TF AtHB23 differs between
secondary and tertiary root development.*

Adding complexity to LR developmental process and tak-
ing into account that available mutant lines are not always on
the same genetic backgrounds, we considered this issue in our
studies. Severald evelopmental events may occur via different
pathways when comparing two Arabidopsis genotypes. For
example, petal development in kinl3A mutants significantly
differs between Columbia (Col 0) and Landsberg erecta (Ler)
genotypes.” A second example is the different response to
phosphate starvation'® and the high difference in the root
tip transcriptomes of such genotypes including mRNAs,
IncRNAs, and small RNAs."" Regarding particularly roots,
the size of these organs exhibits a natural variation between
Col 0 and Ler accessions when plants are subjected to osmotic
stress. In such conditions, the total LR number in Ler plants
was significantly higher than in Col 0 seedlings.'”

The above-mentioned observations make necessary to
revise several conclusions about root architecture determina-
tion derived only from the study of LR development from
primary roots and also consider the genotype in which studies
are carried out. This is because these processes are certainly
more complex than thought so far. In this manuscript, we
contribute with experimental evidence supporting that high
order LRs exhibit key-genes differential expression patterns
than primary roots. Furthermore, we reveal here that root
architecture and development follow different programs in
Col 0 and Ler ecotypes.
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Results and discussion

AtHB23 positively regulates auxin distribution in tertiary
roots

To further investigate LR development from main and sec-
ondary roots, we analyzed the expression of the auxin carriers
AUXI and LAXI and the peak of auxin response (shown by
the DR5 synthetic reporter) in tertiary roots using prAUXI:
GUS, prLAXI1:GUS, and prDR5:GUS transgenic plants. These
analyses were performed by GUS histochemistry'® both in the
WT background as well as in AtHB23-silenced plants (Figure
1). The expression of these carriers in secondary roots was
previously informed.'* The assessment of auxin-carrier pro-
moters (prAUXI1 and prLAXI) driving GUS expression in
tertiary roots was almost not affected when the plants were
crossed with amiR23 ones.* In contrast to previous reports of
what is observed in secondary roots,* histochemical analysis
of tertiary roots in the above-mentioned crosses indicated that
the auxin peak (revealed by DR5 activity) disappeared in
tertiary lateral roots primordia and tertiary lateral roots, sug-
gesting a key and different role for AtHB23 in secondary and
tertiary roots development.

LBD16 is expressed in the tip of secondary and tertiary
roots in contrast with primary roots

It was recently reported that AtHB23 directly regulates
LBDI6.* Transgenic plants carrying LBDI16 promoter driving
GUS were previously

the expression of the reporter

described,” obtained from the ABRC and analyzed by histo-
chemistry. LBD16 is a deeply characterized gene, including its
expression pattern as well as its role in the promotion of LR
initiation.>>">""” Using prLBD16:GUS transgenic plants, we
investigated LBDI16 expression in secondary and tertiary
roots. Surprisingly, we observed GUS staining in the cap as
well as in the vascular tissue of lateral root and tertiary lateral
roots whereas, and in agreement with the literature, it was not
expressed at all in the tip of main roots (Figure 2). This
experimental evidence further supports that secondary and
tertiary roots follow different molecular programs.

Lateral root development significantly differs between
Col 0 and Ler genotypes

We analyzed LR development from main and secondary roots in
Col 0 and Ler genotypes and we detected clear differences between
them. Main roots are longer in 8-day-old Ler plants than in Col 0
ones whereas secondary roots showed the opposite scenario, i.e.
longer in Col 0 than in Ler plants (Figure 3a). Eight-day-old Ler
seedlings exhibit more lateral root primordia (LRP) than their Col
0 counterparts whereas no significant differences were detected in
this parameter in 14-day-old plants (secondary to tertiary roots;
Figure 3b). Similarly, as LRP, the number of LR in the main root
was higher in Ler than in Col 0 genotype in 8-day-old seedlings
and the opposite was observed in secondary roots in 14-day-old
plants (Figure 3c). In agreement with these observations, total
more LR were developed from main roots in Ler than in Col 0
individuals whereas those from secondary roots were slightly less

Figure 1. DR5 reporter activity is repressed in the tertiary lateral roots of AtHB23-silenced plants. Left panel: (a-c) Histochemistry of GUS in single transgenic (prDR5:
GUS, prAUX1:GUS, and prLAX1:GUS) 15 day-old plants. Right panel: plants described in the left panel crossed with the amiR23-1 plants. Each picture illustrates a lateral
root of each genotype of different order and was carried out with N: 15 per genotype and repeated at least three times. Staining reactions were carried out

overnight.Black bars represent 50 um.
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Figure 2. LBD16 promoter is active in the root tip of secondary and tertiary lateral roots. GUS histochemistry of 15-day-old prLBD16:GUS roots grown in control
conditions. (a) Tip of the main root; (b) Tips of two secondary roots representing different developmental emergence stages; and (c) tip of the tertiary lateral root.
Each picture represents an illustration of each genotype and root order, and was carried out with N: 15 per genotype and repeated at least three times.
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Figure 3. Secondary and tertiary root development differs between Col 0 and Ler ecotypes. (a) Root length of the main root of 8-day-old plants and total lateral
secondary roots length of 14-day-old plants. (b) Lateral Root Primordium (LRP) in the main root of 8-day-old plants and in secondary roots of 14-day-old plants. (c)
Lateral root (LR) in the main root of 8-day-old plants and in the secondary root of 14-day-old plants. (d) Total Lateral Root (LRP + LR) in the main root of 8-day-old
plants and in secondary roots of 14-day-old plants. (e) Col 0 8-day-old seedlings. (f) Ler 8-day-old seedlings. (g) Col 14-day-old seedlings. (h) Ler 14-day-old seedlings.
The assays were repeated at least three times with N: 15/genotype. Error bars represent SEM. Asterisks indicate statistical significance determined using the Sidak-

Bonferroni method, with alpha = 5.0% (*P < 0.0001). Black bars represent 1 cm.

in the opposite sense (Figure 3d). These observations can be
directly visualized in the illustrative pictures of Col 0 and Ler 8-
and 14-day-old seedlings shown in Figure 3e,f.

Concluding remarks

It is well known that root architecture is essential for plant adapta-
tion to the soil and environment and there is a vast literature
showing that main and lateral roots development is modulated
by environmental factors. At the molecular level, architecture
plasticity follows complex mechanisms that involve many actors
tightly regulated at the transcriptional level. In the present work,
we showed another layer of complexity, i.e. LR development, both

in main and secondary roots, is differentially modulated in Col 0
and Ler genotypes. Moreover, we added experimental evidence
demonstrating that key molecular actors in Col0 behave differently
in the development of secondary and tertiary roots. Although
tertiary roots development remains poorly studied, it is not so
surprising that plant plasticity evolved for soil adaptation with
highly regulated programs subjected to natural variation.
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