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Abstract

Potassium pentacyanonitrosylchromate(I) dihydrate salt, K3[Cr(CN)5NO].2H2O, forms 

spontaneously from aqueous solution below about 15 ºC while the anhydrous salt is obtained 

above 20 ºC. The molecular structure of the dihydrate has been determined by X-ray diffraction, 

taking full advantage of modern data collection, advanced space group and structure solution and 

refinement. It crystallizes in the monoclinic space group Cc, is isomorphic to the Mn(I) analog, 

and shows the pseudo-symmetry of space super-group C2/c. The [Cr(CN)5NO]3- ion has an 

umbrella-like conformation with the equatorial Cr-CN bonds slightly bent away from the Cr-NO 

link. The crystallographic study fills a gap left in the literature on accurate structural data for 

alkaline and alkaline-earth salts of [M(CN)5NO]n- (M = V, Cr, Mn, Fe) series of coordination 

compounds. We also report here the solid-state vibration structure of the new compound, as 

probed by IR and Raman spectroscopy. Water mode assignments were assisted through 

deuterium enrichment. The thermal dehydration behavior complements structural and 

spectroscopic information on water molecules.
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1. Introduction

Interest in transitions metal nitrosyls, as a source of nitric oxide (NO), has been increased in the 

last two decades due to the discovery of the physiological properties of this molecule, which 

plays a fundamental role in the regulation of the cardiovascular system, in neuronal 

communication and in nonspecific defense against bacterial infection by macrophages, among 

other effects.[1] The nitroprusside anion [Fe(CN)5NO]2-, related structurally to the chromium(I) 

analog, has continued to be used in the treatment of myocardium infarct.[2] Nitric oxide could 

also be released by hydrolysis of certain transition-metal nitrosyls or by irradiation with light of 

an adequate wavelength.[3] The possibility of NO release depends strongly on the nature of the 

M-N-O bonds. In this regard, structural crystallography complemented with spectroscopic 

methods provides an adequate methodology to study chemical bonds, with the aim to predict the 

possibility of NO release. Potential pharmaceutical applications of the study compound will 

depend on a number of factors, including physicochemical, biological, and toxicity of ligands 

and metal.

The systematic correlation of (NO), (MN) and (MNO) vibration mode frequency with bond 

distances and angles (M-N-O, M-C-N) for the first row transition metal series [M(CN)5NO]n- 

from V to Fe could be useful to understand the nature of bonds, to compare the -backbonding 

with NO and CN acceptor groups and then to predict the chemical behavior expected for these 

anions with different reactivities. 

The family of transition metal nitrosyls [ML5NO]2- (M=Fe, Ru, Os; L=CN, NO2, OH, Cl) 

presents additional interest because some of them exhibit one or two very long-lived excited 

metastable states (NO linkage isomers) when they are irradiated at low temperature with light of 

wavelength lying in the visible or near-UV region. The color change exhibited upon generation 

of the new states has been proposed as the basis of an information storage system, since 

information can be written/read and erased reversibly using light of two different 

wavelengths.[4] All our attempts to generate metastable states in K3[Cr(CN)5NO] at 77 K, 

similar to those reported for the [M(CN)5NO]n- (M=Mn, Fe) [4, 5] series were not successful. 
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Furthermore, [Cr(CN)5NO]3- anion is of intrinsic interest because it is an example of a stable 

complex involving an unusual metal oxidation state (Cr(I), considering nitrosyl as NO+ or 

{CrNO}5 according to Enemark-Feltham notation [6]).

 

1.1 Historic background

[Cr(CN)5NO]-3 complex is a member of an iconic family in coordination chemistry, namely the 

pentacyanonitrosylmetallates, [M(CN)5NO]n-; M: V, Cr, Mn, Fe. However, the growth of good 

quality single crystals of alkaline and alkaline-earth salts of the chromium complex, adequate for 

precise structural X-ray diffraction, proved elusive. In fact, employing single-crystal X-ray 

diffraction data collected on rotation photographs, Vannenberg reported in 1966 the crystal 

structure of K3[Cr(CN)5NO] in the orthorhombic space group Pcn2.[7] The electron density 

maps showed the chromium ion surrounded by six ligands in an impossible regular octahedral 

arrangement. This was attributed to a high degree of disorder of the complex that prevented to 

distinguish between the nitrosyl and the cyanide ligands and therefore to obtain precise intra-

molecular bond distances and angles.[7] 

Enemark et al. [8] crystallized an ordered [Cr(CN)5NO]3- complex using the bulky 

counter-ion trisethylenediamminecobalt(III) in the[Co(C2H8N2)3] [Cr(CN)5NO].2H2O salt. They 

determined the monoclinic space group P21/c from systematic absences observed in the X-ray 

diffraction pattern of preliminary precession and Weissenberg photographs and then solved the 

structure by Patterson and Fourier methods from data collected on a Supper-Pace automated 

diffractometer, employing Weissenberg geometry and a scintillation detector. However, it was 

necessary to resort to a third data set collected on a Picker automatic diffractometer to achieve a 

successful refinement. The crystallographic agreement factor was R1 = 0.053 and Cr-ligand 

bond distance errors were in the 0.011-0.014 Å range, while C-N and N-O bond lengths were 

determined with errors from 0.012 to 0.013 Å. The authors could not locate the H-atoms in their 

difference Fourier map phased on the heavier atoms.[8]

Prompted by the successful crystallization of an hydrated potassium salt of [Cr(CN)5NO]3- 

at carefully controlled temperature and the availability of modern X-ray diffraction data 

collection and advanced space group and crystal structure determination and refinement, 

including the handling of twinning, we undertook the crystal structure determination of the salt 

with the aim, in part, to provide more precise bond distances and angles for the complex.



4

In this work, the infrared and Raman spectra of K3[Cr(CN)5NO].2H2O are also reported, 

including studies on deuterium-enriched samples. Thermal decomposition of the compound up to 

200 ºC was also studied by TGA-DTA under a nitrogen atmosphere.

2. Experimental 

2.1. Synthesis and crystallization

The title compound was prepared following a method reported in the literature.[9] Depending on 

the temperature of the saturated aqueous solution, two crystalline forms of the complex (easily 

recognized by its crystal habit) were found by the evaporation of the solvent. Below 15°C 

crystals of K3[Cr(CN)5NO].2H2O were grown as an elongated prism, while the anhydrous form 

crystallized as rhombic platelets above 20°C. Crystals of K3[Cr(CN)5NO].2H2O, adequate for 

structural X-ray diffraction and spectroscopic measurements, were grown at about 4 °C in a 

refrigerator.

Partially deuterated samples were prepared by dissolving anhydrous K3[Cr(CN)5NO] in the 

minimum volume of D2O below 10 ° C. The solid crystallized from the saturated solution by the 

D2O evaporation on a rotary evaporator at a constant temperature.

2.2. Sample preparation for the spectroscopic measurements

For the recording of the infrared spectra, the anhydrous salt was prepared following a general 

procedure and then dispersed in KBr granules. For the Raman spectra, the laser beam was 

focused on the finely divided powdered sample. Sample preparation of the dihydrate salt to be 

submitted both to infrared and Raman spectroscopy was carried out in a cold room (below10ºC) 

by grinding the crystals in Nujol or Halocarbon to avoid dehydration during the measurement. 

Of all the commercially available oils suitable for vibration spectroscopy, Nujol was chosen 

because it presents broad transparent windows. In fact, its absorption spectral regions cover 

3000-2800, 1500-1300 and 750-700 cm-1 range and only overlaps the water (HOD) bands at 

around 1400 cm-1. No other overlapping region was registered for neither the bands of the 

complex nor the ones of isotopically pure or partially deuterated crystallization water molecules. 
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For measurements around 1400 cm-1the samples were prepared as described above but now in 

Halocarbon oil, whose absorption bands appear below 1350 cm-1. For infrared measurements, the 

mull was spread between CsI windows. To avoid damaging the samples by heating during the 

scanning, the sample-containing window was carried close to the spectrometer inside a 

desiccator which was kept below 10°C. Then the CsI windows were quickly placed in the 

spectrometer compartment. The samples prepared in this way showed no damage for at least 10 

minutes after the end of the scanning.

To avoid heating the sample by the laser beam during the Raman experiments, a continuous 

stream of cooled nitrogen was passed through the sample holder such as to keep the temperature 

below 15ºC.

2.3. X-ray diffraction data 

The measurements were performed on an Oxford Xcalibur, Eos, Gemini CCD diffractometer 

employing graphite-monochromated MoKα ( = 0.71073 Å) radiation. To avoid dehydration, the 

single crystal sample was mounted embedded in an oil drop. X-ray diffraction intensities were 

collected ( scans with  and κ-offsets), integrated and scaled with CrysAlisPro [10] suite of 

programs. The unit cell parameters were obtained by least-squares refinement (based on the 

angular settings for all collected reflections with intensities larger than seven times the standard 

deviation of measurement errors) using CrysAlisPro. 

The structure was solved with the procedure described by convenience in Section 3.1 and 

implemented in SHELXT [11] and the corresponding non-H molecular model refined with 

anisotropic displacement parameters employing SHELXL.[12] At this stage, it turned out that 

the absolute structure could not be determined with certainty as the Flack parameter was equal to 

0.24(3). This parameter is the fractional contribution to the diffraction pattern due to the 

molecule racemic twin and for the correct enantiomeric crystal, it should be zero to within 

experimental accuracy.[13] Therefore, the structure was further refined as a racemic twin, giving 

an occupancy of 0.26(3) for the minor enantiomeric contributor.

The water H-atoms were located in a difference Fourier map and refined at their found positions 

with isotropic displacement parameters and O-H and H…H distances restrained to target values 
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of 0.86(1) and 1.36(1) Å. Crystal data, data collection procedure, and refinement results are 

summarized in Table 1. 

CCDC 1970978 (for K3[Cr(CN)5NO].2H2O) contains the supplementary crystallographic data 

for this paper. These data can be obtained free of charge from The Cambridge Crystallographic 

Data Centre.

2.4. Solid state infrared absorption and Raman dispersion spectra 

The infrared spectra were recorded on a Bruker 113v equipped with a mid-IR DTGS detector 

working at a resolution of 4 cm-1 in the 4000–250 cm-1 region. A satisfactory signal-to-noise ratio 

was obtained with 200 scans.

The Raman spectra covering the region between 3500 and 100 cm-1were obtained with a FRA 

106 accessory mounted on a Bruker IFS 66 FTIR instrument (500 scans and 4 cm-1 resolution), 

using the 1064 nm excitation line from a Nd–YAG laser working at a power of 150 mW. 

2.5. TGA and DTA thermal analysis 

TGA-DTA measurements of K3[Cr(CN)5NO].2H2O were performed with a Shimadzu TGA-50 

and DTA-50H units in the 15-200 ºC range, at a heating rate of 10 ºC/min and with a nitrogen 

flow of 50 ml/min. The DTA unit was calibrated using potassium nitrate and indium and the 

TGA with calcium oxalate monohydrate.

3. Results and discussion

3.1. Crystal structure

Recent developments of crystal space group and structure determination from X-ray 

diffraction do not relay exclusively on sometimes ambiguous extinctions and intensity statistics. 

In this context, it has been observed that frequently crystal structures can be solved more easily 

in the underlying triclinic space group P1 [14] and also that the correct space group can be 

determined from P1 structure factor phases,[15,16] rather than from atomic positions. In a 

particular application of these observations, Sheldrick implemented an integrated space-group 

and crystal-structure determination procedure [11] that combines Patterson with density 

modification and dual-space recycling methods. The algorithm only requires as input 
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information the Laue group and the identity of the atoms expected in the solid and can be 

succinctly described as follows: 

i) From the X-ray diffraction data extended to P1, the structure is solved in this space group by 

Patterson superposition and dual-space recycling methods to obtain optimal P1 phases. 

ii) The correct space group is then determined from the P1 phases as follows: Let us consider a 

candidate space group G of symmetry elements , where is the point group operation, ( , )m mP t mP

the associated translation vector, and the suffix m runs over the space group symmetry mt

elements. The ‘star’ of the reciprocal vector is defined by the symmetry operation: . If h m mh hP

is the displacement vector that refers to the P1 structure to the proper unit cell origin of the r

space group G, then the P1 phases  and  change to and ( ) h ( )m h '( ) ( ) 2 .    h h h r

. As in the space group G these phases are symmetry-related through '( ) ( ) 2 .m m m    h h h r

, there results that for the correct space group and origin shift, '( ) '( ) 2 .m m   h h h t

    (1)( ) ( ) 2 [ . ( ). ]m m mq        h h h t h h r

should be close to zero (module 2π). A measure of the departure from the ideal value of zero is 

provided by a phase error (α) which varies from 0 to 1 (for random phases). The P1 phases are 

employed in Equation (1) to find the candidate space groups G (compatible with the known Laue 

group) and the corresponding cell origin shifts .r

iii) The phases are then symmetry-averaged in the candidate space groups and then used to 

calculate improved electron density maps.

iv) A chemical formula is proposed for the solid-state compound based on the integrated electron 

density around the peaks of the maps and its assignment to the assumed atomic species in the 

crystal.

v) The selection of the correct space group and structure solution among the trials is made on the 

basis of diverse figures of merit, including the R1-factor, Rweak (= over the 10% of unique 2
calcE 

reflections with the smallest ) and the phase error (α), which should all be the smallest for the obsE

right solution.

The result of the above procedure applied to the X-ray diffraction data of K3[Cr(CN)5NO].2H2O 

crystal assuming the Laue group C2/m (C2h) and the presence in the solid of Cr, K, O, N and C 
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atomic species is shown in Table 2. From this table it can be appreciated that the procedure 

clearly selects the non centre-symmetric space group Cc as having the best indicators. It can also 

be noted that the program misassigned as carbon one N-atom and as oxygen three N-atoms, a 

minor problem that probably arises in part due to the closeness of their number of atomic 

electrons.

An ORTEP [17] plot of [Cr(CN)5NO]3- ion is shown in Fig. 1 and corresponding bond distances 

and angles within the complex are in Table 3 and short contacts around the potassium ions are in 

Table 4. The chromium(I) complex is isomorphic to the manganese(I) analog, namely 

K3[Mn(CN)5NO].2H2O, reported more than fifty years ago by Tullberg and Vannenberg [18, 19] 

employing X-ray diffraction data collected photographically with the Weissenberg method. From 

the observed extinctions, the authors determined C2/c and Cc as the possible space groups. 

Assuming first the centre-symmetric space group C2/c, they determined from a Patterson map 

that the manganese atom was located at a crystallographic inversion centre. Ruling out this 

possibility for [Mn(CN)5NO]3-complex, they finally adopted the space group Cc as the correct 

one.[18, 19] 
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Fig. 1. Drawing of potassium pentacyanonitrosylchromate(I) complex in K3[Cr(CN)5NO].2H2O 
salt showing the labeling of the atoms and their displacement ellipsoids at the 30 % probability 
level

The chromium(I) complex shows equatorial Cr-CN bond distances from 2.062(4) to 

2.072(4) Å [average(dispersion) = 2.067(4) Å] and a significantly longer axial Cr-CN length of 

2.100(4)Å. Cr-NO length is 1.699(3) Å and nitrosyl N-O bond length is equal to 1.209(4)Å. 

Cyanide C-N bond lengths are in the 1.145(7)-1.151(6)Å range [average(dispersion) = 1.148(2) 

Å].

The complex exhibits an approximate C4v symmetry and has an umbrella-like 

conformation with the ligands projected outwardly from the metal centre. The equatorial Cr-CN 

bonds are slightly bent away from the Cr-NO link. In fact ON-Cr-C(eq)N bond angles are larger 

than 90º [from 90.1(2) to 98.2(2)º] and equatorial trans NC-Cr-CN angles are significantly less 

than 180º [171.6(2) and 170.8(2)º], contrasting with the near straight angle of axial ON-Cr-

C(ax)N bond [equal to 177.8(2)º]. Cr-C-N angles are also close to straight ones [from 173.5(4) to 

178.1(5)º] and (Cr-N-O) = 174.3(3)º. Our structural results for the complex are in general 

agreement with early data for [Co(C2H8N2)3][Cr(CN)5NO].2H2O [8] and also with more recent 

determinations of [Cr(CN)5NO]3-salts involving even bulkier counter-ions.[20, 21]

Potassium ion K1 is in a distorted four-fold coordination with three cyanide N-atoms 

[K…N short contact distances from 2.801(4) to 2.999(5) Å] and one nitrosyl oxygen atom 

[d(K…O) = 2.829(4) Å]. Potassium ions K2 and K3 are in a very similar distorted nine-fold 

polyhedral coordination with three water oxygen atoms [K…Ow contact distances from 2.803(4) 

to 3.263(4) Å], five cyanide N-atoms [K…N distances in the range from 2.850(5) to 3.321(6) Å] 

and one nitrosyl oxygen [K…O distances of 3.021(3) Å (K2) and 3.185(3) Å (K3)]. This is not 

accidental as it turns out that the Cc crystal presents the higher pseudo-symmetry of space super-

group C2/c, which renders centre-symmetric the complex, inversion-related to each other the 

potassium K(2) and K(3) ions and the two water O1w and O2w oxygen atoms, and locate on a 

two-fold axis the potassium K(1) ion. The origin of the broken symmetry is mainly due to the 

slight differences between the Cr-NO and N-O bond distances and the corresponding metrics of 

cyanide ligand in the distorted octahedral [Cr(CN)5NO] complex. The correctness of space group 

Cc is further sustained by the slight asymmetry between the water molecules observed in the IR 
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spectra of normal and deuterium-enriched samples (see Sect. 3.2.1) and also in the DTA data 

(Sect. 3.3).

As shown in Figure 2, the K3[Cr(CN)5NO].2H2O monoclinic solid can be described as a 

layered structure parallel to the crystal (100) plane. It consist of slabs of [Cr(CN)5NO]3- anions 

and potassium K1 cations intercalated with sheets of K2 and K3 ions in a distorted honeycomb 

arrangement filled with the water molecules. Interestingly, the orthorhombic anhydrous salt [6] 

shows a similar layered structure where the sheets of potassium ions, now deprived of water, 

exhibit a distorted hexagonal arrangement. In fact, there is a close structural relationship 

between the crystals. Figure 1 includes a view of a slightly distorted orthorhombic unit cell of 

the anhydrous compound embedded in the monoclinic lattice. The transformation between unit 

cell vectors of the orthorhombic (o) and monoclinic (m) lattices is ; 

 and .
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Fig. 2. Crystal packing view down b of monoclinic K3[Cr(CN)5NO].2H2O salt, showing the 
[Cr(CN)5NO]3- and potassium (K1) layers and those formed by potassium K2 and K3 cations 
and the water molecules. The dashed lines joining neighboring potassium in these latter layers 
are a guide to the eyes. For clarity, H-bonds are not shown. In red line are drawn the distorted 
orthorhombic unit cell of the anhydrous salt embedded in the monoclinic lattice of the 
dihydrate.

The lattice is further stabilized by two medium strength and linear Ow-H…N bonds 

involving both water molecules and cyanide N-atoms as acceptors [H…N distances both equal of 

2.01(2) Å and Ow-H…N angles of 169(4) and 172(5)º]. These and other much weaker and bent 

H-bonds are detailed in Table 5.

3.2. Infrared and Raman spectra

Early infrared absorption spectra of the chromium(I) complex in its potassium salt, assumed as a 

monohydrate, were first reported by Griffith and co-workers. [9, 22] As part of an IR study on a 

series of transition metal complexes, Miki (1968) reported the frequency of (NO) stretching 

mode of normal and 15N isotopically-enriched nitrosyl in K3[Cr(CN)5NO].H2O salt.[23]

We shall present here the vibration structure of K3[Cr(CN)5NO].2H2O as probed by infrared 

absorption and Raman dispersion spectroscopy and compare it with the anhydrous analog, for 

which the Raman spectrum has not yet been yet reported.

3.2.1 Water vibrations 

Since, as expected, the water bands went undetected in the Raman spectra, the attention was 

focused on the infrared absorption. To differentiate the water bands that could be overlapped 

with some vibration modes of [Cr(CN)5NO]3-complex ion, the samples were partially enriched 

with deuterium (D). The comparison of the infrared spectra of K3[Cr(CN)5NO].2H2O with that 

of the anhydrous analog and the spectral shifts observed in the deuterated samples, allowed us to 

perform a reliable identification of bands and mode assignments. Fig. 3 shows the infrared 

spectra of K3[Cr(CN)5NO].2H2O with different (D/H)ratio, measured at about 10ºC in the 

absorption region of H2O, HDO, and D2O vibration modes. 

The spectrum A corresponds to the natural sample of the dihydrate, the spectrum B to the 

partially deuterated sample (60% D enriched) mulled in halocarbon, the spectrum C to a partially 

enriched sample (40% D) in Nujol mull and the spectrum E to the most deuterium-enriched 
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sample (70% D) in Nujol mull. It can be appreciated that, as expected, the intensity of deuterated 

bands grows with deuterium content hence helping band identification.

The bands at 3592 and 3392 cm-1 can easily be assigned to the water (OH) antisymmetric (3) 

and symmetric (1) stretching modes, respectively. Due to the partial enrichment with deuterium, 

the corresponding OD stretching modes are shifted to 2657 and 2502 cm-1, respectively.[24] 

Water bending (H2O) modes are commonly observed in the 1600-1700 cm-1 region as sharp 

bands of medium intensity.[24] In this region, the infrared spectra of K3[Cr(CN)5NO].2H2O 

show a wide and strong band composed of three features at 1658, 1646 and 1630 cm-1. Then, the 

water bending should be overlapped with the very strong (low frequency) (NO) mode. Upon 

enrichment with deuterium, bands at 1646 and 1630 cm-1 decrease their intensity (see Fig. 3) and 

therefore these bands are assigned to (H2O) (2) bending mode. Consequently, the remaining 

band at 1658 cm-1 should correspond to the (NO) stretching mode (see Sect. 3.2.2). The 

corresponding (HOD) bending vibrations usually appear at about 1420 cm-1.[24] These bands 

are only seen when the samples are dispersed in the halocarbon mull because Nujol oil shows 

strong absorption in the 1500-1300cm-1region. The weak bands observed in halocarbon at 1465, 

1425 and 1411 cm-1 are then assigned to (HOD) mode (see spectrum B in Fig. 3). The D2O 

bending bands are expected to be shift to even lower frequencies, at about 1200 cm-1 [24]. The 

bands at 1208 and 1197 cm-1, whose intensity increases with the deuterium content, are thus 

assigned to this vibration mode.[24, 25]

The very weak band at 2396 cm-1, whose intensity increased with the D-enrichment, is assigned 

to the first (D2O) overtone [2(D2O)].

Bands assignments for the water bands and partially deuterated samples proposed in Table 6 

compare favorably with those reported for similar systems: K3[Mn(CN)5NO].2H2O (same 

stoichiometry and crystal structure) [26] and Na2[Fe(CN)5NO].2H2O.[27]
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Fig. 3. Infrared spectra of K3[Cr(CN)5NO].2H2O in the water vibration regions with different 
deuterium (D) content. A) Normal sample in Nujol mull, B) 60% D-enriched in halocarbon mull 
(the region below 1250 cm-1 were suppressed o avoid confusion with the oil bands); C) 40% D-
enriched in Nujol mull E) 70% D-enriched in Nujol mull. All Nujol mull spectra in the 1510-
1350 cm-1 region were suppressed to avoid confusion with the oil bands. *Denotes (Cr-C) or 
(CrCN) vibrations.

Bands due to water librations are observed below 750 cm-1. Some of them are overlapped with 

modes of the anion, namely (Cr-N), (CrNO), (Cr-C) and (CrCN). Since the complex in the 

anhydrous sample only shows five sharp and well-defined bands in this region, the librations of 

water in the dihydrate were recognized through spectra comparison. Additional evidence of 

water libration modes in the spectra was found with the deuterium-enriched samples. In fact, 

libration bands undergo intensity reduction and slight shifts towards high or low frequencies 

upon deuterium exchange. All these effects were considered in the assignment of water bands 

gathered in Table 6.

3.2.2 Vibrational modes of the complex: The infrared and Raman spectra of K3[Cr(CN)5NO] and 

K3[Cr(CN)5NO].2H2O are compared in Fig. 4. Bands details are shown in the expanded spectra 

of Fig. 5. Bands assignments are in Table 7. 
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Fig. 4. Infrared and Raman spectra of K3[Cr(CN)5NO] (red) and K3[Cr(CN)5NO].2H2O (blue) 

below 15 ºC. * denotes Nujol bands.

3.2.3 CN stretching modes: The CN stretching modes can easily be identified in the 2200-2000 

cm-1 region of both the infrared and Raman spectra since they give rise to sharp and medium-

intensity bands.[28] Their relative positions in the spectra are the result of electron flow between 

the cyanide groups and the metal; in fact, CN acts as -donator and -acceptor. -donation to the 

metal rises the CN stretching frequency while the acceptance of electrons via -interaction 

decreases it ( back-bonding). Since Cr(I) ion is electron-rich the CN frequency is expected to be 

rather low in [Cr(CN)5NO]3-. For the above reasons, the main band at 2125 cm-1 and a shoulder 

at 2119 cm-1 are assigned to the CN bands in the anhydrous complex and the bands at 2125, 2117 

and 2112 cm-1 to the dihydrate. The CN stretching mode in nitroprusside ion ([Fe(II)(CN)5NO]2-

), for comparison, is observed at higher frequencies (in the 2180-2130 cm-1 range), because the 

larger oxidation state of the iron(II) reduces the electron back-bonding flow to the CN ligands, in 

contrast to the behavior observed for the chromium(I) analog. The CN stretching band, which is 
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observed in the infrared spectra almost as a single band in the anhydrous compound, splits into 

three components in the dihydrate, probably due to the interactions of CN groups with K and 

water molecules detailed in the crystal structure section. 

Fig. 5. Infrared and Raman spectra of K3[Cr(CN)5NO] (red) and K3[Cr(CN)5NO].2H2O (blue) 
(measured below 15 ºC). For convenience, the intensity of Raman spectra below 1700 cm-1 was 
multiplied by 4 and 5 for the dihydrate and anhydrous complexes, respectively. For clarity, Nujol 
bands were suppressed.

3.2.4 NO stretching mode: The NO stretching mode gives rise in the 2000-1500 cm-1 spectral 
region to very strong and wide absorption bands in the infrared and very weak dispersion in 
Raman,[28] a behavior that helps its identification. The infrared bands at 1658 and 1643 cm-1 are 
respectively assigned to the (NO) mode of the dihydrate and anhydrous. This mode could not 
be detected in the Raman spectrum of either compound. NO mode was observed at a quite low 
frequency as a consequence of the- backbonding. Nitrosyl ligand is more sensitive than cyanide 
groups with regard to this backbonding effect. For comparison, (NO) mode is observed at 1945 
cm-1 in nitroprusside ion (sodium salt) and at 2008 cm-1 in K[IrCl5NO] at 77 K.[29] 
To illustrate this phenomenon, Fig. 6 compares the (NO) and (CN) stretching frequencies 
reported for the series of related anions: [M(CN)5NO]3- where M = V, Cr, Mn (at a formal 
oxidation state I). The (CN) frequencies remain constant but the (NO) considerably increases 
with the atomic number of transition metal. In this figure, it is also included the nitroprusside ion 
for which is reported one of the highest (NO) frequency (1945 cm-1, sodium salt) of all 
transition metal nitrosyls.[30]
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Fig. 6. Plot of (NO) (+) and (CN) () for the series of related ions: [MI(CN)5NO]3-. The values 
for [FeII(CN)5NO]2- ion (in the sodium salt) is also included for comparison.

3.2.5. Low-frequency spectral region: The anion skeletal modes along with the water libration 
and lattice modes appear in the 700-100 cm-1 region. The CrNO vibrations are observed in the 
600-650 cm-1range for [M(CN)5NO] (M: Cr, Mn, Fe) systems. The (CrNO) bending and 
(CrN) stretching band assignments are proposed by comparison with other [M(CN)5NO] (M: 
Mn, Fe) similar systems and with spectroscopic studies in 15N-enriched series of complexes 
[CrL5NO]n with L=CN, NH3.[23] The (CrCN) and (CrC) modes are observed at frequencies 
below 550 cm-1. Water libration bands that appeared in this region of the infrared spectra were 
identified by enrichment with deuterium (see Sect. 3.2.2) and by comparison with the spectra of 
the anhydrous analog (see Sect. 3.2.1). The CrC stretches and CrCN deformations are tentatively 
assigned by comparison with other similar systems and with assignments reported for the 
nitroprusside ion.[31]
 
3.3 Thermal measurements 
The first stage of K3[Cr(CN)5NO].2H2O thermal decomposition proceeds in the 25-70 ºC range 
(see Fig. 7), at lower temperatures than in other related complexes like Na2[Fe(CN)5NO].2H2O 
[32] and Ba3[Cr(CN)5NO]2.8H2O.[33] The DT curve shows two endothermic peaks (similar 
intensities) centered at 42 and 60 ºC. A total mass loss of 7.7% is registered in the corresponding 
TGcurve, which is compatible with the loss of two water molecules per formula (theoretical 
9.8%). The difference between the observed and expected mass loss can be attributed to partial 
water loss during sample manipulation at room temperature.
The results of thermal dehydration observed for K3[Cr(CN)5NO].2H2O is compatible with the X-
ray structural analysis (Sect. 3.1) and spectroscopic results (Sect. 3.2.1) indicating that the two 
water molecules are un-equivalent to each other.
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Fig. 7. TG (dashed red) and DT (solid blue) curves of K3[Cr(CN)5NO].2H2O in the 15-100 ºC 
temperature range (nitrogen atmosphere).

4. Conclusions 

After sixty years since it was first synthesized, by carefully controlling crystallization conditions 

and taking full advantage of modern X-ray diffraction data collection, advanced space group and 

structure solution and refinement, we report here precise bond distances and angles of 

[CrI(CN)5NO]3- complex in its hydrated potassium salt.

The complex crystallizes in space group Cc but shows pseudo-symmetry of super-group C2/c 

that renders the chromium ion on an impossible inversion centre and equivalent to each other 

two potassium ions and the water molecules. The chromium(I) complex is isomorphic to the 

manganese(I) analog, K3[Mn(CN)5NO].2H2O.

The vibration structure of K3[Cr(CN)5NO].2H2O was studied by IR and Raman spectroscopy and 

the assignment of modes assisted through comparison with the anhydrous complex and other 

first row transition metal analogs. Water vibration modes were detected in the IR spectra and 

fully identified and assigned employing deuterium-enriched samples.
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Despite the crystallographic pseudo-symmetry relating to the two water molecules, TGA- DTA 

analysis clearly shows that these molecules are lost upon heating in two close but distinct steps at 

relatively low temperatures.
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Table 1. 
Crystal data and structure refinement results for K3[Cr(CN)5NO].2H2O.
_________________________________________________________________
Empirical formula C5H4CrK3N6O3

Formula weight 365.44
Temperature 297(2) K
Wavelength 0.71073 Å
Crystal system Monoclinic
Space group Cc
Unit cell dimensions a = 17.8379(6) Å

b = 7.1589(2) Å .
c = 11.5293(4) Å
β = 118.005(5)°

Volume 1299.89(9) Å3

Z, density (calculated) 4, 1.867 Mg/m3

Absorption coefficient 1.848 mm-1

F(000) 724
Crystal size 0.188 x 0.136 x 0.113 mm3

ϑ -range for data collection 3.126 to 28.801°.
Index ranges -23 ≤ h ≤ 23, -9 ≤ k ≤ 8, -12 ≤ l ≤ 15
Reflections collected 4981
Independent reflections 2380 [R(int) = 0.0214]
Observed reflections [I>2σ(I)] 2251
Completeness to ϑ = 25.242° 99.9 % 
Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 2380 / 8 / 180
Goodness-of-fit on F2 1.080
Final R indicesa [I>2σ(I)] R1 = 0.0274, wR2 = 0.0644
R indices (all data) R1 = 0.0299, wR2 = 0.0671
Absolute structure parameter 0.26(3)
Largest diff. peak and hole 0.234 and -0.537 e.Å-3
_________________________________________________________________
aR1=ΣFo-Fc/ΣFo, wR2=[Σw(Fo2-Fc2)2/Σw(Fo2)2]1/2
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Table 2. 
Candidate space groups with the best figures of merit obtained with SHELXT[10] from the 
centre-symmetric and two noncentre-symmetric monoclinic space subgroups with the Laue 
group C2/m (C2h) of K3[Cr(CN)5NO].2H2O. The table also includes the corresponding chemical 
formula derived from the integrated electron density around the peaks of the maps.

S.G. R1 R(weak) α Flack’s  x Formula
C2/c 0.148 0.187 0.073 C6N2O6K3Cr
Cc 0.089 0.027 0.008 0.27 C6N2O6K3Cr
C2 0.141 0.022 0.101 0.48 C6N2O6K3Cr

Table 3.
Bond lengths [Å] and angles [°] within the [Cr(CN)5NO]3- complex in K3[Cr(CN)5NO].2H2O.

Cr-N(1) 1.699(3)
Cr-C(2) 2.062(4)
Cr-C(5) 2.065(5)
Cr-C(4) 2.068(4)
Cr-C(6) 2.072(4)
Cr-C(3) 2.100(4)
N(1)-O(1) 1.209(4)
C(2)-N(2) 1.151(6)
C(3)-N(3) 1.147(5)
C(4)-N(4) 1.148(6)
C(5)-N(5) 1.148(6)
C(6)-N(6) 1.145(7)

N(1)-Cr-C(2) 90.1(2)
N(1)-Cr-C(5) 98.0(2)
C(2)-Cr-C(5) 89.3(2)
N(1)-Cr-C(4) 98.2(2)

C(2)-Cr-C(4) 171.6(2)
C(5)-Cr-C(4) 89.6(2)
N(1)-Cr-C(6) 91.2(2)
C(2)-Cr-C(6) 89.7(2)
C(5)-Cr-C(6) 170.8(2)
C(4)-Cr-C(6) 90.0(2)
N(1)-Cr-C(3) 177.8(2)
C(2)-Cr-C(3) 88.9(2)
C(5)-Cr-C(3) 83.9(2)
C(4)-Cr-C(3) 82.8(2)
C(6)-Cr-C(3) 86.9(2)
O(1)-N(1)-Cr 174.3(3)
N(2)-C(2)-Cr 174.5(4)
N(3)-C(3)-Cr 173.5(4)
N(4)-C(4)-Cr 176.2(4)
N(5)-C(5)-Cr 178.1(5)
N(6)-C(6)-Cr 177.6(4)

_____________________________________________________________________________________________
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Table 4. 
Short contacts[Å] around potassium ions in K3[Cr(CN)5NO].2H2O (up to 3.35Å) 
___________________________________________________________________________________________

K(1)-N(3) 2.801(4)
K(1)-O(1)#1 2.829(4)
K(1)-N(2)#2 2.978(5)
K(1)-N(4)#3 2.999(5)

K(2)-O(1W) 2.803(4)
K(2)-N(6)#4 2.850(5)
K(2)-O(2W)#5 2.876(4)
K(2)-O(1)#6 3.021(3)
K(2)-N(3)#7 3.031(4)
K(2)-N(4)#7 3.110(4)
K(2)-N(2)#8 3.124(5)
K(2)-O(2W)#7 3.261(4)
K(2)-N(5)#8 3.321(6)

K(3)-O(2W) 2.787(4)
K(3)-N(5)#9 2.873(5)
K(3)-O(1W)#10 2.884(4)
K(3)-N(3)#11 2.936(3)
K(3)-N(6)#2 3.159(5)
K(3)-N(4)#2 3.171(5)
K(3)-O(1)#12 3.185(3)
K(3)-N(2)#12 3.206(4)
K(3)-O(1W)#12 3.263(4)

_____________________________________________________________________________________________
Symmetry transformations used to generate equivalent atoms: 
(#1)  x, -y+1, z-1/2; (#2) x, y+1, z; (#3) x, -y+2, z-1/2; (#4) x-1/2, -y-1/2, z-1/2; (#5) x-1/2, y-3/2, z-1;    
(#6) x, -y, z-1/2; (#7) x-1/2, -y+1/2, z-1/2; (#8) x, y-1, z; (#9) x+1/2, -y+5/2, z+1/2; (#10) x+1/2, y+3/2, z+1; 
(#11) x, -y+2, z+1/2; (#12) x+1/2, -y+3/2, z+1/2.  

Table 5. 
Hydrogen bond distances [Å] and angles [°] for K3[Cr(CN)5NO].2H2O.
____________________________________________________________________________
D-H...A d(D-H) d(H...A) d(D...A) (DHA)
____________________________________________________________________________
O(2W)-H(2A)...N(4) 0.85(1) 2.01(2) 2.851(5) 169(4)
O(1W)-H(1A)...N(2) 0.86(1) 2.01(2) 2.870(5) 172(5)
O(1W)-H(1B)...N(6)#1 0.86(1) 2.69(4) 3.310(6) 130(4)
O(2W)-H(2B)...N(1)#2 0.86(1) 2.65(4) 3.101(5) 114(4)
O(2W)-H(2B)...N(5)#2 0.86(1) 2.61(3) 3.391(6) 152(4)
____________________________________________________________________________

Symmetry transformations used to generate equivalent atoms: (#1) x-1/2, -y+1/2, z-1/2; 

(#2) x+1/2, -y+3/2, z+1/2. 
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Table 6. 
Infrared frequencies (cm-1) for water and partially deuterated samples for polycrystalline 
K3[Cr(CN)5NO].2H2O measured at 10ºC. 

K3[Cr(CN)5NO].2H2O HOD D2O Water mode
3592 2656 as (3)

2641w isolated
3392 2500 sim(1)
3289
3255

2(H2O)

2396 2(D2O)
1646 1460

1425 1209 (2)
1630 1411 1197

661
490(sh)broad

455broad
414(sh) 415(sh) L(H2O)
387(sh) 388(sh)

355(sh)
324
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Table 7. 
Assignments of bands in the IR and Raman spectra of pentacyanonitrosylchromate(I) 
dihydrate and anhydrous.
K3[Cr(CN)5NO].2H2O K3[Cr(CN)5NO]
Infrared Raman Infrared Raman Assignment
3592 (OH)as.

3392 (OH)sim

3252 3265 2(NO)
3234

2125 2125 2127(h) 2127 (CN)ax

2117 2119(sh) 2120 2120(sh) (CN)eq

2112 (CN)eq

2094 2094
2077 2077 2078 2078 (13CN)
1658 1643 (NO)

1629(sh)
1646 (HOH)
1630
661 L(H2O
627 629 622 622 (CrN)
619 615 614 622 (CrNO)
490 L(H2O)
455 L(H2O)
438 440 431 430 (CrC)
414(h) L(H2O)

418 421 and
399 398 400 390 (CrCN)

358 357(h)
349 346 348 350
297 291

206
180(h)
163(h) 179
151

159
127 117
108 101
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