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Abstract

In this article we formally define and investigate the computational
complexity of the Definability Problem for open first-order formulas
(i.e., quantifier free first-order formulas) with equality. Given a logic
L, the L-Definability Problem for finite structures takes as input a
finite structure A and a target relation T over the domain of A, and
determines whether there is a formula of L whose interpretation in
A coincides with T . We show that the complexity of this problem
for open first-order formulas (open definability, for short) is coNP-
complete. We also investigate the parametric complexity of the prob-
lem, and prove that if the size and the arity of the target relation T

are taken as parameters then open definability is coW[1]-complete for
every vocabulary τ with at least one, at least binary, relation.

1 Introduction

Arguably, any attempt to provide a logic L with a formal semantics starts
with the definition of a function that, given a suitable structure A for L and
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a formula ϕ in L, returns the extension of ϕ in A. Usually, this extension
is a set of tuples built from elements in A. These extensions, also called
definable sets, are the elements that will be referred by the formulas of L
in a given structure, and in that sense, define the expressivity of L. The
definable sets of A are the only objects that L can see. For that reason,
definable sets are one of the central objects studied by Model Theory. It is
usually an interesting question to investigate, given a logic L, which are the
definable sets of L over a given structure A, or, more concretely, whether a
particular set of tuples is a definable set of L over A. This is what we call
the Definability Problem for L over A.

In this article we investigate the computational complexity of the defin-
ability problem for open first-order formulas –i.e., quantifier free first-order
formulas– with equality over a relational vocabulary (open-definability, for
short).

One of the main goals of Computational Logic is to understand the com-
putational complexity of different problems for different logics. Classically,
one of the most investigated inference problems is Satisfiability (SAT, for
short): given a formula ϕ from a given logic L decide whether there exists
a structure that makes ϕ true. In recent years, and motivated by concrete
applications, other reasoning problems have sparkled interest. A well known
example is the Model Checking Problem (MC, for short) used in software
verification to check that a given property P (expressed as a formula in the
verification language) holds in a given formal representation S of the system
(see, e.g., [7, 5]). From a more general perspective, MC can be defined as
follows: given a structure A, and a formula ϕ decide which is the extension
T of ϕ in A. From that perspective, the definability problem can be un-
derstood as the inverse problem of MC: given a structure A and a target
set T it asks whether there is a formula ϕ whose extension is T . A further
example of a reasoning task related to definability comes from a seemingly
unrelated field: computational linguistics, more specifically, in the subarea of
automated language generation called Generation of Referring Expressions
(GRE). The GRE problem can be intuitively understood as follows: given
a context C and an target object t in C, generate a grammatically correct
description (in some natural language) that represents t, differentiating it
from other objects in C, or report failure if such a description does not exist
(see [17] for a survey on GRE). Most of the work in this area is focused on
the content determination problem (i.e., finding the properties that singles
out the target object) and leaves the actual realization (i.e., expressing this
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content as a grammatically correct expression) to standard techniques. As it
is discussed in [2, 1] the content realization part of the GRE problem can be
understood as the task that, given a structure A that represents the context
C, and an object t in the domain of A returns a formula ϕ in a suitable logic
L whose extension in A coincides with t. Of course, this will be possible
only if t is definable for L over A.

The complexity of the definability problem for a number of logics has
already been investigated. Let FO be first-order logic with equality in a vo-
cabulary without constant symbols. The computational complexity of FO-
definability was already discussed in 1978 [18, 4], when a semantic charac-
terization of the problem, based on automorphisms, placed FO-definability
within coNP. Much more recently, in [3], a polynomial-time algorithm for
FO-definability was given, which uses calls to a graph-isomorphism subrou-
tine as an oracle. As a consequence, FO-definability is shown to be inside GI
(defined as the set of all languages that are polynomial-time Turing reducible
to the graph isomorphism problem). The authors also show that the prob-
lem is GI-hard and, hence, GI-complete. Interestingly, Willard showed in
[19], that the complexity of the definability problem for the fragment of FO
restricted to conjunctive queries (i.e., formulas of the form ∃x̄

∧

i Ci, where
each conjunct Ci is atomic) was coNEXPTIME-complete. The complexity
upper bound followed from a semantic characterization of CQ-definability
in terms of polymorphisms given in [16], while the lower bound is proved
by an encoding of a suitable tiling problem. The complexity of definability
has been investigated also for some modal languages: [2] shows that for the
basic modal logic K, the definability problem is tractable (i.e., in P); in [1]
the result is extended to some fragments of K known as EL and EL+. [12]
discusses the length of the shortest formula required to define a given target
set, proving that for L ∈ {K, EL, EL+}, the lower bound for the length of a
definition is exponential in the size of the input structure. More precisely, it
is shown that there are structures G1, G2, . . . such that for every i, the size
of Gi is linear in i but the size of the shortest definition for some element in
Gi is bounded from below by a function which is exponential on i.

The article is structured as follows. After introducing basic notations and
definitions in Section 2, we show that open-definability is coNP-complete in
Section 3. Section 4 discusses the parameterized complexity of the problem.
Finally, in Section 5 we show that the length of the shortest open formula
that might be required in a definition cannot be bounded by a polynomial:
in some cases, definitions by open formulas need to be exponentially long.
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2 Preliminaries

In this section we provide some basic definitions and fix notation. We assume
basic knowledge of first-order logic. For a detailed account see, e.g., [11].

We focus on definability by open first-order formulas in a purely rela-
tional first-order vocabulary, i.e., without function or constant symbols. For
a relation symbol R in a vocabulary τ , let ar(R) denote the arity of R. In
what follows, all vocabularies are assumed to be finite and purely relational.
We assume that the language contains variables from a countable, infinite
set VAR = {x1, x2, . . . , xn, . . .}. Variables from VAR are the only terms in
the language. Atomic formulas are either of the form vi = vj or R(v̄), where
vi, vj ∈ VAR, v̄ is a sequence of variables in VAR of length k and R is a rela-
tion symbol of arity k. Open formulas are Boolean combinations of atomic
formulas. We shall often write just formula instead of open formula. We
write ϕ(v1, . . . , vk) for an open formula ϕ whose variables are included in
{v1, . . . , vk}.

Let τ be a vocabulary. A τ -structure (or model) is a pair A = 〈A, ·A〉
where A is a non-empty set (the domain or universe), and ·A is an interpre-
tation function that assigns to each k-ary relation symbol R in τ a subset
RA of Ak. If A is a structure we write A for its domain and ·A for its
interpretation function. Given a formula ϕ(v1, . . . , vk), and a sequence of
elements ā = 〈a1, . . . , ak〉 ∈ Ak we write A |= ϕ[ā] if ϕ is true in A under an
assignment that maps vi to ai.

We say that a subset T ⊆ Ak is open-definable in A if there is an open
first-order formula ϕ(x1, . . . , xk) in the vocabulary of A such that

T = {ā ∈ Ak : A |= ϕ[ā]}.

In this article we study the following computational decision problem:

OpenDef
Instance: A finite relational structure A and a relation

T over the domain of A.
Question: Is T open-definable in A?

Let f : dom f ⊆ A → A be a function. Given S ⊆ Am, we say that f
preserves S if for all 〈s1, . . . , sm〉 ∈ S∩(dom f)m we have 〈fs1, . . . , fsm〉 ∈ S.
The function f is a subisomorphism (subiso for short) of A provided that f
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is injective, and both f and f−1 preserve RA for each R ∈ τ . (Note that a
subiso of A is exactly an isomorphism between two substructures of A.) We
denote the set of all subisomorphisms of A by subIsoA.

The following semantic characterization of open-definability is central to
our study.

Theorem 1 ([6, Thm 3.1]). Let A be a finite relational structure and T ⊆
Am. The following are equivalent:

1. T is open-definable in A.

2. T is preserved by all subisomorphisms γ of A.

3. T is preserved by all subisomorphisms γ of A with |dom γ| ≤ m.

Proof. The equivalence of (1) and (2) is proved in [6, Thm 3.1]. Certainly
(2) implies (3), so we show that (3) implies (2). Let γ be a subiso of A and
let 〈a1, . . . , am〉 ∈ T ∩ (dom γ)m. Note that the restriction γ|{a1,...,am} is a
subiso of A. Thus, γ(ā) = γ|{a1,...,am}(ā) ∈ T .

2.1 Encodings and Sizes

As is customary when considering complexity questions, the size of an object
is the length of a string over a finite alphabet encoding the object. We
assume fixed encodings for vocabularies, relations, structures and formulas,
and define the size of these objects according to these encodings. For a set
S, let |S| be the number of elements in S, and for a relational vocabulary τ ,
let |τ | be the number of relational symbols in τ .

We write size(ob) to denote the size of an object ob. Even though we do
not specify the encodings we assume the following equalities throughout this
note. Let τ be a relational vocabulary, A a τ -structure, T ⊆ Am and ϕ a
first-order formula.

• size(τ) = (|τ |+
∑

R∈τ ar(R)) log |τ |,1

• size(A) = size(τ) + (|A|+
∑

R∈τ ar(R)
∣

∣RA
∣

∣) log |A|,

• size(A, T ) = (size(A) +m |T |) log |A|,

• sizeτ (ϕ) = relcount(ϕ) log |τ |+ varcount(ϕ) log(var#(ϕ)).

1When an expression involving log x does note make sense, read it as max{log x, 1}.
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Here relcount(ϕ) [varcount(ϕ)] stands for the number of occurrences of rela-
tion symbols [variables] in ϕ, and var#(ϕ) is the number of different variables
occurring in ϕ. Since a formula ϕ is a τ -formula for every τ containing the
relation symbols in ϕ, the encoding of ϕ (and thus its size) depend on which
vocabulary we have in mind for ϕ. Another assumption we make on the
encodings is that determining whether ā ∈ RA can be computed in time
O(size(A)).

3 Classical Complexity of Open-Definability

In what follows a graph is a model G of the vocabulary τGRAPH = {E},
with E binary, and such that EG is symmetric and irreflexive. We provide a
reduction from the following problem to prove our hardness result.

InducedPath
Instance: A finite graph G and a positive integer

k.
Question: Does G have a path of length k as an

induced subgraph (i.e., as a submodel)?

InducedPath is known to be NP-complete (see, e.g., [15]).

Theorem 2. OpenDef is coNP-complete.

Proof. We first prove hardness. Fix an input graph G and a positive inte-
ger k. We may assume that G is disjoint with the set of integers. Sup-
pose first that k = 2l. Let G′ be the graph with universe G′ := G ∪
{−l, . . . ,−1, 1, . . . , l} and with

EG′

:= EG∪{〈a, b〉 ∈ {−l, . . . ,−1, 1, . . . , l}2 : |a− b| = 1}∪{〈−1, 1〉 , 〈1,−1〉}.

That is, G′ is the disjoint union of G and a path of length k. Define

T := {〈−l, . . . ,−1, 1, . . . , l〉 , 〈l, . . . , 1,−1, . . . ,−l〉}.

Now, observe that by Theorem 1 we have that OpenDef returns FALSE on
input (G′, T ) if and only if InducedPath returns TRUE on input (G, k). The
case where k is odd is analogous.
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Showing that OpenDef is in coNP is a straightforward application of
Theorem 1. Given a finite relational structure A and T ⊆ Ak, the fact
that OpenDef returns FALSE on input (A, T ) is witnessed by a bijection γ
between subsets of A satisfying conditions easily checked in poly-time with
respect to the size of (A, T ).

Given a relational signature τ let OpenDef[τ ] be the restriction of OpenDef
to input structures of signature τ . In view of the proof of Theorem 2 we have
the following.

Corollary 3. OpenDef[τGRAPH] is coNP-complete.

4 Parameterized Complexity of OpenDef

Parameterized complexity is a mathematical framework that allows for a more
fine-grained analysis of the computational costs of a problem than classical
complexity. In a parameterization of a (classical) problem we single out a
specific part of the input of the problem to try and understand how this
part affects the computational cost. For example, a parameterization of
propositional SAT (i.e., the satisfiability problem for Propositional Logic)
could be the number of variables in the input formula.

We begin with the basic definitions involved. There are slight discrep-
ancies for these definitions in the literature, but our results remain valid
regardless of which of the versions is used. We follow the account in [14]. As
is customary, (classical) decision problems are formalized as languages over
finite nonempty alphabets. Let Σ 6= ∅ be a finite alphabet.

• A parameterization of Σ∗ is a mapping κ : Σ∗ → N that is polynomial
time computable.

• A parameterized (or parametric) problem (over Σ) is a pair (Q, κ) con-
sisting of a set Q ⊆ Σ∗ of strings over Σ and a parameterization κ of
Σ∗.

We consider the following parameterization2 of OpenDef:

2This parameterized problem (and others appearing below) is presented in an informal
way, but it should be clear how to cast them in the form of our formal definition.
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p-OpenDef Instance: A finite relational structure A and T ⊆
Am.

Parameter : m |T |.
Question: Is T open-definable in A?

For a positive integer k, the k-th slice of a parameterized problem (Q, κ)
is the restriction of the problem to all instances x ∈ Σ∗ such that κ(x) = k.
Let p-OpenDefk denote the k-th slice of p-OpenDef.

Proposition 4. p-OpenDefk is computable in time k!n2kp(n) where n is the
size of the input and p(X) a polynomial.

Proof. Fix a finite relational structure A and T ⊆ Am. Let n be the size of
(A, T ) and k = m |T |. Given a positive integer l let

subIsol A := {γ ∈ subIsoA : |dom γ| = l}.

Note that Corollary 1 implies that T is open-definable in A if and only if
every γ ∈ (

⋃

l≤m subIsol A) preserves T . We show that the right-hand side
of this equivalence can be checked in polynomial time. Let

Il := {γ : there are B,B′ ⊆ A such that |B| = l and γ : B → B′ is bijective}.

Observe that

|Il| = l! ·

(

|A|

l

)2

,

since there are l! bijections between any two subsets of size l of A , and so

|Il| ≤ l! · |A|2l ≤ k! · n2k.

Now for each γ ∈ Il we have to check:

1. if γ ∈ subIsoA,

2. and in that case, if γ preserves T .

Clearly both these tasks can be carried out in time bounded by a polyno-
mial in n. If pl(n) is such a polynomial, then checking if every member of
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subIsol A preserves T takes at most |Il| · pl(n) steps. Thus, the computation
for OpenDefk on input (A, T ) can be done in at most

k!n2k

k
∑

l=1

pl(n)

steps.

A parameterized problem (Q, κ) over the alphabet Σ is fixed parameter
tractable (FPT) if there is an algorithm A together with a polynomial p(X)
and a computable function f : N → N such that A decides if x ∈ Q in time
f(κ(x))p(|x|) for a all x ∈ Σ∗. The class FPT of all fixed parameter tractable
problems plays the role P plays in classical complexity.

Even though each slice of p-OpenDef can be computed in polynomial
time, the bound given by Proposition 4 does not imply p-OpenDef ∈ FPT,
since the parameter appears as an exponent of the size of the input. In fact, as
we shall see below it is unlikely that p-OpenDef is FPT, since it is hard for the
class coW[1]; a class of parameterized problems believed to be strictly larger
than FPT. But before we can discuss hardness of parameterized problems
we need an adequate notion of reduction.

Definition 5. Let (Q, κ) and (Q′, κ′) be parameterized problems over the
alphabets Σ and Σ∗, respectively. An fpt-reduction from (Q, κ) to (Q′, κ′) is
a mapping R : Σ∗ → (Σ′)∗such that:

1. For all x ∈ Σ∗ we have (x ∈ Q ⇔ R(x) ∈ Q′).

2. There is a computable function f and a polynomial p(X) such that
R(x) is computable in time f(κ(x)) · p(x).

3. There is a computable function g : N → N such that κ(R(x)) ≤ g(κ(x))
for all x ∈ Σ∗.

If P and P ′ are parameterized problems, we write P ≤fpt P ′ if there is an
fpt-reduction from P to P ′, and write P ≡fpt P ′ if there are fpt-reductions
in both directions.

There are other notions of fpt-reduction, such as Turing fpt-reductions [14],
involving oracles. All fpt-reductions in this note satisfy Definition 5, and thus
we simply use the name fpt-reduction for them.
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To analyze the complexity of parametric problems which appear not to be
tractable, Downey and Fellows introduced the W hierarchy [8]. The classes

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P ]

in this hierarchy are closed under fpt-reductions and are believed to be all
different. They have many natural complete problems (see, e.g., [10, 14]).
One can think of this hierarchy as analogous to the polynomial hierarchy
in classical complexity. We only consider the classes W[1] and W[P ] in the
sequel. Their formal definitions are somewhat involved and not needed in our
arguments, so we do not include them here. (The interested reader can find
them in [14].) We do need the following characterization of W[P ], analogous
to the characterization of NP in terms of “certificates”.

Lemma 6 ([14, Lem 3.8]). A parameterized problem (Q, κ) over the alphabet
Σ is in W[P ] if and only if there are computable functions f, h : N → N, a
polynomial p(X), and a Y ⊆ Σ∗ × {0, 1}∗ such that:

1. For all (x, y) ∈ Σ∗×{0, 1}∗ it is decidable in time f(κ(x))p(|x|) whether
(x, y) ∈ Y .

2. For all (x, y) ∈ Σ∗ × {0, 1}∗, if (x, y) ∈ Y then |y| = h(κ(x)) log |x|.

3. For every x ∈ Σ∗ we have x ∈ Q iff there exists y ∈ {0, 1}∗ such that
(x, y) ∈ Y .

The complement (Q, κ)C of a parametric problem (Q, κ) is the parametric
problem (Q\Σ∗, κ). It follows directly from the definitions that P1 ≤

fpt P2 iff
P C

1 ≤fpt P C

2 . For a class K of parametric problems, let coK denote the class
off all parametric problems whose complement is in K.

Proposition 7. p-OpenDef ∈ coW[P ].

Proof. By Theorem 1 we know that T ⊆ Am fails to be open-definable in A if
and only if there is a bijection γ between subsets of A of cardinality at most
m, satisfying that γ is a subisomorphism of A and does not preserve T . Such
a bijection can be encoded as a binary string of length O(m2 log |A|), and we
can compute in time polynomial in size(A, T ) if γ is a subisomorphism of A
not preserving T . (Note that this is a refinement of the argument we used
in Theorem 2 to prove OpenDef ∈ coNP.)
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Next we establish a lower bound for the complexity of p-OpenDef by a
reduction from the following parameterized version of the Clique problem.

p-Clique
Instance: A finite graph G and a positive integer k.

Parameter : k.
Question: Does G have clique of size k?

It is proved in [9, Cor 3.2] that p-Clique is complete (under fpt-reductions)
for the class W[1].

Lemma 8. p-Clique ≤fpt p-OpenDefC; hence p-OpenDef is hard for coW[1].

Proof. The idea is the same as in the proof of Theorem 2. Given an inputG, k
for p-Clique the reduction computes the input G ⊔Kk, Tk for p-OpenDefC,
where G⊔Kk is the disjoint union of G with the complete graph on the ver-
tices {1, . . . , k}, and Tk = {(σ(1), . . . , σ(k)) : σ a permutation of {1, . . . , k}}.
It is easy to see that this is an fpt-reduction, and that G has a clique of size
k iff Tk is not open-definable in G⊔Kk. (Note that this is not a polynomial
reduction.)

In contrast with our analysis of the classical complexity of OpenDef, we
were not able to show that p-OpenDef is in coW[1]. However when we fix
the vocabulary we can establish a sharp upper bound. For a vocabulary τ let
p-OpenDef[τ ] denote the restriction of p-OpenDef to input structures with
vocabulary τ , and let p-OpenDefC[τ ] denote the complement of this problem.
Before we start on the upper bounds, we have the following consequence of
Theorem 8.

Corollary 9. For every vocabulary τ with at least one at least binary relation
we have p-Clique ≤fpt p-OpenDefC[τ ]; and hence p-OpenDef[τ ] is hard for
coW[1].

Proof. If τ has at least one at least binary relation, it is easy to see that

p-OpenDefC[τGRAPH] ≤
fpt p-OpenDefC[τ ].

From the proof of Lemma 8 it follows that p-Clique ≤fpt p-OpenDefC[τGRAPH].
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We turn now to establishing an upper bound for p-OpenDef[τ ]. Recall
that a sentence is existential if it has the form ∃v1 . . .∃vl α(v1, . . . , vl) where
α is open. Let Σ1[τ ] be the set of all existential sentences over a vocabulary
τ . For a given vocabulary τ , consider the following parameterized model
checking problem:

p-MC(Σ1[τ ]) Instance: A finite τ -structure A and an existen-
tial τ -sentence ϕ.

Parameter : sizeτ (ϕ).
Question: Does A satisfy ϕ?

Recall that sizeτ (ϕ) = relcount(ϕ) log |τ |+ varcount(ϕ) log(var#(ϕ)). It
is proved in [13] that p-MC(Σ1[τ ]) is in W[1] for all τ .

Theorem 10. For every vocabulary τ , p-OpenDefC[τ ] ≤fpt p-MC(Σ1[τ ]).
Thus, p-OpenDef[τ ] ∈ coW[1].

Proof. Fix a τ -structure A and T ⊆ Am. For each tuple ā = 〈a1, . . . , am〉 ∈
Am, and each R ∈ τ let ∆ā,R(x1, . . . , xm) be the the conjunction of the
following set of atomic formulas

{R(xi1 , . . . , xir) : (ai1 , . . . , air) ∈ RA}∪{¬R(xi1 , . . . , xir) : (ai1 , . . . , air) /∈ RA},

where r is the arity of R. Observe that

size(∆ā,R) = mr log |τ |+ rmr logm

≤ qr(m)

for a suitable polynomial qr(X). Also observe that ∆ā,R can be computed in
time O(mr size(A) + size(∆ā,R)), so there is a polynomial pr(X) such that
the computation of ∆ā,R can be done in at most pr(m) size(A) steps. Next,
define

∆ā(x1, . . . , xm) :=
∧

{∆ā,R(x1, . . . , xm) : R ∈ τ}.

Let ρ be the greatest among the arities of the relations in τ . Then, size(∆ā) ≤
|τ | pρ(m), and ∆ā is computable in time bounded by |τ | pρ(m) size(A). Note
that ∆ā characterizes the isomorphism type of ā in A, i.e., for all b̄ ∈ Am we
have

A � ∆ā[b1, . . . , bm] ⇐⇒ ā 7→ b̄ is a subisomorphism of A.

12



Now, let

∆T (x1, . . . , xm) :=
∨

{∆ā(x̄) : ā ∈ T},

and take ϕA,T as the sentence

∃x̄1 . . .∃x̄t+1

∧

{x̄i 6= x̄j : 1 ≤ i < j ≤ t+ 1} ∧
∧

{∆T (x̄i) : 1 ≤ i ≤ t + 1},

where t is the number of tuples in T . It is straightforward to check that there
are polynomials p(X) and q(X) such that:

(1) ϕA,T can be computed in time p(m |T |) size(A),

and

(2) size(ϕA,T ) ≤ q(m |T |).

Next, note that A � ∆T [b̄] if and only if b̄ has the same isomorphism type
as some tuple in T ; thus ϕA,T asserts that there are t + 1 distinct m-tuples
such that each one has the same isomorphism type as some tuple in T . So,
A � ϕA,T if and only if there are ā ∈ T and b̄ ∈ Am \ T such that ā 7→ b̄ is a
subisomorphism of A. By Theorem 1, this says that:

(3) A � ϕA,T iff T is not open-definable in A.

To conclude, observe that (1-3) guarantee that the transformationA, T  
A, ϕA,T is an fpt-reduction from p-OpenDefC[τ ] to p-MC(Σ1[τ ]). (Notably,
it is also a polynomial many-one reduction.)

It is worth to note that, by Corollary, Theorem 10 actually holds with
≡fpt in place of ≤fpt. That is,

p-OpenDefC[τ ] ≡fpt p-MC(Σ1[τ ])

for every vocabulary τ with at least one at least binary relation.
Combining the upper an lower bounds found above we obtain the main

result of this section.

Theorem 11. p-OpenDef[τ ] is coW[1]-complete for every vocabulary τ with
at least one at least binary relation. In particular, p-OpenDef[τGRAPH] is
coW[1]-complete.

Proof. Combine Corollary 9 and Theorem 10.
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5 The Length of Open Formulas

In previous sections we show that the definability problem for open formulas
is not tractable. We now discuss the size of formulas required in definitions.
In particular, we show that it is not possible to polynomially bound the
size of an open formula required in the definition of a relation in a given
structure. More formally, we construct a sequence {(An, Tn) : n ∈ N} whose
size grows polynomially in n, and such that the smallest definition of Tn in
An is exponentially large in n. This does not come as a surprise though;
a polynomial bound on the size of defining open formulas would entail that
OpenDef is in NP and, since we know OpenDef is coNP-complete (Theorem
2), we would have coNP ⊆ NP.

Theorem 12. For each n ≥ 3 there are a finite relational structure An and
an n2-ary relation Tn over An such that:

• size(An, Tn) = O(n3 log n),

• Tn is open-definable in An, and

• every open formula defining Tn in An has at least (n− 1)n literals.

Proof. Fix a natural number n ≥ 3 and let A be the union of four pairwise
disjoint n-element sets, say

A = {a1, . . . , an} ∪ {b1, . . . , bn} ∪ {c1, . . . , cn} ∪ {∗1, . . . , ∗n}.

Let M1 be the n× n matrix such that

• the first column of M1 is ā, and the rest of its entries are ∗1.

For each j ∈ {2, . . . , n} take Mj to be the n× n matrix such that

• the first column of Mj is b̄, the j-th column of Mj is c̄, and the rest of
its entries are ∗j .

Next, define

R := {ā, b̄, c̄} ∪ {rows of M1} ∪ {rows of M2} ∪ · · · ∪ {rows of Mn}.
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In what follows we identify n2-tuples with n × n matrices (in the obvious
way). We adjust the indexes of our variables accordingly, i.e., we shall write

ϕ(

x11 . . . x1n

. . .

xn1 . . . xnn

)

instead of ϕ(x1, . . . , xn2).
Let T = {M1}; we prove that An := (A,R) and Tn := T satisfy the

conditions of the theorem. First observe that, according to our definition of
size (see Section 2.1), we have

size(An, Tn) = (size(An) + n2) log 4n

= (1 + n) + (4n+ n(3 + n2) + n2) log 4n

= O(n3 log n)

Next, define

α(

x11 . . . x1n

. . .

xn1 . . . xnn

) := R(x11, . . . , xn1) ∧
n
∧

j=1

R(x1j , . . . , xnj).

Suppose M is an n×n matrix with entries in A such that An � α(M). Then
the first column of M , say m̄ = (m1, . . . , mn), and each of its rows must be in
R. As each mi must be the first coordinate of some tuple in R, we have that
m̄ ∈ {ā, b̄}. If m̄ = ā, then M = M1, since for each i ∈ {1, . . . , n} there is
exactly one tuple in R with first coordinate ai. On the other hand, if m̄ = b̄,
we have that for each i ∈ {1, . . . , n} the i-th row of M agrees with the i-th
row of Mji for some ji ∈ {2, . . . , n}.

Given j̄ ∈ {2, . . . , n}n let M j̄ be the n × n matrix whose i-th row is
the i-th row of Mji for i ∈ {1, . . . , n}. From the considerations in the last
paragraph it follows that

{M : An � α(M)} = {M1} ∪ {M j̄ : j̄ ∈ {2, . . . , n}n}.

For each j̄ ∈ {2, . . . , n}n define

λj̄(

x11 . . . x1n

. . .

xn1 . . . xnn

) := R(x1j1 , . . . , xnjn),

15



and observe that An � λj̄(M
j̄). So, if we take

β(

x11 . . . x1n

. . .

xn1 . . . xnn

) :=
∧

j̄∈{2,...,n}n

¬λj̄ ,

it follows that An � (α ∧ β)(M) ⇐⇒ M = M1. Thus T = {M1} is open-
definable in An.

To conclude, note that λj̄ is the only atomic formula that distinguishes

M1 from M j̄ . Thus, if ϕ is an open formula that defines T , then ¬λj̄ must
occur in ϕ for every j̄ ∈ {2, . . . , n}n.
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