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Abstract 
We consider a typical master equation describing thermal time-evolution. In 
parallel, we also consider a quasi static canonical description of the same 
problem. We are able to devise a way of numerically comparing these two 
treatments and concoct a distance-measure between them. In this way, one is 
in a position to know how far or close equilibrium and off-equilibrium can 
get. The first, rather surprising observation, is that our systems lose structural 
details as N grows. Also, the time-evolution of the distance between the two 
pertinent probability distributions is quite sensitive to the heating-cooling 
process. 
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1. Introduction 
1.1. Preliminaries 

Researchers often appeal to master equations (ME) to obtain an equation of mo-
tion for the reduced density operator. Or for the probability distribution (PD) of 
a subsystem of interest A in interaction with (a usually much larger) subsystem 
B (heath bath, for instance). The key issue is that our system of interest A is in a 
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situation of off-equilibrium. The literature on the subject is really enormous 
(Google Scholar returns lists around 30,000 links). Thus, we content ourselves 
with citing [1] and references therein. The issue at hand is how to extract rele-
vant information on system A from the pertinent von Neumann equation. Con-
sequently, our aim is to derive the time evolution of the PD for the entire system 
A + B, in a way which guarantees that normalization (amongst other properties) 
is preserved at any time t. The solution to this problem is found in the so-called 
master equation (ME) technique [1]. A popular, but not rigorous ME-approach 
can be used in the case of physical situations for which interacting systems A 
and B are known and well-defined so that one constructs the corresponding 
ME-equation of motion for the PD [1]. A beautiful instantiation of the 
ME-procedure is presented by Takada, Conradt, and Richet (TCR) in [2], for 
example, we will follow here without further ado. 

1.2. TCR Main Ideas 

TCR consider a two-level (1 and 2) model (system A) in contact with a reservoir 
B of temperature T. If the population of the excited state is computed, then that 
of the ground state becomes automatically fixed. The transition rate is the crucial 
parameter governing the degree of non-equilibrium. Denote by 1p  and 2p  the 
concomitant occupation probabilities of the lower and upper wells, respectively.  

TCR imagine a heating and cooling process in which the reservoir’s tempera-
ture is a function of time. T first grows, attains a maximum value, and then de-
creases. One can interpret this scenario as that of a particle moving in an asym-
metric double-well potential. Site 1 is the bottom of the first well, whose energy 
is 1E . Likewise, site 2 is the bottom of the second well, at a higher energy 2E . 
Then, 1E  is the potential energy barrier to be overcome between states 1 and 2. 
System A subsequently evolves with a concomitant energy decrease to 2E , 
leading to state 2. See Figure 1. TCR write the associated master equation as 

1 1 1 2 2 1 2d d ; 1,p t a p a p p p= − + + =                   (1) 

with 

[ ]exp , 1,2, Boltzmann s constant.i i b Ba E k T i k= − = = ’          (2) 

1.3. Present Goal 

Inspired by [2], we wish to address here a different problem. We will tackle a 
quantum many-body system of interacting fermions, advanced in [3], for which 
the interaction is ruled by an SU2 algebra. The system is heated and cooled as 
depicted in Figure 1, and we will deal with a master coupled system of N equa-
tions (not just two as in [2]). The thermal process will compete with the fer-
mion-fermion interaction’s effects. A canonical ensemble treatment of this mod-
el is reported in [4]. In parallel, for every different temperature T, we consider a 
fictitious coupled system-reservoir in thermal equilibrium at such T (quasi-static 
approximation (qsa). We will be able to devise, via Information Theory quantifiers, 
several notions of distance between the ‘‘master equation probability distribution’’  
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Figure 1. Time evolution of the heath-bath temperature 0 MT T T< <  between a time 
0 2t τ< < . 0T T=  for 2T τ< . 

 
(MEPD) and the ‘‘qsa’’ PD, which of course, will yield numerical values that 
measure how far or close the two treatments are. 

Epistemology tells us that classification is an essential feature of scientific en-
deavor [5]. For such a task we need numbers, and the distances that we are 
looking for provide such numbers, perhaps for the first time ever in the present 
context. 

1.4. Paper’s Organization 

Sections 2 and 3 describe appropriate details of our exactly solvable quantum 
many-body system, that will serve as a laboratory to test our ideas of thermal 
distance between off equilibrium and equilibrium distances (OEED). Section 4 
illustrates about the notion of statistical complexity. Section 6 is of the essence, 
as it presents our main ideas: that of a) a master equation and b) of quantifiers of 
OEED. The main results are exhibited and discussed in Section 7 and, finally, 
some conclusions are drawn in Section 8. 

2. M-Fermions’ Exactly Solvable Model 

The model advanced in Ref. [3] and further discussed in Ref. [4], considers M 
fermions distributed amongst (2M)-fold degenerate single-particle (sp) levels, 
separated by a sp energy gap  . Two quantum numbers µ  and p are attached 
to a generic single particle state. The first adopts the values 1µ = −  (lower level) 
and 1µ = +  (upper level). p, usually called quasi-spin or pseudo spin, singles 
out a state within the M-fold degeneracy. The couple ,p µ  can also be viewed 
as a ‘‘site’’ that is either occupied or empty. One has 
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2 ,M J=                                 (3) 

where J denotes an “angular momentum’’. One introduces now the quasi-spin 
operators 

†
, ,

ˆ ,p p
p

J C C+ + −= ∑                             (4) 

†
, ,

ˆ ,p p
p

J C C− − += ∑                             (5) 

†
, ,

,

ˆ ,z p p
p

J C Cµ µ
µ
µ= ∑                            (6) 

( )2 2 1ˆ ˆ ˆ ˆ ˆ ˆ ,
2zJ J J J J J+ − − += + +                        (7) 

the eigenvalues of 2Ĵ  being of the form ( )1J J + . The Hamiltonian of refer-
ence [3], a spin-flip one, reads 

( )1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,
2z sH J V J J J J J+ − − +

 = − + − 
 

                    (8) 

or, with sV V=   (equivalently, take 1= ), 

( )1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,
2zH J V J J J J J+ − − +

 = − + − 
 

                   (9) 

so that the unperturbed ground state (ugs) ( 0V = ) becomes, according to Equa-
tion (3), 

, , 2 ,zJ J J M= −                         (10) 

whose energy is  

 2.oE M= −                            (11) 

Doubly occupied p-sites are not allowed for. The Hamiltonian commutes with 
2Ĵ  and ˆ

zJ . This entails that the exact solution will belong to the J-multiplet of 
the unperturbed ground state. The multiplet’s states are denoted as ,J m , and 
one of them will minimize the energy. The associated m value of this state will 
depend upon the coupling strength V of the interaction. As we just mentioned, 
for the ugs one has 2m J M= − = − . Evidently, the interaction-operator 

( )ˆ ˆ ˆ ˆJ J J J+ − − ++  is a quasi-spin flipping operator. Thus, this operator becomes 
the more ‘‘effective’’ the more balanced the populations of the two-levels be-
come. 

T = 0-Phase Transitions 

As V grows from zero, the ugs energy oE  is not immediately affected. It conserves 
its value till a critical V-specific value is attained, of ( )1 1M − . At this juncture, 
the interacting gs suddenly turns out to be , 2 1J M− + . If V continues its 
growth, new phase transitions (PT) take place. The PT between zJ k= −  and 

1zJ k= − +  ensues at ( )1 2 1V k= − . The successive PT’s processes ends up 
when we attain either 0zJ =  ( 1critV =  for integer J), or 1 2zJ = −  ( 1 2critV =  
for odd J). Thus, at such juncture one has, independently of J [3]: 
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1 2 for half-integer or 1 for integer .crit critV J V J= =          (12) 

3. Model’s Treatment at Finite Temperatures T 

To repeat: double occupancy of a p-site is not permitted. Thus, the Hamiltonian 
matrix’ size is ( ) ( )2 1 2 1J J+ × + . The only way to get different J’s is to have 
double occupancy [4]. Following this last reference, the 2J N=  multiplet is 
the only one we need to consider. 

The free energy F and the partition function Z, with β  the inverse tempera-
ture, and 1Bk =  (Boltzmann) are given by 

( )( )ˆln ln exp .F T Z T Trace Hβ= − = − −               (13) 

In the Trace we sum over the zJ  quantum number m. As H commutes with 
both J and zJ  one finds 

( )exp ,
m J

m
m J

Z Eβ
=

=−

= −∑                      (14) 

where the energy mE  are 

( )( )21 .mE m V J J m J= − + − −                  (15) 

Our all important pertinent probabilities mP  are [4] 

( )exp
,m

m

E
P

Z
β−

=                       (16) 

for all , 1, , 1,m J J J J= − − + − . The entropy S is 

ln .
m J

m m
m J

S P P
=

=−

= − ∑                       (17) 

4. Meaning of the Statistical Complexity Measure 

Sometimes one wishes to grab hold of a system’s correlation structures just as 
entropy grasps disorder. Why? Because such correlations strongly influence the 
main features of the prevailing PD describing physical processes. It is obvious 
that the opposite extremes of perfect order and maximal randomness do not 
manifest notable structural correlations [6]. In between these two instances, a 
wide range of structural degrees (SD) usually exist, that are in turn reflected by 
the traits of the prevailing PD P. 

The authors of Ref. [6], invented a quite adequate functional [ ]F P  that can 
apprehend correlations just as Shannon’s entropy encapsulates randomness, 
which indeed constituted an important breakthrough. Their ideas were concep-
tualized via the definition of López-Ruiz, Mancini, and Calbet (LMC) [6] of what 
became called the statistical complexity C.  

LMC C individualized and quantified the respective contributions of entropy 
and structure. The last one was described by a quantity called disequilibrium D. 
Their concept of statistical complexity C was widely accepted (for a sample see, 
for instance, Refs. [6]-[27]). C vanishes in the two situations of perfect order and 
maximum disorder, being defined as the product of Shannon’s entropy S and the 
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disequilibrium D. More specifically, the latter is a measure in probability space 
of the distance measure the prevailing PD and the uniform PD, so that one 
writes 

,C SD=                             (18) 

with (see (17)), in our case, the uniform probabilities are ( ) ( )1 2 1uP J= +  for 
all m between J−  and J, so that, the LMC disequilibrium is 

( )( )2
,

m J
u

m
m J

D P P
=

=−

= −∑                       (19) 

while  

 ln .
m J

m m
m J

S P P
=

=−

= − ∑                         (20) 

For details, properties, and others applications of C, see Refs. [6]. 

5. Master Equations for N-Levels Systems 

We consider that our system is at the equilibrium temperature 0T  at 0t = . 
Then he system is heated and reaches a temperature MT  at t τ= . At this stage, 
the systems cools-off, reaching a temperature 0fT T=  at time 2t τ= . This is 
the temperature of the heat-reservoir at all later times.  

Inspired by the 2-level systems treatment of [2], we tackle now a system of N 
levels ( )0,1,2,il i =  , with level-energies 0 !,E E , etc., and selections rules that 
allow for only certain kinds of transitions. In the usual parlance of quantum 
many body theories, we permit only transitions from a state with k-particle- 
holes (p-h) to ones with either 1k +  or 1k −  p-h, so that 

( ) ( )1 1
d exp exp ,
d

n
n n n n

p p E p E
t

β β− −= − − −              (21) 

and we follow in this way till we face, for the last 3 steps, 

( ) ( )2
1 2 2 1

d exp exp ,
d
p p E p E
t

β β= − − −  

( ) ( )1
0 1 1 0

d exp exp ,
d
p p E p E
t

β β= − − −  

( ) ( )

( ) ( )

0
1 1

0 1 1 0

d exp exp
d

exp exp .

n n n n
p p E p E
t

p E p E

β β

β β

− − = − − − − − 

 − − − − 



 

The last equation guarantees normalization of probabilities.  
The initial conditions are ( ) ( )0 expi ip E kT Z= −  for all i. 
β  depends upon time, as described at the beginning of this Section and we 

work with  

( ) ( )1 ,t T tβ =  

and  

; all .jE j j=  
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If β  were constant, then the time-dependent probabilities ( )ip t  would re-
lax to stationary Gibbs-distributions.   

The numerical calculations consider the cases of 3,4,5,6N = , corresponding 
respectively to 1,3 2,2,5 2J =  for our model above. 

Distance Quantifiers 

We deal with the results of our master equation (ME) above, that are to be com-
pared to the quasi-static (st) results that arise out of considering always 
Boltzmann-Gibbs equilibrium-situations at the temperature ( )T t  for all t. As 
distance quantifiers we will employ  
• The probabilities’ differences 1) Global  

( ) ( ) ( )( )22ME st ME
P m m mmD P t P t P t = − ∑ , and 2) Individual  

( ) ( ) ( )( )22m ME st ME
P m m md P t P t P t = −  , 

• the entropy S,  
• the free energy F,  
• the mean energy U, and  
• the statistical complexity C. 

If we generically call Q to any of these quantifiers, the distances are of the 
form 

( )
( ) ( )

( )

2

2 ,ME st
Q

ME

Q t Q t
d t

Q t

 − =                     (22) 

( )20

0
d ,Q QD td t

τ
= ∫                         (23) 

where, obviously, the sub-index ME (or just ‘‘M’’) refers to master equation’s 
results, and the sub-index ‘‘st’’ (or just ‘‘s’’) to quasi-static ones. 

We expect the distances to be sensitive to  
1) Changes in the behavior of T with t and 
2) Structural system’s changes with the coupling constant V, 
3) The speed of the heating-up and cooling-off process, regulated by the pa-

rameter τ . The shorter τ , the faster the speed. 

6. Distances’ Results 

Note that, with reference to our model above, we have 2 1N J= + . Figure 2 re-
fers to 3N =  and the individual probabilities-distance m

PD  vs. t. It is clearly 
seen that there is much sensitivity to the details of the heating process. Figure 3 
refers also to 3N =  but with the global PD  vs. V. Here the ensuing picture is 
of a more complex nature. There is a system’s phase transition (PT) at 1V = , 
and our distance tends to decrease as we approach the PT. Thus we see that PD  
is sensitive to the internal dynamics of the system. This is no trivial issue. Why 
should the OE-equilibrium distance behave in such a manner? This is a new fact 
discovered here, as far as we know. But the picture becomes even more complex 
when we consider the speed of the heating process. If it is large enough, the dis-
tance OE-E grows again with V after the PT, but if it is low enough, it continues  
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Figure 2. The distance 

EOED  (see text) off equilibrium-equilibrium for different τ  

values.  
 

 
Figure 3. 3N = : the distance 

EOED  vs. the coupling constant V for several τ  values 

(see text). 
 
decreasing as V grows. We conclude that the distance quantifiers is sensitive 
both to the system’s internal dynamics and to the details of the heating process. 

Starting now with 4N =  we pass to watch in Figure 4 the performance with 
time of the other quantifiers, of thermal origin, namely S, F, U, and C. As com-
pared with the probabilities-distance, the thermal-distance (TD) is much more 
sensitive to the details of the heating process. When it finishes, at 2t τ= , the 
four different TD vanish. We pass now to Figure 5 so as to analyze, for 3N = ,  
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Figure 4. The four thermal distances vs. time for 4N =  (see text). 

 

 
Figure 5. 3N = : the four thermal distances vs. the coupling constant V for several τ  
values (see text). 
 
the behavior of the four thermal distances. We see that each of them behaves in a 
distinctive way, that forces individual consideration. 
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• S-distance: it diminishes as V grows from zero till reaching the phase transi-
tion (PT). After wards it grows again as V continues increasing. At the PT the 
distance is minimal. The after-PT grows is the more pronounced the speedier 
the heating process (HP). Even after it has finished, S seems to keep memory 
of it, since its growth differentiates amongst the different τ ’s.  

• F-distance: It senses the PT if the HT is fast. Otherwise, it does not. It clearly 
is able fo distinguish amongst the different τ ’s.  

• U-distance: tends to vanish as V grows. It is rather indifferent both to the τ
-value and to the PT.  

• C-distance: this is supposed to be the most sophisticated statistical of our four 
tools. Here it only tells us that the difference between the off-equilibrium 
complexity and the equilibrium one tend to become identical as the coupling 
constant grows. In other words, if the system is tightly bound, whether one 
heats it up or not becomes less and less relevant as the bonding augments, 
which sounds reasonable. 

Figure 6 is identical to Figure 5, except for the fact that N is larger and equals 
5. There are two, not just one, PTs now, both for 1V < , that do not seem to 
leave any trace in the graphs. The differences between what the different thermal 
indicators say is smaller here. All of them indicate that if the system is tightly 
bound, whether one heats it up or not becomes less and less relevant as the 
bonding augments, as we saw above for 3N = , but only in the C-case. Here, 
once again, the statistical complexity appears to be the mpst sensitive of the in-
dicators, as the C-distance is the only one of the four here used able to detect 
differences amongst the distinct τ  values. These conclusions are reinforced if  
 

 
Figure 6. 5N = : same details as in Figure 5, but for a larger N-value (see text). 
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Figure 7. 6N = : same details as in Figure 5, but for a larger N = 6-value (see text). 

 
we confront now the case 6N = . Emphasize that C is undoubtedly the most 
sensitive quantifier (Figure 7). 

7. Conclusions 

• The first, rather surprising observation, is that our systems lose structural 
details as N grows. 

• The time-evolution of the distance between the two pertinent probability 
distributions is quite sensitive to the heating-cooling process. 

• The shorter the heating-coolong period, the more sensitive the probabili-
ties-distance quantifier becomes to the internal systems’ structure, as re-
vealed by the ground-state phase transition. 

• The four thermal distances time-evolutions are also quite sensitive to the 
heating-cooling process. 

• The four thermal distances evolutions with a growing coupling constant are 
quite sensitive to the internal dynamics and to g the heating-cooling details 
for 3N = . 

• This sensitivity is gradually lost as N grows. 
• For 4N ≥ , the four thermal distances evolutions with a growing coupling 

constant rapidly vanish. The strongly interacting systems seem no to care 
whether it is heated or cooled. 

• This entails that, the larger the coupling constant V, the more rapidly equili-
brium is attained, as evidences by the diminution of the values of our thermal 
distance quantifiers. However, C is the most sensitive of the four indicators. 
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