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Abstract

Quantum theory can be formulated with certain non-Hermitian Hamiltoni-
ans. An anti-linear involution, denoted by PT, is a symmetry of such Hamil-
tonians. In the PT-symmetric regime the non-Hermitian Hamiltonian is re-
lated to a Hermitian one by a Hermitian similarity transformation. We ex-
tend the concept of non-Hermitian quantum theory to gauge-gravity duality.
Non-Hermiticity is introduced via boundary conditions in asymptotically AdS
spacetimes. At zero temperature the PT phase transition is identified as the
point at which the solutions cease to be real. Surprisingly at finite tempera-
ture real black hole solutions can be found well outside the quasi-Hermitian
regime. These backgrounds are however unstable to fluctuations which estab-
lishes the persistence of the holographic dual of the PT phase transition at
finite temperature.
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1 Introduction

One of the basic axioms of quantum mechanics is that the dynamics of a quantum system
is generated by a Hermitian Hamiltonian. It comes then as a surprise that meaningful
quantum mechanics can be formulated for certain non-Hermitian Hamiltonians, the so-
called PT-symmetric quantum mechanics [1, 2]. We quickly review the salient features
of this PT-symmetric quantum mechanics using a simple example [2]. It will serve as a
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guideline to construct a non-Hermitian holographic model. Consider the Hamiltonian of
a two state system

HQM =

(
E − iΓ g
g E + iΓ

)
. (1)

State A is unstable and decays with decay rate 2Γ whereas state B is also unstable but
suffers exponential growth with the same (inverse) rate. Both states can also transform
into each other with amplitude g. The interpretation of such Hamiltonians is that the
physical system under consideration is subject to exactly balanced gain and loss terms
with external sources and sinks. Since gain and loss is balanced one expects that it is
possible for the system to reach a time independent steady state. Indeed the eigenvalues
of the Hamiltonian (1)

ε± = E ±
√
g2 − Γ2 , (2)

are real as long as the interaction is stronger than the gain/loss terms, |g| > Γ. The
gain/loss terms are exchanged by time-reversal T , which in quantum mechanics is just
complex conjugation. They are also exchanged by the permutation of the subsystems A

and B represented by the matrix P =

(
0 1
1 0

)
. The combined action PT leaves the Hamil-

tonian invariant. The so called PT-symmetric regime is the one in which the eigenvalues
are real. For |g| < Γ the eigenvalues come in complex conjugate pairs; this is the PT
broken regime, and the transition between the two is known as PT phase transition [2].

Let us now discuss a slightly different aspect of the Hamiltonian (1). As pointed out
in [?, 3–5] a Hamiltonian in the PT-symmetric regime is related to a Hermitian one by a
similarity transformation. In our case we can start from the fact that every Hermitian
Hamiltonian acting on a two-state system can be written as

H2 = E 1 + ~g · ~σ . (3)

Every two Hamiltonians of this form can be transformed into each other by an SU(2) trans-
formation D(~α) = exp(i ~α2~σ) via H ′2 = D†H2D. For example we start with a Hamiltonian
with ~g = (g′, 0, 0). An SU(2) transformation generated by σ2/2 brings the Hamiltonian
into the form

H ′2 = E1 + g′σ1 cos(α)− g′ sin(α)σ3 . (4)

If we now analytically continue to imaginary values of the parameter α = iα̂ we find

H2,nh = E1 + g′σ1 cosh(α̂)− ig′ sinh(α̂)σ3 . (5)

This Hamiltonian is indeed of the form of (1) with g = g′ cosh(α̂) and Γ = g′ sinh(α̂).
The restriction g2 > Γ2 is automatically fulfilled. The unitary matrix D(α)−1 = D(α)†

becomes the Hermitian one η(α̂) = η(α̂)† upon the analytic continuation, and η−1(α̂) =
η(−α̂). In the regime of real eigenvalues the Hamiltonian (1) is quasi-Hermitian H2,nh =
η(α̂)−1H2η(α̂) [3]. Notice that H2 is invariant under conjugation with D(α) and a com-
pensating rotation of the couplings ~g → R(α)~g. Hence we can generate the non-Hermitian
Hamiltonian from the Hermitian one by transforming the couplings ~g = (g′, 0, 0) with

R̂(α̂) =

 cosh(α̂) 0 i sinh(α̂)
0 0 0

−i sinh(α̂) 0 cosh(α̂)

 . (6)

The case |g| = Γ is special. The Hamiltonian is no longer quasi-Hermitian but it can
be reached by taking the limit α̂ → ∞, g′ → 0 while keeping the product fixed. These
special values of the couplings are generically known as “exceptional points”.
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The guiding principle for constructing the holographic model will be to select an oper-
ator that transforms in a unitary representation of a continuous compact Lie group. We
also introduce classical couplings transforming in the conjugate representation. The trans-
formation to the non-Hermitian theory is implemented via a complexified group element
that acts as a similarity transformation on the Hamiltonian. A typical example in field
theory is the Dirac mass term Ψ̄Ψ and the axial mass term iΨ̄γ5Ψ. These transform into
each other by axial phase rotations on the Dirac spinor. Starting from the usual mass
term and doing a complexified axial transformation one generates the non-Hermitian op-
erator Ψ̄γ5Ψ [6–9]1 Once the quasi-Hermitian theory is obtained it can be extended to the
exceptional point and beyond.

2 Holography

Gravitational theories with a negative cosmological constant and asymptotically anti-de
Sitter boundary conditions allow for a dual interpretation in terms of strongly coupled
quantum systems [10]. This can be used to construct gravity models that are dual to in-
teresting quantum many body phenomena [11,12]. We will now construct the holographic
dual to a non-Hermitian quantum field theory along the same lines as outlined before.
The key is that in the holographic duality the asymptotic values of the fields encode the
couplings of the dual field theory.

In gauge-gravity duality every global symmetry of the dual field theory is promoted to
a gauge symmetry in the bulk. To copy our construction for non-Hermitian theories we
therefore need at least a U(1) gauge symmetry. In order to introduce couplings transform-
ing under this symmetry we also need a charged bulk field. We simply choose a complex
scalar field in the bulk with charge q under the U(1) symmetry. These are the minimal
ingredients to construct our non-Hermitian holographic model. Its action

S =

∫ √
−g dd+1x

[
R− 2Λ− |Dφ|2 −m2|φ|2 − v

2
|φ|4 − −1

4
FabF

ab

]
(7)

is that of the holographic superconductor [13]. The quartic potential is needed for the
model to have domain wall solutions interpolating between two AdS geometries.

For concreteness we will from now on choose d = 3 corresponding to the spacetime
dimensions of the dual field theory. Furthermore we set Λ = −d(d − 1)/(2L2). The
equations of motion are

Rab + gab

[
F 2

8
+
m2

2
|φ|2 +

v

4
|φ|4 +

1

2
|Dφ|2 − R

2
− 3

]
=

+
1

2
Fac F

c
b +

1

2

(
Daφ D̄bφ̄+Dbφ D̄aφ̄

)
, (8a)

1√
−g

∂a

(√
−g F ab

)
− 2q2Ab φ̄φ+ iq φ

←→
∂b φ̄ = 0 , (8b)

∂a
(√
−gD̄aφ̄

)
+ iq Aa D̄

aφ̄−m2φ̄− vφ̄|φ|2 = 0 , (8c)

∂a
(√
−gDaφ

)
− iq AaDaφ−m2φ− vφ|φ|2 = 0 , (8d)

where Da = ∂a − iqAa and φ
←→
∂b φ̄ = φ∂bφ̄− φ̄ ∂bφ. The unperturbed theory is defined by

choosing the asymptotics of the metric. We assume coordinates in which the metric takes

1In the full quantum theory the effects of the axial anomaly should also be accounted for. This is
however outside the scope of the present work.
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the form

ds2 =
1

z2

[
−u(z)e−χ(z)dt2 +

dz2

u(z)
+ (dx2)

]
, (9)

and demand that for small values of z

u(z) = 1 +O(z2) , χ(z) = 0 +O(z2) , (10)

so that it becomes AdS4 as z → 0, and accordingly the conformal boundary is z → 0.
To implement the non-Hermiticity we proceed in the following manner. First we choose

general boundary conditions φ ≈ exp(iα)M̃z∆ and φ̄ ∼ exp(−iα)M̃z∆ where d−∆ is the
conformal dimension of the dual operator determined by the AdS bulk mass through ∆ =
1
2(d−

√
d2 + 4m2L2), and for simplicity we take M̃ to be real. Henceforth we set the bulk

scalar mass to be m2 = − 2
L2 such that ∆ = 1 and set L = 1. For the numerical solutions we

choose v = 3/2 and q = 1. Notice that, unlike in the holographic superconductor [14], we
explicitly break the U(1) symmetry by the boundary conditions and we do not introduce
a chemical potential. Next we promote the theory to a non-Hermitian one by analytically

continuing α → iα̂. We also set eα̂ =
√

1+x
1−x , M̃ =

√
1− x2M and thus obtain the

non-Hermitian boundary conditions

φ(z) = (1− x)Mz +O(z2) ,

φ̄(z) = (1 + x)Mz +O(z2) . (11)

Notice that for x 6= 0, φ(z) and φ̄(z) are no longer complex conjugate to each other. Let
us work out how the PT symmetry acts in our holographic model. We have three fields,
the metric, the gauge field and the scalar field. Time reversal acts as t → −t and as
complex conjugation on the imaginary unit i → −i. In addition time reversal has an
explicit or external action on the fields as follows. For the gauge field it is simplest to
write the gauge field as one-form A = Aadx

a, similarly the metric can be studied via the
line element ds2 = gab dx

adxb. Time reversal acts as A → −A, ds2 → ds2 and φ ↔ φ̄.
Parity flips the sign of one spatial boundary coordinate (z, t, x1, x2) → (z, t,−x1, x2),
A → −A and ds2 → ds2. To define the action on the scalar field it is best to write
it in terms of real and imaginary parts φ = φR + iφI . Under parity the real part is
invariant, whereas the imaginary part is a pseudoscalar and changes sign under parity.
The boundary conditions mean that a non-Hermitian operator is sourced in the deformed
theory. One way of understanding this is to note that the operator sourced by φI is
an Hermitian operator. Formally, the non-Hermitian operator is sourced by analytically
continuing the non-normalizable mode of the real field φI to purey imaginary values. The
boundary condition can be written as φI(z)→ iφ̃I(z) = ixMz+O(z2). Since the external
action of T on φI is trivial it follows that the non-Hermitian source field φ̃I changes sign
under T. Furthermore φ̃I is a pseudoscalar under parity as is its Hermitian counterpart
φI . Since non-Hermitian operators are sourced only in the scalar field sector there is no
such non-trivial external action of T in the gauge field or metric sector. The Hamiltonian
of the dual theory is encoded in the boundary conditions. With the action of T and P
we find that the boundary conditions effectively transform with x→ −x under both time
reversal and parity. They are thus left invariant under the combined action of PT.

The Hamiltonian of the theory defined by the boundary conditions (11) is indeed PT-
invariant. However, it will turn out that the solutions are not PT-invariant when |x| > 1.
In particular, we will show that the energy of those solutions becomes complex for |x| > 1.
This allows us to identify |x| > 1 as the PT-broken regime.

For |x| < 1 our system is in the PT-symmetric phase. In this regime one can easily
prove that the solutions of our model are real. Note that the action (7) is invariant under

4



SciPost Physics Submission

global complexified U(1) transformations, φ → eα̂φ and φ̄ → e−α̂φ̄. This means that
automatically any bulk geometry with non-Hermitian boundary conditions will be the
same as an Hermitian one with boundary conditions

φ(z) =
√

1− x2Mz +O(z2) ,

φ̄(z) =
√

1− x2Mz +O(z2) . (12)

Equivalence of the non-Hermitian and Hermitian theories in the exactly PT-symmetric
regime has also been argued for in quantum theory in [15]. Finally |x| = 1 is the exceptional
point and we comment more on it below.

It is interesting to see explicitly what happens at the border of the quasi-Hermitian
regime in holography. To do so we look for solutions with non-Hermitian boundary values.
We take the ansatz

φ(z) = (1− x)ψ(z) , φ̄(z) = (1 + x)ψ(z) , (13)

so that the asymptotic behavior for this new fields reads ψ ∼ Mz + 〈O〉z2, where 〈O〉
corresponds to the vev of the dual operator. To find the background we take ψ(z) to be
real. Notice that the gauge symmetry in the bulk gives rise to the constraint φφ̄′−φ′φ̄ = 0
which is solved by our ansatz. Finally, the equations of motion (8) boil down to

ψ′′ +

(
u′

u
− 2

z
− χ′

2

)
ψ′ − (1− x2)

2v

z2u
ψ3 +

2

z2 u
ψ = 0 ,

u′

u
+ 3

1− u
z u

+ (1− x2)

[
ψ2

z u
− z

2
ψ′2 − v (1− x2)

2z u
ψ4

]
= 0 ,

χ′ − z(1− x2)ψ′2 = 0 . (14)

2.1 T = 0 solutions

We will now look for zero temperature solutions that correspond to domain wall geometries.
We integrate numerically the equations (14) from a regular solution in the deep IR at large
z [13]

u(z) = 1 +
1

6v
+ . . . , χ(z) = χ0 + . . . , (15)

ψ(z) =
1

√
v
√

1− x2
+ ψ1z

3+18v−
√
3
√

3+68v+300v2

2(1+6v) + . . . ,

which asymptotes to AdS4 with radius
√

6v/(1 + 6v) realizing a conformal IR fixed point
in the dual theory. χ0 and ψ1 are two free parameters we use to shoot towards the
desired boundary conditions in the UV. The resulting solutions are domain wall geometries
interpolating between two AdS4 spaces.

The IR boundary conditions (15) make clear that real solutions can only exist for
|x| ≤ 1. For |x| > 1 the ground state spontaneously breaks PT and, as we will see, the
dual bulk geometry becomes complex.

In figure 1 we show numerical solutions for several values of |x| < 1. Since M is the
only dimension-full scale, all solutions at fixed x with M 6= 0 are equivalent. Then we
can explore the space of solutions by simply fixing M = 1 and searching for domain walls
at different values of 0 ≤ x ≤ 1. We find that the domain wall shifts towards the IR
as x is increased, and in the limit x → 1 it moves all the way to infinity. Indeed, as is
clear from (14), at x = 1 the scalar decouples from the metric which becomes AdS4, while
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Figure 1: Zero temperature solutions: plot of the metric function u(z) for several values
of x. As x→ 1 the domain wall moves towards the IR (z →∞).

ψ = M z + 〈O〉 z2 is now an exact solution corresponding to a scalar with m2 = −2 in
AdS4. Finally, for |x| > 1 we find solutions that are complex along the bulk while still
meeting the real UV boundary condition ψ(z) ∼ Mz. In particular, for each value of
x we obtain a pair of solutions complex conjugate to each other and featuring a purely
imaginary vev 〈O〉. In figure 2 we plot the free energy of the T = 0 solutions around
x = 1. It can be read from the renormalized on-shell action as Ω = −Sos = u3/2, where
u3 is the subleading contribution of u(z) towards the boundary u = 1 +u3 z

3 +O(z4). We
leave the investigation of these complex solutions for future study but note that similar
complex solutions have been discussed recently in a different context [16,17].

0.80 0.85 0.90 0.95 1.00 1.05 1.10
x
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Figure 2: Free energy of the zero temperature solutions as a function of x. In the inset
we plot the imaginary part, which is nonzero for x > 1. We have set M = 1.

6



SciPost Physics Submission

2.2 T > 0 solutions

To determine what happens as we heat up the system we now study solutions with an
horizon at z = zh where the blackening factor u(zh) = 0 and

ψ(z) = ψh −
e−χh/2ψh(2 + 3(x2 − 1)ψ2

h)

4πz2hT
(zh − z) + · · · ,

χ(z) = χh +
e−χh(x2 − 1)ψ2

h(2 + 3(x2 − 1)ψ2
h)2

16π2z3hT
2

(zh − z) + · · · ,

u(z) = 4πeχh/2T (zh − z) + · · · , (16)

with

T =
e−χh/2

16π zh

[
12 + (1− x2)ψ2

h(4− 3(1− x2)ψ2
h)
]

(17)

the horizon temperature.
Integrating from the horizon and imposing the same UV boundary conditions we now

expect a family of solutions characterized by two dimensionless parameters M/T and x.
Interestingly, we find that at fixed M/T we are able to obtain real solutions for 0 ≤ x ≤ xc,
with xc > 1 and monotonically increasing with M/T . In figure 3 we plot the vev 〈O〉/M2

as a function of x for different values of M/T . Notice that for 1 < x < xc two different
branches of solutions exist. Finally, beyond xc we only find complex solutions (with real
values of M/T ).

T=0

T/M = 1/2

T/M = 2/3

T/M = 1

0.5 1.0 1.5 2.0
x

5

10

15

20

〈O〉/M 2

Figure 3: Finite temperature solutions: plot of the vev as a function of x for different
values of T/M . The T = 0 result is included for comparison.

How is it that we are finding a seemingly valid background of the theory in the PT-
broken regime 1 < x ≤ xc? As we will show next, these solutions have a tachyon in their
spectrum and are therefore unstable.

In order to assess the stability of our finite temperature solutions we now study the
quasinormal modes (QNM) of the system. More precisely we look for solutions to the
spacetime-dependent linearized equations of motion with ingoing boundary conditions
at the black hole horizon. These fluctuations can be organized in several decoupled
sectors. We focus on the one containing the following components of the gauge field
δA = e−iωt+ikx

1
(at(z)dt + a1(z)dx1) and a particular combination of the fluctuations of

the scalar fields defined through the constraint

e−iωt+ikx
1
(1− x) δφ̄(z) = e−iωt+ikx

1
(1 + x) δφ(z) . (18)

This constraint results from requiring that the Einstein’s equations of motion are satisfied
without turning on any new metric degree of freedom. Solving (18) for δφ when x > 0
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(analogously one solves for δφ̄ when x < 0), the equations of motion for δφ and δφ̄ become
equivalent, and we are left with the following three coupled differential equations

δφ̄′′ +

[
u′

u
− 1

2z
(4 + zχ′)

]
δφ̄′ + (x+ 1) q ω eχ

ψ

u2
at + (1 + x)

ψ

u
q k a1

−
[
ω2 e

χ

u2
− 1

uz2

(
m2 + (x2 − 1)

v

2
ψ2
)]
δφ̄ = 0 ,

a′′1 +

[
3

ru
− 3

r
− (x2 − 1)ψ2

ru
− (x2 − 1) v ψ4

4ru

]
a′1 +

[
(x2 − 1)q2ψ2

r2u
+
eχω2

u2

]
a1

− (x− 1)2k q δφ̄

r2u
+
eχk ω at
u2

= 0 .

ω z2a′t + e−χu k a′1 + 2q e−χ(1− x)u (ψδφ̄′ − ψ′δφ̄) = 0 (19)

We integrate these equations numerically, imposing ingoing boundary conditions at
the horizon

δφ̄(z) = (zh − z)−
iω

4πT [δφh +O(zh − z)] ,

at(z) = (zh − z)−
iω

4πT
+1

[
8πqe−χh/2(x− 1)Tψhδφh

z2
h(4πiT + ω)

+O(zh − z)
]
,

a1(z) = (zh − z)−
iω

4πT [a1h +O(zh − z)] , (20)

which corresponds to the computation of the retarded Green’s function. We will be inter-
ested in its lowest lying poles.

Since we do not know how to decouple these equations of motion (19) we will use the
determinant method to compute them [18].. This means that we will build a 3× 3 matrix
with the leading UV values for our perturbations for two linearly independent solutions.
From (20) we see that we only have two free parameters at the horizon. In order to make
our method work we include the pure gauge solution

at(z) = −ω , a1(z) = k , δφ̄(z) = q(1 + x)ψ(z) . (21)

The zeroes of the determinant of the matrix of solutions evaluated at the boundary cor-
respond to poles in the Green’s function in the mass basis and we can easily find them by
integrating (19) from the horizon towards the UV and using ω as our shooting parameter.
We also note that the system of equations degenerates to rank two in the case of zero
momentum k = 0.

In figure 4 we plot, for k = 0, the purely imaginary QNM that becomes the pseudo-
diffusive one at x = 0. This is the would-be hydrodynamic mode corresponding to charge
diffusion. Since the symmetry is broken by the parameter M the mode becomes dissipa-
tive (i.e. takes a negative imaginary value) even at k = 0. As x is increased the purely
imaginary gap decreases, vanishing at exactly x = 1. Recall that at x = 1 the scalar
decouples from the geometry and we recover the hydro diffusive mode. Indeed the scalar
field fluctuations decouple from the gauge field fluctuations in (19). These gauge field fluc-
tuations in AdS generically have a diffusive mode in the quasi-normal mode spectrum [19].
Another way to see this is by considering x . 1. Then one can perform the complexified
gauge transformation to go to the Hermitian theory with vanishing boundary conditions.
This implies that the profile for the scalar is φ(z) = 0 in the limit x → 1. Looking at
the corresponding pure gauge solutions one finds that one is simply left with at(z) = ω
signaling the presence of a pole precisely at ω = 0.

Crucially, for x > 1 the mode crosses into the upper half plane, thus becoming tachy-
onic and signaling the instability of those finite temperature solutions beyond the PT-
symmetric regime. One could ask next if this instability leads to a new background for
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x > 1. For the system at hand the only possibility would be that a background with a
spontaneous nonzero charge density (At(z) = −ρ z+ . . . ) exists for x > 1. Yet a thorough
numerical search has failed to produce such a background (even after relaxing the require-
ment that the fields be real). We thus believe that there is no endpoint for this instability
indicating that the system does not have a true ground state in the PT-broken regime.

T/M = 1/2

T/M = 2/3

T/M = 1

0.5 1.0 1.5 2.0
x

-0.1

0.1

0.2

0.3

0.4

0.5

Im(ω)

Figure 4: Pseudo-diffusive mode as a function of x for different values of T/M .

Let us end our analysis of the QNMs by turning on the spatial momentum k. In figure
5 we plot the k dependence of the QNM for several values of x = 0, 0.5, 1, 1.2 at fixed
T/M = 1/2. The intercepts at k = 0 naturally agree with the corresponding values of the
gap depicted by the yellow line in figure 4.

x=0

x= 0.5

x=1

x=1.2

0.1 0.2 0.3 0.4 0.5
k

-0.6

-0.4

-0.2

Im(ω)

Figure 5: k dependence of the pseudo-diffusive mode for several values of x at T/M = 1/2.

3 Conclusion and Outlook

We have successfully constructed a model of a strongly coupled quantum system with
non-Hermitian couplings via the holographic duality. The PT phase transition takes an
interesting form at finite temperature: real solutions exist even for a region of values
|x| > 1, but they turn out to be unstable to small fluctuations. While our model falls
into the bottom-up class it can be easily generalized to models directly derived from
string theory such as the ones in [20–22]. We expect our findings to hold also in these
models. There are many possible generalizations of our work. Spontaneous symmetry
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breaking and Goldstone modes in PT field theories have recently been discussed in [23–28].
This could be generalized to holographic systems using the methods of [29–31]. It would
also be interesting to understand if a similar picture holds for the PT phase transition
at finite temperature in weakly coupled perturbative field theory. Finally we note that
gauge/gravity duality with open boundary conditions and decoherence has recently been
studied in [32]. It would be interesting to see its relation to the PT-symmetric model
presented here.
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