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Ribosome-inactivating proteins (RIPs) inhibit protein synthesis by depurinating an adenine
on the sarcin-ricin loop (SRL) of the large subunit ribosomal RNA. Several RIPs interact
with the C-terminal end of ribosomal stalk P proteins, and this interaction is required for
their full activity. In contrast, the activity of Pokeweed Antiviral Protein is not affected by
blocking this stalk component. Here, we provide evidence from phylogenetic analyses and
sequence alignments suggesting that the interaction with the C-terminal end of P proteins
evolved independently in different RIPs by convergent evolution.

© 2012 Elsevier Ltd. All rights reserved.

The large subunit of the eukaryotic ribosome has a long
and protruding stalk formed by ribosomal P proteins. These
proteins share a conserved, highly acidic motif at their
C-terminal end. This motif is essential for the interaction of
the ribosome with Elongation Factor 2 (EF-2); a GTPase
protein which catalyzes the translocation of peptidyl-tRNA
from the A to the P site, during the protein synthesis
process (Lavergne et al., 1987).

Ribosome inactivating proteins (RIPs; EC 3.2.2.22) are
toxins present in plants and bacteria (Stirpe, 2004). Early
studies reported RIP activity in several fungi, such as in
Flammulina velutipes (Ng and Wang, 2004; Wang and Ng,
2001), Hypsizygus marmoreus (Lam and Ng, 2001a),
Lyophyllum shimeji (Lam and Ng, 2001b) and Pleurotus tuber-
regium (Wang and Ng, 2001). However, even when
N-terminal sequencing of purified polypeptides was
performed, these sequences are too short for alignment
construction and phylogenetic analysis. Classically, RIPs are
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classified as type 1 and 2, according to the absence or the
presence, respectively, of a lectin chain which mediates toxin
cell entry. RIPs irreversibly modify ribosomes through its RNA
N-glycosidase activity that depurinates an adenine residue in
the conserved a-sarcin/ricin loop (SRL) of the 28S rRNA (Endo
et al,, 1987; Endo and Tsurugi, 1987, 1988; Hudak et al., 1999;
Rajamohan et al., 2001). This modification prevents the
interaction of the ribosome with EF-2. Although RIPs are able
to cleave both prokaryotic and eukaryotic naked rRNA, its kcat
is 10°-fold lower than that for rRNA within an intact ribosome
(Endo and Tsurugi, 1988). Some RIPs (e.g. ricin) are only active
against eukaryotic ribosomes (Endo and Tsurugi, 1988). In
contrast, other RIPs (e.g. Shiga toxin) inactivate both
prokaryotic and eukaryotic ribosomes (Suh et al., 1998).
These findings strongly suggest that ribosomal proteins are
involved in rendering the rRNA susceptible to inactivation by
RIPs, and that different RIPs would interact with different
proteins. It has also been shown that some RIPs remove
adenine residues from polynucleotides (Girbes et al., 2004).

Several RIPs, namely ricin (Chiou et al., 2008), tricho-
santhin (TCS) (Chan et al., 2007; Juri Ayub et al., 2008),
shiga-like toxins 1 and 2 (SLT-1 and SLT-2) (Chiou et al.,
2008; McCluskey et al., 2008), and maize RIP (MOD)
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(Yang et al,, 2010), interact with the acidic conserved C-
terminal end of ribosomal P proteins. The RIP’s residues
responsible for the interaction with the stalk have been
mapped in TCS (Chan et al., 2007; Too et al., 2009) and MOD
(Yang et al., 2010). This interaction is required for full
activity. Based on these observations, it was initially
proposed that the stalk structure would be a generic
binding site for RIP toxins required to gain access to the SRL
of the 28S rRNA (McCluskey et al., 2008). However, studies
from other researchers and ourselves have recently
demonstrated that Pokeweed Antiviral Protein (PAP) does
not interact with this motif (Chiou et al., 2008; Juri Ayub
et al., 2008).
These data suggest two alternative hypotheses:

i) the ability to interact with the stalk was a feature of an
ancestral RIP, which has been conserved in many of
them (at least ricin, shiga like toxins, TCS and MOD),
and has been lost in other RIPs (at least in PAP);

ii) the ability to interact with the stalk evolved later
independently in different RIPs, as a result of
convergent evolution or evolutionary parallelism.

To test these hypotheses, we did an exhaustive database
search of RIP sequences, selected 54 representative
sequences and performed sound phylogenetic analyses
using Bayesian inference and Maximum Likelihood. For

this, a multiple amino acids sequence alignment was
constructed using a conserved region of the RIP domain
(residues Y14 to S196 according to TCS). Based on this
alignment (Fig. 1), we performed Bayesian (MB) and
maximum likelihood (ML) analyses using MrBayes 3.1.2
(Ronquist and Huelsenbeck, 2003) and PhyML 3.0 (Guindon
et al,, 2010), respectively. MrBayes was run for 10° gener-
ations and the average standard deviation of split
frequencies obtained was <0.01. PhyML was run using the
algorithm Subtree Pruning and Regrafting (SPR) (Hordijk
and Gascuel, 2005) with 5 initial starting trees. To
estimate the robustness of the phylogenetic inference, we
ran 500 bootstrap replicates. The WAG substitution matrix
(Whelan and Goldman, 2001) and gamma distribution
model with invariable sites was selected as the model that
best fits our dataset using ProtTest (Abascal et al., 2005).

The phylogenetic tree (Fig. 2) was, in general, consistent
with the main conclusions obtained by Peumans and Van
Damme (Peumans and Van Damme, 2010):

i) many of the current RIP genes have suffered
numerous duplication events and are paralogous;

ii) type 1 (thick branches) and type 2 (thin branches)
RIPs are not monophyletic.

The phylogenetic analysis presented here allowed us to
reach additional conclusions. Fig. 2 shows that the recently
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Fig. 1. Sequence alignment of the RIP domain used for phylogeny reconstruction. Sequences were aligned using TCOFEE under default parameters and edited visually.
Residues forming the active site are shown by arrows. The regions corresponding to the stalk interacting motifs from MOD and TCS are indicated by blue and red bars,
respectively (figure continued in the next page). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)
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described type 2 RIPs from Poaceae; Sorghum
(XM_002459548), Saccharum (CA255160), Zea (AY105813)
and Phyllostachys (FP092597), are phylogenetically closer to
ricin (X52908.1), which is a RIP from the dicot plant Ricinus
communis, than to other monocot RIPs (BS = 78, BPP = 0.99).
Also, the phylogenetic tree suggests a close relationship
between bacterial RIPs and Poaceae type 1 RIPs, although
with low bootstrap support. This contrasts with the
hypothesis that some bacterial RIPs (e.g. Shiga-like toxins)
are more closely related to type 2 RIPs than to type 1 RIPs
(Peumans and Van Damme, 2010).

Most importantly, Fig. 2 shows that those RIPs interact-
ing with the ribosomal stalk (circles) are widely and patchy
distributed across the phylogenic tree. Next, we analyzed
whether the residues involved in the interaction with the
stalk were conserved in different RIPs. Fig. 1 clearly shows
that amino acids interacting with P proteins from TCS (K'73,
R'74 and K'77) (Chan et al., 2007; Too et al., 2009) and MOD
(K3, K144 K145, K148) (Yang et al., 2010) are located on
different regions of the peptide chain. Moreover, it is worth
noting that these residues are not conserved in other RIPs
that also interact with the stalk and for which the interacting
residues have not been determined, such as ricin and SLT-1
and 2. These findings suggest that the ability to interact with

the ribosomal stalk arose independently and it represents
a case of convergent or parallel evolution. Future studies
mapping those residues that interact with the stalk in other
RIPs would allow further testing of this model. We predict
that unrelated RIPs will show different interacting residues.

In order to further test the hypothesis of convergent
evolution, we analyzed stalk-interacting motifs in
sequences closely related to MOD from the plant genera
Hordeum, Oryza, Triticum, and, Zea, and in sequences closely
related to TCS from the plant genera Cucurbita, Luffa,
Momordica, and Trichosanthes (Fig. 3). For instance, the
stalk-interacting motif of TCS (KRADK) is conserved only in
Trichosanthes species, but not in the homologous sequences
from Momordica, Luffa and Cucurbita. A similar situation is
observed in MOD-related sequences, where the motif
KKKK is only present in some of the sequences from Zea.
These observations strongly suggest that these stalk inter-
acting motifs are located in regions highly variable and
have evolved rather recently during evolution.

In conclusion, we have performed for the first time,
Bayesian and Maximum Likelihood phylogenetic analyses
of bacterial and plant RIP domains. All the evidence taken
together (phylogenetic trees and sequence alignments),
support the hypothesis that the ability of different RIPs to
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Fig. 1. Continued
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Fig. 2. Most likely phylogenetic tree of RIPs. Numbers above branches indicate Bayesian Posterior Probabilities (BPP) and numbers below branches are Bootstrap
(BS) support values from the ML analysis. Type 1 and type 2 plant RIPs are indicated by thick and thin lines, respectively. RIPs interacting and non-interacting with
ribosomal stalk are indicated with circles and triangles, respectively. GenBank accession numbers are shown for each sequence. Shiga toxin is not included
because it only has one amino acid difference comparing to Shiga-like toxin 1.

interact with the ribosomal stalk evolved independently, as
a result of convergent or parallel evolution.

Since bacterial ribosomes lack P proteins (their L7/L12
orthologous proteins have no acidic C-terminal ends), it is
reasonable to postulate that the ability to interact with the
P protein motif originated during evolution of eukaryotic

EF-2. Our conclusion about the parallel evolution of this
ability in different RIPs, suggests that interaction with the
stalk gives an adaptative advantage and does not have
strong sequence constraints, which makes it easy for
different proteins to acquire this feature. Our results
suggest that the ability to interact with the stalk, and
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Fig. 3. Inferred phylogenetic relationships amongst RIPs closer to MOD and TCS, along with the amino acids sequences from the stalk interacting motif. Residues

responsible for the interaction are shown in bold and underlined.

probably with other ribosomal proteins, has developed
independently, during the evolution of different RIPs,
leading to enhanced activity.
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