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Abstract. We study the electronic heat capacity in doped graphene under magnetic

fields. The partition function is calculated considering only the thermal excitations

in the last occupied energy levels. Due to the large energy separation between

the Landau levels (LLs) and the Zeeman splitting, at low temperatures the heat

capacity is dominated by the spin excitations in the last occupied LL. Correspondingly

the heat capacity oscillates with maximum amplitude at half filling of each LL.

At higher temperatures the inter-LLs excitations dominate the heat capacity, with

maximum amplitude at full filling factors. The oscillation amplitudes are compared

with the phonon heat capacity Cp. It is shown that the spin induced heat capacity

oscillations have a maximum amplitude approaching 3% of Cp, whereas for the inter-

LLs excitations the maximum amplitude is only 0.1% of Cp. These amplitudes decrease

in the presence of impurities, although the effect is appreciable if the LLs broadening

is bigger than the excitation energies.
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1. Introduction

Due to its unique characteristics, in the past decade graphene has become one of the

most promising two dimensional material (2D) [1, 2]. Consisting in a bidimensional

hexagonal lattice made of carbon atoms, graphene is remarkable for its strength [3, 4, 5]

and high electrical conductivity [6, 7]. The electronic properties of graphene are unique

among 2D systems: the valence and conduction bands touch at the Fermi energy [8],

where the density of states is zero, making graphene a semiconductor with zero band

gap [9]. At energies close to the Fermi level, the electrons behave as massless Dirac

fermions [10, 11] with a Fermi velocity of about 106 m/s [12]. The thermal properties in

graphene, although similar to graphite, also show unique features [13, 14, 15, 16]. For

instance, phonons dominate the specific heat, even at very low temperatures [17].

Under magnetic fields, the thermal properties are expected to depend on the Landau

levels (LLs) of the system. In graphene, at low energies the LL scale as
√
n and thus

are not equidistant [18]. Moreover, their cyclotron energy is remarkably high, compared

to the conventional 2D electron gas [19]. Hence magnetic related effects can be seen in

graphene even at relatively high temperatures [20, 21, 22]. Moreover, at low occupancy

the spin splitting of the energy levels is much smaller than the LLs difference, so thermal

spin excitations are expected to dominate at low temperatures. This feature can have

a noticeable effect in the electronic heat capacity, which is expected to oscillate as a

function of the magnetic field [23], much like the oscillations in the magnetization [24]

or the conductivity [25]. The study of these oscillations has proved to be a powerful

mapping tool, as their amplitudes and frequencies depend on the material properties [26].

Some aspects of these oscillations in the specific heat have been recently studied. In [27],

the electronic specific heat is analysed in undoped and slighty-doped graphene, where

the specific heat is shown to depend on the spin excitations between holes and electrons.

In [28], the specific heat is studied at relatively high temperatures, in which case the

spin splitting is safely ignored. There is not, however, an analysis of the electronic heat

capacity in doped graphene at low temperatures, where the partial occupancy and the

spin splitting of the LLs play an important role.

Traditionally, the heat capacity is obtained by working in the grand canonical

ensemble, in which case at fixed electron density one must obtain the chemical

potential oscillations with the magnetic field. These oscillations are usually small in

three dimensional metals, and can be neglected in most cases [23]. However, in two

dimensional materials like graphene the chemical potential oscillations can be significant,

especially at low temperatures [29, 30]. In general, the chemical potential oscillations

can only be obtained numerically [31], limiting the analytical analysis. In this work we

present an alternative way by working in the canonical ensemble, considering only the

excitations of the last occupied energy levels in the ground state. We show that this

approach leads to a simple analytical expression for the heat capacity, where the partial

occupation of the last energy level is naturally taken into account. Furthermore, a clear

distinction can be made for the contributions of the spin and LLs excitations to the heat



Heat capacity in doped graphene under magnetic fields: the role of spin splitting 3

capacity.

We have organized this work as follow: in Sec. 2 we describe the model used to

obtain the partition function at low temperatures, taking into account only the thermal

excitations of the last occupied energy levels. In Sec. 3 we obtain the electronic heat

capacity, separating the contributions due the spin and LLs excitations. We discuss in

detail the heat capacity oscillations, as well as the role of the spin and LLs excitations at

low and high temperatures. We also compare the magnitude of the oscillations with the

phonon contribution to the heat capacity, and discuss the damping of the oscillations

due to impurities effects. Finally, our conclusions follow in Sec. 4.

2. The Model

We consider graphene in the long wavelength approximation, where electrons behave as

massless relativistic fermions with an effective Hamiltonian [9]

H = vF (ξσxpx + σypy) , (1)

where vF ∼ 106 m/s is the Fermi velocity, σ = (σx, σy) are the Pauli matrices acting

in the sublattices A and B of graphene, and ξ = ±1 for the K and K ′ valleys. Under

a perpendicular magnetic field B, the energy spectrum can be found using the Peierls

substitution p→ p−eA, whereA is the vector potential. Then, considering the Zeeman

effect, the Landau levels (LLs) are [32] ελn,s = λvF

√
2e~Bn−sµBB, where λ = ±1 for the

conduction and valence band, and s = ±1 for the spin up and down (we shall assume

a g-factor g ' 2, which is a good approximation in graphene [33]). The LLs do not

depend on the ξ index and are identical for both K and K ′ valleys. Thus each LL has a

degeneracy D = 2AnB, where A is the graphene area and nB = Be/h is the flux density

[18]. Special care is needed for the n = 0 LL, which is shared by holes and electrons.

The degeneracy determines the filling factor ν = ne/nB, where ne is the electron density.

Assuming doped graphene with an electron density ne, in the ground state the

electrons fill the lowest conduction energy levels. For simplicity we will consider ne and

nB such that ν > 2 and thus the n = 0 LL is always filled. The last occupied level

is, in general, partially filled with DΘ electrons, where we define Θ = ν/2− floor [ν/2]

as the occupancy factor (0 ≤ Θ ≤ 1). At low temperatures, the only non-negligible

thermal excitations are between the last occupied energy levels. Hence it is convenient

to write the system energy E as an excitation to the ground state energy U , such that

E = U + ∆E, where ∆E is the excitation energy. Then the partition function reads

Z = e−βU
∑
∆E

C∆Ee
−β∆E, (2)

where β = 1/kBT and C∆E is the combination factor that accounts for the number of

ways the excitation ∆E can occur, considering that the electrons are indistinguishable.

The summation in Z must be restricted to the condition of constant electron density

and that each LL can be occupied at most with D electrons.
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Figure 1. Schematic representation of the possible spin excitations in the last occupied

energy levels. Each LL has degeneracy D and their occupancy is determined by the

factor 0 ≤ Θ ≤ 1. The two cases shown correspond to: (a) excitations from the

last partially occupied LL with spin up to the same empty LL with spin down, and

(b) excitations from the last fully occupied LL with spin up to the same partially

occupied LL with spin down. In both cases, in the top it is represented the ground

state occupation and in the bottom the occupation after the excitation of ` electrons.

We can distinguish two types of excitations, with different energy scales. One type

is the excitations between the last occupied LL with different spin, where ∆E = 2µBB.

The other type is the excitations between different LLs, with ∆E ∼ ∆εL, where ∆εL is

the energy difference between the last LLs occupied in the ground state. Considering

the valley degeneracy and that each LL can be occupied with both spins, we can say

∆εL ∼ vF

√
2e~B

(√
ν + 2−

√
ν − 2

)
/2. Thus for usual electron densities ne ∼ 1012

cm−2 and strong magnetic fields B > 1 T, we always have ∆εL � 2µBB. In the

following we obtain the partition function for both types of excitations.

2.1. Spin excitations

At very low temperatures, such that e−β2µBB � 1, there are only spin excitations.

There could be two situations for the spin excitations between the last occupied LL, as

shown schematically in Fig. 1, corresponding to the two cases when the last occupied

LL has spin up or down. We shall define q = floor [ν/2], so the last occupied LL has

spin up when q is odd and spin down when q is even. For ` excited electrons, we need

to calculate the combination factor C`. Given that the particles are indistinguishable,

each LL with occupancy c can be occupied in
(
D
c

)
ways, where

(
n
k

)
=n!/k! (n− k)! is the

binomial coefficient. Thus for ` excited electrons we have

C` =

(
D

D − `

)(
D

Dq + `

)
, (3)

where we defined Dq = D [1 + (−1)q (2Θ− 1)] /2, taking into account both cases q even

and q odd. Following Fig. 1, DΘ electrons can be excited when q is odd, whereas

D −DΘ electrons can be excited when q is even. Hence the partition function is

ZS = e−βU
Dq+1∑
`=0

C`e
−2`βµBB = e−βUzΘzS, (4)
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where zΘ =
(
D
DΘ

)
and

zS = 2F1

(
−D,−Dq+1, Dq + 1, e−2βµBB

)
, (5)

where 2F1 is the hypergeometric function. Notice that the term zΘ comes from the

number of ways the last LL can be partially occupied, whereas the term zS comes from

the excitations between the same LL with different spin.

2.2. Landau level excitations

We now consider the excitations between different LLs, so ∆E ∼ ∆εL, where ∆εL is

the LL difference between the last occupied states. Considering the spin splitting, to

calculate the partition function one would need to consider the excitations between 6

energy levels, corresponding to the three different LLs whose excitation give ∆E ∼ ∆εL,

each with different spin. Thus one would need to consider not only two states excitations,

but also multiple states (3 or more states) in which the energy difference is still of

order ∆εL, resulting in a lengthy and complicated calculation for the partition function.

However, we can simplify the problem by considering that when the thermal excitations

between different LLs become appreciable, the spin splitting of the LLs can be neglected,

given that ∆εL � 2µBB. In this way we can study the excitations between LLs by

ignoring the Zeeman effect. Then, instead of the excitations between 6 states, we only

need to consider excitations between 3 different LLs.

Without spin splitting, the conduction band LLs are εn = vF

√
2e~Bn and each LL

has degeneracy 2D, with the n = 0 LL being shared by holes and electrons. Thus there

is a change of LL at filling factors ν = 2 (2n+ 1). It is convenient to define νG = ν−2 as

the filling factor of the LLs n ≥ 1. Then the last fully occupied LL in the ground state

is n = q0, where q0 = floor [νG/4]. Considering ν > 2, the partial occupancy of the last

LL, in the ground state, is Θ0 = νG/4 − floor [νG/4]. The possible excitations between

the last occupied LLs are schematically shown in Fig. 2. In the first case, Fig. 2(a),

electrons from the last fully occupied LL εq0 are excited to the next partially occupied

LL εq0+1. In the second case, Fig. 2(b), electrons from the last partially occupied LL

εq0+1 are excited to the next empty LL εq0+2. For ` excited electrons, the corresponding

combination factors are

C1,` =

(
2D

2D − `

)(
2D

2DΘ0 + `

)
(6)

C2,` =

(
2D

2DΘ0 − `

)(
2D

`

)
. (7)

Defining ∆ε1 = εq0+1 − εq0 and ∆ε2 = εq0+2 − εq0+1, then D1 = 2D − 2DΘ0 electrons

can be excited with ∆ε1, whereas D2 = 2DΘ0 electrons can be excited with ∆ε2. Thus

the partition function is

ZLe
βU =

D1∑
`=1

C1,`e
−β`∆ε1 +

D2∑
`=1

C2,`e
−β`∆ε2 . (8)
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Figure 2. Schematic representation of the possible LLs excitations in the last occupied

energy levels. Without spin splitting, each LL has degeneracy 2D, considering them

occupied with both spins as shown. In the ground state, the last LL fully occupied

is n = q0, and the partial occupancy of the next LL n = q0 + 1 is determined by

0 ≤ Θ0 ≤ 1. The two cases shown correspond to (a) excitations εq0 → εq0+1 and (b)

excitations εq0+1 → εq0+2. In the top it is represented the ground state occupation

and in the bottom the occupation after the excitation of ` electrons.

We can write ZL = e−βUzΘ0 (zL − 1), where zΘ0 =
(

2D
2DΘ0

)
and

zL = 2F1

(
−2D,−D1, D2 + 1, e−β∆ε1

)
+ 2F1

(
−2D,−D2, D1 + 1, e−β∆ε2

)
− 1. (9)

Like in the spin excitations case, the term zΘ0 is related to the number of ways the

last LL can be partially occupied, ignoring the spin splitting. The term zL is due

to the excitations between the last occupied LLs. Notice that zL depends on two

hypergeometric functions because of the two possible LL excitations in the last occupied

states.

2.3. Total partition function

The total partition function, considering the spin and LLs excitations, is Z = ZS + ZL.

We can factorize Z by noticing that when ZL becomes relevant we have zΘzS → zΘ0

(see Appendix), and thus Z = e−βUzΘzSzL. In this way we separate the different

contributions to the partition function, which will prove useful in the analysis of the

heat capacity. It is worth mentioning that the model used to obtain Z, considering only

the thermal excitations of the last occupied energy levels, can be extended to other two

dimensional systems besides graphene. The only difference would be the expression for

the Landau levels. For instance, in buckled honeycomb structures such as silicene, the

valley degeneracy is broken in the presence of a perpendicular electric field [34, 35]. As

a result the LLs are split in each valley. Hence, as done with the spin excitations, one

could analyse the inter-valley excitations and separate its contribution to the partition

function. This could be useful to understand the valley dependent properties in 2D

materials.
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Figure 3. Electronic heat capacity as a function of the filling factor ν, at different

temperatures. The electron density is ne = 1012 cm−2 with N = 103 electrons. In

black dot-dashed line we plot the heat capacity CS due to the spin excitations, in blue

dashed-line we plot the heat capacity CL due to the different LLs excitations, and in

red solid line we plot the total electronic heat capacity Ce = CS + CL.

3. Electronic heat capacity

From the partition function, the electronic heat capacity (EHC) can be calculated as

Ce = kBβ
2 (∂2 lnZ/∂β2). Given that Z = e−βUzΘzSzL, the EHC can be decomposed as

Ce = CS + CL, where

Ci = kBβ
2

(
∂2 ln zi
∂β2

)
i = S,L (10)

The term CS gives the contribution due to the spin excitations in the last occupied LL,

whereas CL gives the contribution due to the excitations between the last LLs occupied

in the ground state.

In Fig. 3 we plot the electronic heat capacity at different temperatures, as a function

of the filling factor ν, considering ne = 1012 cm−2 and N = 103 electrons. For all

temperatures, in black dot-dashed line we plot CS, in blue dashed line we plot CL and in

red solid line we plot the total EHC Ce = CS +CL. As expected, the EHC oscillates as a

function of the filling factor ν. The maximum and minimum of the the oscillations are

related to the type of thermal excitations. At very low temperatures the spin excitations

dominate and the specific heat is entirely due to CS, as can be see at T = 1 K. The EHC

is maximum at values ν = 16 and ν = 20, which corresponds to the half filling of the

last occupied LL (see Fig. 1). In that case, one spin is full and the other is empty, so

the possible spin excitations are maximum. As the temperature increases, a new peak

appears in Ce around ν = 18, caused by the contribution of CL. The EHC becomes

maximum at values ν = 2 (2n+ 1), which correspond to full filling of the LLs. This is

expected, as more states are available when the electrons are thermally excited from a

full LL to an empty LL. At T = 9 K and T = 10 K we see the transition in which both

the spin and LL contribute to the EHC. However, at higher temperatures CL always

dominates and the EHC practically reduces to CL, as can be seen at T = 16 K. In this
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Figure 4. Electronic heat capacity as a function of the temperature, for different

filling factors ν. The electron density is ne = 1012 cm−2 with N = 103 electrons.

stage, the specific heat at all ν is due only to excitations between different LLs, and

thus the spin splitting can be neglected.

The transition between the EHC due to intra-LLs or inter-LLs excitations, as shown

in Fig. 3, can be useful to determine the energy levels dependence on the spin splitting.

Indeed, the profile of the oscillations depends on the Zeeman energy, which in turn

depends on the g-factor in graphene. Moreover, the EHC due to inter-LLs excitations

depends on the cyclotron energy. Hence careful measurements of the heat capacity

oscillations under a magnetic field can elucidate the properties of the relativistic Landau

levels in graphene.

The specific heat dependence on the spin and LL excitations can also be seen in

Fig. 4, where we plot Ce as a function the temperature, at different filling factors ν,

considering ne = 1012 cm−2 and N = 103 electrons. At low temperatures the EHC

is entirely due to CS and we clearly see the Schottky anomaly effect, with the EHC

rising to a maximum and then decreasing. Such behaviour is consistent with the EHC

being due to discrete energy levels, which in this case are just the excitation energies

∆E = 2µBB. Notice that the magnitude of the Schottky anomaly decreases as the

filling factor changes, being maximum at ν = 16 and zero at ν = 18 (no possible

spin excitations). At higher temperatures we observe an increase in Ce due to the

contribution of CL, caused by the inter-LLs excitations. The dependence of Ce with

ν is now reversed with respect to the low temperature case: the EHC is maximum at

ν = 18, when the thermal excitations between different LLs is higher.

3.1. Comparison with the EHC at B = 0

It is instructive to compare the the EHC under magnetic fields with the EHC at B = 0

in doped graphene. Without magnetic fields, the conduction band density of states per

area is ρ (ε) = 2ε/π~2v2
F, taking into account the valley and spin degeneracy [9]. In the
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Sommerfeld approximation [36] the energy is

U '
∫ µ

0

ρ (ε) εdε+
π2

6
(kBT )2 d (ρε)

dε

∣∣∣∣
ε=µ

, (11)

where the chemical potential is obtained from the condition

ne =

∫ µ

0

ρ (ε) dε+
π2

6
(kBT )2 dρ

dε

∣∣∣∣
ε=µ

. (12)

Solving for µ we get µ2 = ε2
F − π2 (kBT )2 /3, where εF = ~vF

√
πne is the Fermi

energy determined by ne =
∫ εF

0
ρ (ε) dε. At low temperatures and usual densities

ne ∼ 1012 cm−2 we have εF � kBT , so the chemical potential hardly changes with

the temperature. Then we can take µ = εF and the EHC is

Ce

N
(B = 0) =

4

3
π2k2

B

T

εF

. (13)

For ne = 1012 cm−2 we have εF ' 0.012 eV and Ce (B = 0) /N ' 8 × 10−7T [K] eV/K,

which at low temperatures is much smaller than the EHC oscillation peaks at strong

magnetic fields. For instance, at T = 1 K, for ν = 16 the spin induced EHC is about

10−5 eV/K (see Fig. 4), so Ce (ν = 16) /Ce (B = 0) ∼ 10. However, this ratio decreases

at higher temperatures, even at values ν = 2 (2n+ 1) where the inter-LLs excitations

are maximum.

3.2. Comparison with the phonon heat capacity

In graphene the phonon contribution to the heat capacity dominates, even at very

low temperatures [14]. Thus it is important to take in consideration this contribution

in order to have an estimation of the oscillation amplitudes. Under the harmonic

approximation, the low temperature phonon heat capacity is dominated by the acoustic

modes. These are the two in-plane vibration LA and TA modes (with ω ∝ k and

Cp ∝ T 2), and the transverse ZA mode (with ω ∝ k and Cp ∝ T ). However, at low

temperatures the ZA mode always dominates. The ZA mode heat capacity is [16]

Cp =
π

12

k2
B

~
A0

√
ρ

κ
T, (14)

where A0 ' 2.62 Å
2
/atom is the graphene surface area, ρ is the surface density and κ

is the bending constant for the ZA phonon band (κ = 1.49 eV). This gives Cp/N = aT ,

where a ' 5.27× 10−4 eV/K2 for ne = 1012 cm−2. Thus, even at T = 1 K, the phonon

heat capacity is orders of magnitude bigger than the electronic heat capacity.

In Fig. 5 we show the heat capacity ratio Ce/Cp in the filling factor/temperature

plane, for ne = 1012 cm−2 with N = 103 electrons. Given that ν = neφ/B, the filling

factors correspond to magnetic fields from B ' 4.1 T (ν = 10) to B ' 1.9 T (ν = 22).

At the low temperatures considered we have Ce = CS so the ratio Ce/Cp is maximum at

values ν = 12, 16, 20, i.e. half filling of the last LL occupied. The maximum oscillating

amplitude is approximately 3% of C, which is about the same order of the specific
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Figure 5. Heat capacity ratio Ce/Cp between the electronic and phonon contributions,

in the filling factor/temperature plane. The electron density is ne = 1012 cm−2 with

N = 103 electrons.

heat oscillations measured in Be [37]. However, the range of decay in Ce/Cp is larger

in temperature at lower filling factors. In other words, the Schottky anomaly is more

spread at low ν.

3.3. Maximum amplitude of oscillation

Fig. 5 seems to suggest that the heat capacity peaks have a maximum amplitude

independent of ν. We shall now show that this is indeed the case. Since we will be

considering fixed integer values of ν, the analysis is greatly simplified by working in the

grand canonical ensemble. We will treat separately the maxima in CS and CL.

At the low temperatures in which the spin excitations dominate, only the occupation

of the last LL (for each spin) changes with the temperature. If, in general, the last LL

occupied is ε0, the average occupation for each spin is

n± =
D

1 + eβ(ε0±µBB−µ)
. (15)

The chemical potential must obey the fixed electron density condition. Considering that

the LLs εn < ε0 are fully occupied and the LLs εn > ε0 empty, we have

ne
nB

= ν − 1 +
∑
s=±1

1

1 + eβ(ε0+sµBB−µ)
. (16)

Hence µ = ε0, which means that at half filling the chemical potential lies exactly between

the spin splitting of the LL. The average energy is

U = U (0) +D
∑
s=±1

ε0 + sµBB

1 + eβsµBB
, (17)

where U (0) is the temperature independent contribution of the lower filled LL. Therefore

the spin heat capacity at half filling reads

Chf
S

N
= kB

(
βµBneφ

ν3/2

)2

sech2

(
βµBneφ

2ν

)
, (18)
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where we replaced D/N = 2/ν and B = nBφ = neφ/ν (φ = h/e is the magnetic

flux). This expression for Chf
S clearly shows the Schottky anomaly effect as the

temperature changes. The maximum of Chf
S is determined by ∂Chf

S /∂β = 0, which

implies x tanhx = 1, where x = βµBneφ/2ν. This has a numerical solution x ' 6/5, so

the maxima in Chf
S occur at temperatures

Tm =
5

12

µBneφ

νkB

, (19)

which depend linearly with the magnetic field, as in undoped graphene [27]. Replacing

in equation (18) we obtain

Chf
S

N
max
=

44

25

kB

ν
. (20)

For ν = 16 we get Chf
S /N

max' 10−5 eV/K, in agreement with Fig. 4.

The maximum of the ratio between the electronic and phonon heat capacity can

be found in a similar way. The condition ∂
(
Chf

S /Cp

)
/∂β = 0 implies x tanhx = 3/2

(x = βµBneφ/2ν), which has a numerical solution x ' 1.622. Thus there is a slight

shift of the maximum temperature, in comparison to the maximum in Chf
S . Specifically,

the maxima in Chf
S /Cp occur at temperatures TM = (6/5)Tm/1.622 ' 0.74Tm. The

maximum ratio reads

Chf
S

Cp

max' 30

π2

e

µB

√
κ

ρ
. (21)

For κ = 1.49 eV [16] we get Chf
S /Cp

max' 0.03, in agreement with Fig. 5. Notice that the

maximum ratio of Chf
S /Cp does not depend on the magnetic field, the electron density

or the temperature, it depends only on the intrinsic properties of the lattice and the

electrons.

The same analysis can be made for the maximum amplitude in the EHC due

to inter-LLs excitations, which occur at full filling ν = 2n (2 + n). Then we only

consider the thermal excitations εq0 → εq0+1, where εq0 is the last LL fully occupied

in the ground state and q0 = (ν − 2) /4. Neglecting the spin splitting as we did in

Sec. 2.2, the occupation is ni = 2D
[
1 + eβ(εi−µ)

]−1
, where we defined ε1 = εq0 and

ε2 = εq0+1. As in the spin excitations case, the chemical potential is determined by

ne/nB = ν− 1 + (n1 + n2) /2D, which implies µ = (ε2 + ε1) /2. Thus µ lies between the

energy levels εq0 and εq0 + 1. Consequently a similar expression is found for the heat

capacity at full filling

Cff
L

N
=
kB

2ν
(β∆ε)2 sech2

(
β∆ε

4

)
, (22)

where ∆ε ≡ εq0+1 − εq0 . The expression of Cff
L is similar to equation (18) but with the

LL difference ∆ε instead of the Zeeman energy 2µBB. Therefore the same analysis can

be made to obtain the maxima in Cff
L . However, we are only interested in the maximum

of the ratio Cff
L/Cp. Following the same procedure to obtain equation (21), we get

Cff
L

Cp

max' 120

νπ2

hne
∆ε

√
κ

ρ
. (23)
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In contrast to the spin excitation case, the maximum of Cff
L/Cp depends on the electron

density and the filling factor. However, when ν � 1 we have ∆ε ' 2~vF
√
ne/ν and the

ratio depends only on the electron density

Cff
L

Cp

max' 120

π2vF

√
πne

κ

ρ
(ν � 1) . (24)

For ne = 1012 cm−2 we get Cff
L/Cp

max' 1.2× 10−3, which is one order of magnitude lower

that the maximum of the ratio Chf
S /Cp. Hence at high temperatures, when the inter-LLs

excitations dominate, the EHC is at maximum three order of magnitude lower than the

phonon heat capacity [28]. This is in fact similar to the behaviour without magnetic

fields [14], where Ce/Cp ∼ 10−3 [see Eqs. (13) and (14)].

3.4. Impurities effect

So far we have assume pristine graphene, i.e. without impurities. However, in the

practice systems often contain impurities so it may be important to study their effect

in the EHC, particularly in the maximum amplitude of oscillation. Under a magnetic

field, the effect of the impurities is to broaden each LL density of states (DOS). The

type of broadening distribution, and the magnitude of the broadening, depends on the

scattering mechanism of electrons under a magnetic field. In graphene the broadening

can depend significantly on the LL itself [38], especially at low occupancy. Thus, given

the problem complexity, the following discussion will be more qualitatively.

For simplicity we consider the impurities effect only on the spin-induced heat

capacity (i.e. intra-LL thermal excitations), which have the higher amplitude of

oscillation in relation to Cp. Following the discussion in section 3.3, we will calculate

the EHC at half filling by working in the grand canonical ensemble. We shall assume

a broadening parameter Γ such that Γ/∆εL � 1, so at low temperatures the intra-LL

excitations still dominate. Then if the last occupied LL is ε0, with impurities the average

occupation for each spin is

n± = D

∫ ∞
−∞

ρ (ε− ε0 ∓ µBB)
1

1 + eβ(ε−µ)
dε, (25)

where ρ (ε− ε0 ∓ µBB) is the broadening distribution. Assuming ρ to be symmetric, at

half filling the constant electron density condition still implies µ = ε0, as in the pristine

case. Then the average energy reads

U = U (0) + 2D

∫ ∞
−∞

ρ (x− µBB)

1 + eβx
xdx, (26)

where again U (0) is the temperature independent contribution of the lower occupied

LLs, while in the last integral we changed variables x = ε − ε0 and used the fact

that ρ (x± µBB) are symmetric around x = 0. Hence the heat capacity at half filling

becomes

Chf
S

N
=
kBβ

2

ν

∫ ∞
−∞

ρ

(
x− µBneφ

ν

)
x2sech2

(
βx

2

)
dx, (27)
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Figure 6. Heat capacity (a) CS/N (in eV/K) and (b) ratio CS/Cp between the

electronic and phonon contributions, in the temperature/broadening plane, for the

filling factor ν = 16. The electron density is ne = 1012 cm−2. The impurities have a

Gauss distribution with a broadening parameter Γ.

where we replaced D/N = 2/ν and B = nBφ = neφ/ν. Notice that the last equation

reduces to equation (18) if ρ→ δ, where δ is the Dirac delta. Therefore impurities tend

to reduce and spread the Schottky anomaly. This is of course the expected result, as

impurities act much like the temperature effect by damping the oscillations.

In Fig. 6 we show (a) Chf
S /N (in eV/K) and the ratio (b) Chf

S /CS, for ν = 16, in

the temperature/broadening plane, with ne = 1012 cm−2 and N = 103. We consider

impurities with a Gauss distribution ρ = exp
[
− (x− µBneφ/ν)2 /Γ2

]
/Γ
√
π, although

in principle any other symmetric distribution could be used. As we see in Fig. 6(a), the

EHC is reduced as the broadening Γ increases. For a Gauss distribution, the width of

the DOS ρ is approximately 2Γ. Then we can see a different behaviour depending on

the relation of Γ with the splitting energy µBB. First, when 2Γ < µBB the DOS for

each spin do not overlap and the impurity effect is relatively small. Therefore CS still

remains dominated by the spin excitations. In particular, in Fig 6(b) we observe that

the maximum amplitude of Chf
S /CS still is approximately 3% of Cp, as in the pristine

case. When µBB < 2Γ < 2µBB the DOS start to mix and the EHC maximum amplitude

decreases more pronouncedly as the broadening increases. We also begin to see a shift to

lower temperatures for the maximum ratio of Chf
S /CS. Finally, when Γ > µBB the DOS

width for each spin is bigger than the Zeeman energy and hence the spin splitting is

practically damped by the impurities. Consequently the EHC is reduced quite abruptly.

In this situation the spin splitting could in fact be directly ignored, with the intra-LL

excitations being accounted only by the impurities effect [39].

Similar behaviour is expected for the impurity effect on the EHC due to inter-LLs

excitations, if the broadening is comparable to the LLs energy difference. In particular,

as the broadening increases, the inter-LLs thermal excitations become appreciable

at lower temperatures. However, the maximum amplitude in the EHC is lowered

with increasing impurities, so the heat capacity oscillations could become negligible

in comparison to the phonon contribution.
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4. Conclusions

We studied the low temperature electronic heat capacity in doped graphene under

perpendicular magnetic fields. The partition function and the heat capacity were

obtained analytically considering the excitations between the last occupied energy levels

in the ground state. At low temperatures, the specific heat is dominated by the spin

excitations in the last occupied LL. Then the heat capacity oscillates with the magnetic

field, being maximum at half filling, when more spins can be excited. At constant

temperature the Schottky anomaly is observed, with a magnitude strongly dependent

on the filling factor. At higher temperatures, the heat capacity increases due to inter-

LLs excitations. The increase is maximum at full filling, when the thermal excitations

are from the last LL fully occupied to the next empty LL.

The magnitude of the heat capacity oscillations were compared with the phonon

contribution Cp. At low temperatures the spin-induced heat capacity has a maximum

amplitude approaching 3% of Cp, independently of the filling factor and the temperature.

In contrast, the maximum oscillation amplitude due to inter-LLs excitations is much

smaller, about 0.1% of Cp for usual electron densities. These oscillation amplitudes

decrease in the presence of impurities, although the effect depends on the magnitude

of the LLs broadening Γ. In particular, if 2Γ < µBB then the spin excitations still

dominate the EHC at low temperatures, whereas if Γ > µBB the EHC is dominated by

intra-LLs excitations induced by impurities, with a lower amplitude than in the pristine

case.
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Appendix A. High temperature limit of the spin excitations

At high temperatures such that e−2βµBB ' 1, equation (5) reduces to zS '
2F1 (−D,−Dq+1, Dq + 1, 1). Using the property

2F1 (a, b, c, 1) =
Γ (c) Γ (c− a− b)
Γ (c− a) Γ (c− b)

, (A.1)

we obtain

zS '
Γ (Dq + 1) Γ (2D + 1)

Γ (D +Dq + 1) Γ (D + 1)
, (A.2)
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where we used Dq +Dq+1 = D. Then, given that zΘ =
(
D
DΘ

)
can be generally written as

zΘ = Γ (D + 1) /Γ (Dq + 1) Γ (Dq+1 + 1), we obtain

zΘzS '
Γ (2D + 1)

Γ (D +Dq + 1) Γ (D −Dq + 1)
. (A.3)

Now, if q is odd then the last partially occupied LL has spin up, whereas if q is even the

last partially occupied LL has spin down. The partial occupancy, in the ground state, is

determined by Θ = ν/2−floor [ν/2]. Without spin splitting, each LL has degeneracy 2D

and the partial occupancy is given by Θ0 = νG/4−floor [νG/4], where νG = ν−2. When

q is odd we have Θ0 = Θ/2 whereas if q is even we have Θ0 = Θ/2 + 1/2. Therefore

Dq = D − 2DΘ0 if q is odd and Dq = 2DΘ0 −D if q is even. Thus zΘzS ' zΘ0 , where

zΘ0 =
(

2D
2DΘ0

)
. This proves that, at high temperature, the spin excitations between the

same LL reduce to the number of ways the last LL can be partially occupied, if one

ignores the spin splitting.
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