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Abstract: The aim of this work was to determine the influence of the spray dryer’s aspect ratio 
(height/diameter) on the physico-chemical properties of microencapsulated chia oil (CSO). Two 
different dryers were analyzed: a tall-type dryer [H/D = 5/1], and a short-type dryer [H/D = 1.65/1]. 
The former corresponded to a co-current flow, while the latter had a central air disperser in the 
chamber, and a rotary air flow. Emulsions were prepared by homogenization of CSO, and a mixture 
of soy protein isolate (SPI) and gum arabic (GA). The co-current contact in the tall-type dryer yielded 
greater oxidative stability indexes (OSI) (three times higher than CSO), which was possibly 
associated the reduced thermal degradation. It can be concluded that a co-current contact constitutes 
a better alternative for the protection of CSO. 
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1. Introduction 

Chia seed (Salvia hispanica L.) oil (CSO) is the major vegetable source of alpha-linolenic acid 
(ALA, C18:3); thus, the development of food fortified with chia has been extensively encouraged [1] 
However, CSO is highly susceptible to oxidation due to the unsaturated structure of its fatty acids 
[2], which ultimately decreases the nutritional value of the foods and negatively impacts their sensory 
properties [1]. Hence, the need for the protection of Omega-3-rich oils, through microencapsulation 
technologies is justified [1]. 
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Spray drying is the most widespread technology in the microencapsulation field due to its low 
cost, flexibility and scalability [2]. Rapid water removal results in increased product shelf-life, and 
reduced shipping and storage costs [3,4]. The manner in which the sprayed feed contacts the drying 
air has a great bearing on the dried product’s properties, due to its influence on the droplet behavior 
during drying. This contact is dictated by the position of the atomizer in relation to the air disperser 
[4]. Therefore, the spray can be directed into hot air with a co-current, counter-current or mixed flow 
[3]. Co-current configurations are preferred if heat-sensitive products (like CSO) are involved, given 
that the spray evaporation is rapid, the drying air cools accordingly, and the evaporation times are 
short. Nonetheless, any areas of back mixing in the drying chamber (local counter-current flow) may 
create an overly hot environment for heat-sensitive ingredients [4]. This important issue, although 
very clear, is rarely addressed in the scientific literature, with only theoretical studies [4]. 

Based on the above considerations, the present work aimed to analyze the influence of two 
different spray dryers’ aspect ratios (height/diameter), and the spray–air contact therein, on the 
physico-chemical properties of microencapsulated CSO. 

2. Materials and Methods 

2.1. Materials 

Chia seed oil (CSO) was extracted from seeds coming from Salta province (Nutracéutica Sturla 
SRL, Argentina), according to Martínez et al. [5], in a pilot plant screw press (Komet Model CA 59 G, 
IBG Monforts, Mönchengladbach, Germany). Soy protein isolate (SPI) SUPRO E with 90% protein on 
fat-free basis was purchased from The Solae Company (San Isidro, Argentina); gum arabic (GA) 
(Alland & Robert, Paris and Normandy, France) and maltodextrin (MD) DE 5 (Lorelite 5, Companhia 
Lorenz, Indaial, Brazil) were purchased from a local distributor (Distribuidora NICCO, Córdoba, 
Argentina). 

2.2. Emulsion Preparation and Characterization 

Coarse emulsions were prepared by high-speed homogenization of CSO, and a mixture of SPI 
and GA (15,000 rpm, 2 min, Ultraturrax homogenizer IKA T18, Janke & Kunkel GmbH, Staufen, 
Germany); 1/1 SPI/GA and 2/1 ((SPI+GA)/CSO) ratios (w/w) were used. The coarse emulsions were 
further homogenized in a high-pressure valve homogenizer at 700 bar (1 cycle, EmulsiFlex C5, 
Avestin, Ottawa, ON, Canada). The pH of fine emulsions was adjusted to 3.0 to induce coacervation 
between SPI and GA, and the reaction was completed with stirring at room temperature. Finally, MD 
DE 5 as filler was incorporated before drying to achieve a 22% w/v final total solid content. 

Particle size distribution of final emulsions was determined according to Us-Medina et al. (2018), 
and with a LA 950V2 Horiba (Kyoto, Japan) analyzer. 

Time-dependent steady shear properties of emulsions were evaluated using a controlled-stress 
rheometer MCR 301 Anton Paar, equipped with a plate-cone geometry (50 mm diameter) and 
working with a 0.05-mm gap [6]. 

The morphology of oil droplets was assessed with a confocal scanning laser microscope 
(Olympus FV1000, Tokyo, Japan) according to González et al. [1], with brief modifications. The 
continuous phase was labeled with a fluorescent marker, Rhodamine B (Sigma-Aldrich, Darmstadt, 
Germany) (0.08 g kg−1 on a dry matter basis). 

2.3. Spray Drying Experimental Design 

Two replicated factorial designs were carried out in different spray dryers. The factors analyzed 
were inlet air temperature (3 levels) and feed flow rate (2 levels). The first design was performed in 
a tall-form spray dryer (TF-SD), Büchi B-290 (Büchi Labortechnik AG, Flawil, Switzerland), equipped 
with a two-fluid nozzle atomizer. The aspect ratio was 5/1 (height/diameter = 0.55 m/0.11 m). The 
evaluated values of inlet air temperature and feed flow rate were 130, 160 and 190 °C, and 2.6 and 5.8 
mL/min, respectively. Finally, the second design was performed in a short-form spray dryer (SF-SD), 
Niro Mobile Minor (Søborg, Denmark), with a rotary atomizer. The aspect ratio was 1.65/1 
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(height/diameter = 1.40 m/0.85 m). The evaluated inlet air temperatures were the same as the previous 
design, and the feed flow rates were 10 and 15 mL/min. 

2.4. Powder Characterization 

The powders obtained with both spray dryers were characterized in terms of moisture content 
(MC), water activity (aw) and particle size distribution (d43 and d32 mean diameters, and d50 refer to 
volume-based distribution) as described by Us-Medina et al. (2018). The aggregation index (AI) of 
microparticles after the drying of chia oil-in-water emulsions was calculated according to Ma et al. [7]. 

Color determinations were performed with a CM600d spectrophotometer (Konica-Minolta, 
Tokyo, Japan) according to González et al. [1]. Whiteness (WI) and yellowness (YI) index, as well as 
the color change (ΔE index) between a blank and an oil-loaded microparticle, were estimated as 
described by Rodriguez et al. [8]. Surface fat (SF) and encapsulation efficiency (EE) were assessed 
according to González et al. [1]. The powder flowability was determined using the Carr’s Index (CI) 
and the Hausner Ratio (HR), as described by Rodriguez et al. [8]. The oxidative stability index (OSI) 
was determined by the Rancimat test (100 °C, 20 L/h air flow rate) according to González et al. [1]. 
The thermal behavior of powders was evaluated by thermogravimetric analysis (TGA), and was 
compared with a blank microparticle. Samples were heated from 25 to 350 °C with a linear rate of 10 
°C/min. Glass transition temperatures were determined by differential scanning calorimetry (DSC, 
TA Instruments, New Castle, DE, USA) with a linear heating rate of 20 °C/min. Finally, the 
microstructure of powders was assessed by scanning electron microscopy (SEM, LSM5 Pascal; Zeiss, 
Oberkochen, Germany) according to González et al. [1]. 

3. Results and Discussion 

Many authors have highlighted the influence of parent emulsion characteristics on the final 
properties of powders, especially particle size distribution [9], which is useful for assessing the 
homogeneity of the system and tracking changes caused by processing transformations. Tiny and 
agglomerated oil droplets could be identified in emulsions (Figure 1) after complex coacervation of 
SPI and GA, which enhances the microparticles’ mechanical strength [10]. As regards the rheological 
behavior of parent emulsions, the data were fit to the power law (R2 > 0.96). Flow index (n) values in 
the range of 0.32–0.40 were found, indicating a shear-thinning behavior. The consistency index (k) 
was in the range of 2.40–3.00 Pa sn (0.1–300 s−1 shear rate range). Finally, the viscosity value at 100 s−1 

(η100), typical of many food processes, fell in the range of 0.111–0.155 Pa s. 

 
Figure 1. Confocal laser scanning microscopy (CLSM) images of parent chia seed-oil-in-water 
emulsions. 
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Ranges for the particle size distribution of parent and reconstituted emulsions, as well as for the 
corresponding AI of powders, are shown in Table 1. In addition, the corresponding ranges for other 
physical properties can be found in Table 2 (MC, aw, SF, EE, CI and HR) and Table 3 (color 
parameters). The AI values for SF-SD microparticles were significantly higher (p < 0.05) than for TF-
SD microparticles, which may be explained by the particle agglomeration facilitated by rotary 
atomizers [4]. In addition, a strong positive correlation (p < 0.05) was found between AI and d43 (r = 
0.9916). 

Table 1. Particle size parameters of parent and reconstituted emulsions. 

 d43 d32 d50 AI 
Parent emulsion 21.10–21.20 12.80–12.90 12.21–12.30 -- 

T-F SD A 8.70–16.80 8.40–11.25 8.50–11.46  0.06–0.31 
S-F SD B 45.30–60.00 9.50–13.20 48.50–51.70 3.00–4.30 

A TF-SD (Tall-form spray dryer); B SF-SD (Short-form spray dryer). These abbreviations hold for the 
rest of the Tables. d43 (de Brouckere mean diameter, μm); d32 (Sauter mean diameter, μm); d50 (median 
diameter, volume distribution, μm); AI (aggregation index). The lowest and the highest values in each 
range correspond to the maximum air inlet temperature and the minimum feed flow rate, and to the 
minimum air inlet temperature and the maximum feed flow rate, respectively. 

Table 2. Moisture content, water activity, surface fat, encapsulation efficiency and flowing properties 
of powders. 

 MC aw SF EE CI HR 
T-F SD 3.10–4.50 0.270–0.335 7.00–10.50 61.50–75.00 40.20–46.30 1.45–2.00 
S-F SD 5.08–6.55 0.320–0.385 0.25–2.10 92.40–99.00 31.50–49.60 1.65–1.81 

MC (moisture content, % wet basis); aw (water activity); SF (surface fat, % dry basis); EE (encapsulation 
efficiency, % dry basis); CI (Carr’s Index, %); HR (Hausner ratio). 

Table 3. Color parameters of powders. 

 L* a* b* ΔE WI YI 
T-F SD 91.10–94.05 −0.19–0.10 9.50–12.40 2.30–3.65 54.00–65.45 16.80–19.50 
S-F SD 79.50–86.70 −0.21–1.10 14.20–18.05 7.40–13.50 32.40–44.05 23.40–29.80 

L* (lightness); a* (red-green component); b* (yellow-blue component); ΔE (color change index); WI 
(whiteness index); YI (yellowness index). 

A significant reduction (p < 0.05) in OSI values was observed for SF-SD powders, compared with 
bulk CSO: 0.21–0.80 h and 3.00–3.33 h, respectively. This may be related to eddies around the air 
disperser, which created local areas of counter-current flow between spray and air. On the other 
hand, the plug-flow air conditions in the chamber of a TF-SD are considerably different from the 
swirling air motion around the central disperser of the SF-SD, with less back mixing [4], thus 
preserving CSO from thermo-oxidative damage. For the TF-SD, the OSI values were in the range of 
5.10–6.60 h. 

The lowest and the highest values in each range correspond to the maximum air inlet 
temperature and the minimum feed flow rate, and to the minimum air inlet temperature and the 
maximum feed flow rate, respectively. 

Strong correlations (p < 0.05) were also found between OSI and WI (r = 0.9358), L* (r = 0.9079), YI 
(r = −0.9029) and ΔE (r = −0.9410). Color changes are a sign of the oxidative deterioration of 
triacylglycerols and fatty acids, since this process can yield colored products [8]. In this regard, it is 
important to highlight that blank microparticles showed L*, a*, b*, WI and YI values in the ranges of 
90.80–92.00, −0.03–0.05, 8.80–8.90, 65.40–65.50 and 13.70–13.80, respectively. Significant differences 
were observed (p < 0.05) between blank and SF-SD microparticles, as reflected by their higher values 
for ΔE compared to TF-SD powders, which was in consonance with greater oxidative damage. 
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The lowest and the highest values in each range correspond to the maximum air inlet 
temperature and the minimum feed flow rate, and to the minimum air inlet temperature and the 
maximum feed flow rate, respectively. 

The particle size distributions and color parameters of the powders were also correlated (p < 
0.05), as expected: WI–d43 (r = −0.9540) and WI–AI (r = −0.9627). Finally, a higher EE was associated 
with greater values of d43 (r = 0.9283) and AI (r = 0.9543). 

As regards the flowing properties, CI > 25% and HR > 1.4 were observed, evidencing a poor 
flowability and strong inter-particle forces [8]. 

SEM micrographs of powders (Figure 2) showed tiny agglomerates, especially for a TF-SD, 
which are typically produced by twin-fluid atomizers and aid in the redispersion process [4]. On the 
other hand, round-shaped particles of greater size and no evident agglomerates were observed for 
the SF-SD. 

 
Figure 2. Scanning electron microscopy (SEM) images for microencapsulated chia seed oils. (First 
image) TF-SD. (Second image) SF-SD. 

The thermal performance of the powders compared with a blank microparticle was assessed. It 
was found that all formulations showed two main stages of mass loss (curves not shown). The first 
stage, below 100 °C, was related to the loss of adsorbed and bound water, and had a small weight 
loss for all microparticles. The onset temperatures for the second degradation stage were around 250–
260 °C for all samples. These temperatures were in consonance with values reported for the wall 
materials of the present work, and corresponded to SPI pyrolysis (~270 °C, Song et al. [11]) and the 
thermal degradation profile of polysaccharides (Castro-Cabado et al. [12]). Finally, glass transition 
temperatures (Figure 3), as shown by the DSC curves, were around 172, 169 and 186 °C for blank, TF-
SD and SF-SD microparticles, respectively, in accordance with the reported values for MD DE 5 [3], 
GA (Barros Fernandes et al. [13]) and SPI (Tang et al. [14]). 
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Figure 3. Differential scanning calorimetry (DSC) curves for blank and chia seed oil-loaded 
microparticles. 

4. Conclusions 

The physico-chemical properties of microencapsulated CSO proved to be greatly affected by the 
spray dryer’s aspect ratio and by the spray-air contact. Turbulence around the air disperser in the SF-
SD created local areas of counter-current flow between spray and air, damaging the oil chemical 
quality. L*, WI, YI and ΔE values varied accordingly. However, a greater EE was achieved in the 
same SF-SD, which was associated with higher d43 and AI values. It can be concluded that a co-current 
spray–air contact constitutes a better alternative for the protection of a heat-sensitive ingredient like 
CSO. 
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