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HIGHLIGHTS 

 Mesenchymal stem cells (MSCs) are of interest for the treatment of brain pathologies 

 Spatial memory in aged female rats significantly improved after MSC administration 

 Hippocampal neurogenesis increased after MSC treatment in aging rats 

 MSCs have an important role in microglia and synaptic protein remodeling 
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ABSTRACT 

There is a growing interest in the potential of mesenchymal stem cells (MSCs) for implementing 

regenerative medicine in the brain as they have shown neurogenic and immunomodulatory activities. 

We assessed the effect of intracerebroventricular (icv) administration of human bone marrow-derived 

MSCs (hBM-MSCs) on spatial memory and hippocampal morphology of senile (27 months) female 

rats, using 3-months-old counterparts as young controls. Half of the animals were injected in the 

lateral ventricles (LV) with a suspension containing 5 X 105hBM-MSCs in 8µl per side. The other 

half received no treatment (senile controls). Spatial memory performance was assessed with a 

modified version of the Barnes maze test. We employed one probe trial, one day after training in 

order to evaluate learning ability as well as spatial memory retention. Neuroblast (DCX) and 

microglial (Iba-1 immunoreactive) markers were also immunohistochemically quantitated in the 

animals by means of an unbiased stereological approach. In addition, hippocampal presynaptic 

protein expression was assessed by immunoblotting analysis. After treatment, the senile MSC-treated 

group showed a significant improvement in spatial memory accuracy and extended permanence in a 

one- and 3-hole goal sectors as compared with senile controls. The MSC treatment increased the 

number of neuroblasts in the hippocampal dentate gyrus, reduced the number of reactive microglial 

cells, and restored presynaptic protein levels as compared to senile controls. We conclude that icv 

injected hBM-MSCs are effective in improving spatial memory in senile rats and that the strategy 

improves some functional and morphologic brain features typically altered in aging rats. 

 

Keywords. Brain aging- memory- hippocampus- mesenchymal stem cells – cell therapy 

 

1.-INTRODUCTION 

There is a growing interest in the therapeutic potential of adult mesenchymal stem cells (MSCs) in 

the brain. One type of adult stem cell that has been used for this purpose are the bone marrow-
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derived MSCs. They are known to secrete neurotrophic factors and promote the survival, 

proliferation and differentiation of neural cells in vitro [1, 2]. See Discussion for further details on 

the neuroactive factors released by MSC.  

MSCs are easily isolated and expanded from bone marrow and even from adipose tissues, amniotic 

fluid, endometrium, dental tissues, umbilical cord. They are multipotent adult stem cells with the 

capacity to differentiate into mesodermal lineage such as osteocytes, adipocytes and chondrocytes[3]. 

However, MSCs also show differentiation plasticity into other endodermal lineages (hepatocytes) 

and ectodermal (neurocytes), including neurons and glial cells [4]. In addition to their neural 

differentiation ability under special conditions, MSCs are known for their capacity to promote 

neurogenesis of primary neural progenitors and survival of neural cells, by expressing neurotrophic 

factors, such as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and insulin-

like growth factor-1 [5, 6]. The level of these neurotrophic factors is severely affected in aging and 

can be correlated with cognitive decline [7, 8]. 

Transplantation of MSCs in the central nervous system prevents apoptosis and promotes 

neurogenesis (proliferation and differentiation) of ‘host’ neural cells and stem cells in the engrafted 

site [5, 9, 10]. MSCs were therefore suggested as candidates for treating a variety of 

neurodegenerative diseases, in particular Parkinson’s disease (PD), multiple sclerosis, cerebral 

hemorrhage and brain cancer [11–13]. Intracerebroventricular (icv) injection of bone marrow-derived 

MSCs increased hippocampal neurogenesis in a rat model of depression. Thus, after transplantation, 

MSCs migrated mainly to the dentate gyrus (DG), CA1 and CA3 regions of the hippocampus, and to 

a lesser extent to the thalamus, hypothalamus, cortex and contralateral hippocampus. Neurogenesis 

was increased in the ipsilateral DG of engrafted rats (granular cell layer). The level of engraftment 

was positively correlated with behavioral performance [14]. Sites such as the hippocampus, 

subventricular zone and optic bulb, where active neurogenesis occurs in adulthood, are often 

preferred for engraftment of MSCs [15, 16]. 
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In females Sprague-Dawley (SD) rats, spatial memory impairment begins at 14 months, with greater 

impairment at 20 to 26 months [17]. Furthermore, immune reactivity and inflammatory processes 

increase with aging in the brain [18], with microglia playing a central role in this immune 

dysregulation [19, 20]. We have recently shown that in aging female rats there is a significant 

activation of reactive microglia and identified a cluster of hippocampal immune genes that are 

dysregulated in the aged animals [21]. Interestingly, it was reported that MSCs are able to maintain 

the resting phenotype of microglia and can also control its activation through the release of several 

factors, including but not limited to, vascular endothelial growth factor (VEGF), brain-derived 

neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF) and hepatocyte growth 

factor (HGF), which suggests that MSCs could be a promising therapeutic tool for treatment of 

diseases associated with microglial activation [22]. The above information prompted us to explore 

the neuroprotective potential of human bone marrow-derived MSCs (hBM-MSCs) in the 

hippocampus of senile rats at both functional and morphological level. 

 

2.- MATERIALS AND METHODS 

2.1- Human bone marrow-derived mesenchymal stem cells 

Human BM-MSCs were isolated from bone marrow aspirates of healthy donors for allogeneic 

transplantation after informed consent approved by the Institutional Review Committee of Hospital 

Naval Pedro Mallo and Fundación Instituto Leloir, Argentina and according to the International 

Society for Cellular Therapy (ISCT) guidelines. Human MSCs were characterized as described 

previously [23], cultured in complete DMEM low glucose (2 μM glutamine, 100 U/ml penicillin, 100 

mg/ ml streptomycin) and 20% heat- inactivated fetal bovine serum (FBS), and used between 

passages 4 to 7. 

 

2.2- Fluorescent labeling of MSCs 
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Human BM-MSCs cultures were grown in Petri dishes to 90% confluence. Suspended MSCs were 

labeled with 1,10-dioctadecyl-3,3,30,30-tetramethylindocarbocyanine perchlorate (Dil, Sigma Chem 

Co.) fluorescent dye (stock solution: 0.25 µg of Dil per microliter of dimethylsulfoxide). Briefly, 

trypsinized MSCs were suspended in phosphate buffered saline (PBS, 106 cells/ml) in the presence 

of Dil at a final concentration of 1 µg/ml and incubated for 5 min at 37°C followed by 15 min at 4°C 

and finally washed 3 times with PBS. An appropriate dilution (6.25 X 104 MSCs/µl) for the icv 

injection was made. 

 

2.3- Animals and experimental design 

Young (3 mo.) and senescent (27 mo.) female SD rats were used. The animals were housed in a 

temperature-controlled room (22 ± 2ºC) on a 12:12 h light/dark cycle. Food and water were available 

ad libitum. All experiments with animals were performed in accordance to the Animal Welfare 

Guidelines of NIH (INIBIOLP’s Animal Welfare Assurance No A5647-01). 

Rats were grouped, as follows: Group Yc, consisted of 8 young rats that received no treatment. 

Group Sc, consisted of 8 senescent rats that received no treatment and Group Smsc, consisted of 8 

senescent rats that were stereotaxically injected with MSCs. 

The day of MSCs injection was defined as experimental day 0. Before and after cell injection, a full 

Barnes maze test, comprising 6 acquisition trials (AT) and a probe trial was performed on all rats. 

Additional young rats were used for time-course studies. 

Experimental design- Nine days before the MSCs injection (experimental day -9) the pre-treatment 

Barnes maze test began. On experimental day 0, old rats were icv injected with MSCs as described 

below. From experimental day 15 to 18, all rats were submitted to the post-treatment Barnes maze 

test (Fig 1 A). On experimental day 21, all rats were euthanized as described below. 

 

2.4- Time-course design- Additional young rats (N=8) were used for time-course studies. On 
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experimental day 0, rats were icv injected with Dil-labeled MSCs as described below. At different 

time-points, on experimental day 5, 11, 14 and 21, two rats were sacrificed as described below. 

Brains were processed as previously described for immunohistochemical assessment to analyze the 

distribution and permanence of injected cells (Fig 1 B). 

 

2.5- Stereotaxic injections 

Rats were anesthetized with ketamine hydrochloride (40 mg/kg; ip) plus xylazine (8 mg/kg; im) and 

placed in a stereotaxic apparatus. In order to access the LV, the tip of a 26G needle fitted to a 10 µl 

syringe was brought to the following coordinates relative to the bregma: -0.8 mm anteroposterior, 4.1 

mm dorsoventral and ±1.5 mm mediolateral [24]. The animals were injected bilaterally with 8 µl per 

side of a suspension containing 5 X 105 MSCs. 

 

2.6- Spatial memory assessment 

A modified Barnes maze protocol was used in this study; it is based on a previously reported 

procedure [25]. It consists of an elevated (108 cm to the floor) black acrylic circular platform, 122 

cm in diameter, containing twenty holes around the periphery. The holes are of uniform diameter (10 

cm) and appearance, but only one hole is connected to a black escape box (tunnel). The escape box is 

38.7 cm long x 12.1 cm wide x 14.2 cm in depth and it is removable. A white cylindrical starting 

chamber (an opaque, 20 cm x 30 cm long, and 15 cm high, open-ended chamber) is used to place the 

rats on the platform. Four proximal visual cues are placed in the room, 50 cm away from the circular 

platform. The escape hole was numbered as hole 0 for graphical normalized representation purposes, 

the remaining holes being numbered 1 to 10 clockwise, and −1 to −9 counterclockwise (Fig 3A).  

Hole 0 remained in a fixed position, relative to the cues in order to avoid randomization of the 

relative position of the scape box. During the test, the platform was rotated daily. A90-dB white-

noise generator and a white-light 500 W bulb provided the escape stimuli from the platform. 
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We used an shortened protocol based on three days of acquisition trials (AT), followed by a probe 

trial, 1 day after training, to assess recent spatial memory retention [26]. An acquisition trial consists 

of placing a rat, randomly oriented, in the starting chamber for 30 s, the chamber is then raised, the 

aversive stimuli are switched on and the rat is allowed to freely explore the maze for 120 s. Probe 

traial is defined as a trial where the escape box has been removed, its purpose being to assess the 

latency to explore the empty escape hole and the error frequency. After the starting chamber is 

raised, the rat is given 120 s to explore and the number of explorations per hole is recorded. In order 

to eliminate olfactive clues from the maze and the boxes, the surfaces are cleaned with 10% ethylic 

alcohol solution, after each trial. On the day before acquisition trial, animals were habituated to the 

starting chamber and escape box by placing them inside each one for 180s. 

The behavioral performances were recorded using a computer-linked video camera mounted 110 cm 

above the platform. The video-recorded performances of the subjects were measured using the 

Kinovea v0.7.6 (http://www.kinovea.org) software. The behavioral parameters assessed were as 

follows. 

Escape box latency: time (in s) spent by an animal since its release from the starting chamber until it 

enters the escape box (during an acquisition trial) or until the first exploration of the escape hole 

(during a probe trial). 

Goal sector exploration frequency (GS): the sum of the number of explorations for holes −1, 0, 

and 1 divided by 3 (GS3) or the number of explorations of hole 0 (GS1), during a probe trial. 

GS3 progression index: this parameter results from the difference between the frequency of final 

(post-treatment) minus the initial exploration(pre-treatment). 

 

2.7- Sample preparation 

Animals were placed under deep anesthesia and transcardially perfused with phosphate buffered 

para- formaldehyde 4%, (pH 7.4) fixative. The brains were rapidly removed and stored in para-
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formaldehyde 4%, (pH 7.4) overnight (4 ºC). Finally, brains were maintained in cryopreservative 

solution (30% ethylene glycol, 1% polyvinylpyrrolidone, 30% sucrose, in phosphate buffer 0.1 M, 

pH 7.4) at -20 ºC until use. For immunohistochemical assessment, brains were cut coronally in 40 

µm-thick sections with a vibratome (VT1000S; Leica Microsystems, Wetzlar, Germany). The rest of 

the animals were quickly decapitated, and the hippocampus carefully dissected as previously 

described [27] and stored at -80 °C until WB analysis. 

 

2.8- Immunohistochemistry 

All immunohistochemical techniques were performed on free-floating sections. For each animal, 

separate sets of sections were immunohistochemically processed using anti-doublecortin (DCX) goat 

polyclonal antibody 1:250 (c-18, Santa Cruz Biotech., Dallas, Texas) and anti-Iba-1 rabbit polyclonal 

antibody 1: 1000 (016-20001, Wako Chemicals, Richmond, VA, USA). For detection, the 

Vectastain® Universal ABC kit (1:500, PK-6100, Vector Labs., Inc., Burlingame, CA, USA) 

employing 3, 3-diamino benzidine tertrahydro-chloride (DAB) as chromogen, was used. Briefly, 

after overnight incubation at 4ºC with the primary antibody, sections were incubated with 

biotinylated horse anti-mouse antiserum (1:300, BA- 2000,Vector Labs.) or horse anti-goat 

antiserum (1:300, BA-9500, Vector Labs), as appropriate, for 120 min, rinsed and incubated with 

avidin-biotin-peroxidase complex (ABC Kit) for 90 min and then incubated with DAB. Sections 

were counterstain with Nissl method (0.5% cresyl violet solution at 37ºC for 10 min) to visualize 

anatomical landmarks and mounted with Vectamount (Vector Labs) to use for image analysis. 

 

 

2.9- Image Analysis 

In each hippocampal block, every sixth serial sections were selected in order to obtain a set of non-

contiguous serial sections spanning the dorsal hippocampus (240 µm apart). The number of cells was 
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assessed in the dorsal hippocampus which is located between coordinates -2.8 mm to -4.5 mm from 

the bregma [24] using an Olympus BX-51 microscope, at 500X magnification, attached to an 

Olympus DP70 CCD video camera (Tokyo, Japan). The total number of cells was estimated using 

a modified version of the optical dissector method [28]. Individual estimates of the total bilateral cell 

number (N) were calculated according to the following formula: N = RQΣ · 1/ ssf · 1/asf · 1/tsf, 

where RQΣ is the sum of counted cells, ssf is the section sampling fraction, asf is the area sampling 

fraction, and tsf is the thickness sampling fraction. 

 

2.10- Neuroblast analysis 

The number of DCX positive neuroblasts was assessed using a modified version of the optical 

fractionator technique [28]. The entire subgranular zone (SGZ) and granular cell layer (GCL) regions 

were quantified (8 sections per animal), with asf=1, ssf=1/6 and tsf=1. Estimates were based on 

counting DCX(+) cell bodies as they came into focus. N= 4 animals per group. 

 

2.11- Microglial cell analysis 

Microglial cells were identified as Iba-1 immunoreactive cells. Iba-1 immunoreactive cells were 

counted in the Srad of the CA1 region of the dorsal hippocampus. The Srad upper limit is the 

pyramidal layer, lower limit is Stratum Lacunosum Moleculare and the lateral limit is the Stratum 

Lucidum [24]. To this end, a random grid consisting of squared probes (area=22,500 µm2) was 

superimposed over calibrated images taken at 600X magnification (3 fields per section, 6-8 sections 

per animal) and cells inside the probe area were counted. Cells making contact with boundary 

inclusion lines of the probes were included in the count, whereas cells in contact with boundary 

exclusion lines were not counted. Iba-1 immunoreactive cells were morphologically classified as 

type I, II, III, IV and V on the basis of previously documented criteria [26, 29]. Type I, cells with few 

cellular processes (two or less); Type II, cells showing three to five short branches; Type III, cells 
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with numerous (>5) and longer cell processes and a small cell body; Type IV, cells with large somas 

and retracted and thicker processes and Type V, cells with amoeboid cell body, numerous short 

processes and intense Iba-1 immunostaining. Types I, II and III were categorized as nonreactive glia 

whereas types IV and V were taken as reactive glia. Reactive microglial cell number/section was 

calculated for each animal with asf=0.387, ssf=1/6, and tsf=1. N= 4 animals per group. 

 

2.12 Western Blot Analysis 

2.12.1 Sample preparation 

In order to obtain protein lysates, hippocampi were homogenized with precooled RIPA buffer (150 

mM NaCl, 1% Triton X-100, 0.5 % sodium deoxycolate, 0.1 % SDS, 50 mM Tris-HCl pH 8, and 

appropriate protease inhibitors, pH 7.4). Finally, protein concentration was measured by Bradford 

protein assay. Bovine serum albumin (BSA) (0.1-1 mg/ml) was used as a standard. Samples were 

aliquoted and stored at -80°C. 

 

2.12.2 Immunoblotting 

Equal amounts of protein (50 μg) for every sample were separated by 10% SDS-PAGE and 

transferred to nitrocellulose membranes (Bio-Rad). The membranes were blocked by incubation in 

5% non-fat milk in Tris-buffered saline/Tween-20 (TBS-T) for 1 h at room temperature, and then 

incubated with primary antibodies against Synaptotagmin 1 (SYT1, 1:200; mAb 48, DSHB), 

Synaptophysin (SYP, 1:200; sc-17750, Santa Cruz Biotech.), Postsynaptic density protein 95 (PSD-

95, 1:200, sc-32290, Santa Cruz Biotech.), Vinculin (VIN) (1:200; sc-73614, Santa Cruz Biotech.) 

and β-Actin (1:1000, sc-47778, Santa Cruz Biotech.) overnight at 4°C. Then, the membranes were 

washed with TBS-T and incubated with anti-mouse secondary antibody conjugated with horseradish 

peroxidase (1:10000, #115-035-003, Jackson ImmunoResearch Laboratories) for 3 h at room 

temperature. After washing with TBS-T, membrane visualization was performed with Super Signal 
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West Pico PLUS Chemiluminescent substrate (#34577, Thermo Fisher Scientific) on a Chemidoc 

Image Station (Bio-Rad, Hercules, CA, USA). Relative optical density of protein bands was 

analyzed using gel documentation system. Sample loading was normalized to relative density of VIN 

or β-Actin band. Four rats per group were used for the WB . 

 

2.13 -Statistical analysis 

Data were compiled and analyzed with the Sigma Plot v. 11 software (San Jose, CA). The analysis of 

repeated measurements (rm) of ANOVA was applied over the data obtained from behavioral tests. 

Wilcoxon matched-pairs signed rank test was employed for GS3 analysis. For determine MSCs 

rejuvenated effect ANOVA was used (Iba-1 immunohistochemistry and SYT1 immunoblotting). 

Otherwise, stereological assessment of senile groups data was examined by Unpaired Student t-test. 

All data are r e presented as mean ± SEM. Holm-Sidak and Tukey’s post-hoc tests were used where 

appropriate. Criteria for significant differences were set at 95% probability level. 

 

3.-RESULTS 

3.1- Time-course of MSC in the cerebral ventricles 

Dil-fluorescence in coronal sections of MSCs-injected young brains revealed that five days after 

injection, Dil-labeled hBM-MSCs were located in close contact with the ependymal cells. The 

number of labeled cells decreased progressively from experimental day 5. On the day of sacrifice 

(21) labeled cells were still observable close to the ependymal layers (Fig 1B). However, some of 

these cells traveled a short distance from the ventricular spaces to the parenchyma (Fig 1B). 

 

3.2- Cognitive Changes 

3.2.1- Hole exploration frequency- As expected, hole exploration frequency showed a bell-shaped 

distribution around hole 0 in the probe trial in all three groups both before and after treatment (Fig 
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2). However, the shape of the bell was less well-defined in old than in young rats. The amplitude of 

the bell was higher in the young animals (insets to Fig 2A and 2B). At pretreatment, the shape and 

amplitude of hole exploration frequency was comparable in both senile groups (P=0.1), and the hole 

0 exploration frequency was significantly different than the rest of the holes in both senile groups 

(Fig 2-A, P<0.0001). After treatment, the shape and amplitude of hole exploration frequency was 

significantly different between Sc and Smsc groups (P=0.045) with a major preference for holes 

neighboring goal hole than farther holes (Fig 2-B, P<0.0001). Notice that hole 0 exploration 

frequency of Smsc group was significantly higher than in Sc rats (P<0.01). Also, there is a 

statistically significant interaction between treatment and hole position (P=0.008).  

3.2.2- Goal sector exploration- The hole exploration frequency of senile rats before and after MSC 

treatment was assessed and compared in different goal sectors. In GS1 Sc rats showed no significant 

difference before and after experimental day 0 (P=0.116) whereas MSC treatment induced a 

significant increase in GS1 exploration (Fig 3-B, P=0.016). In the case of GS3, exploration 

frequency both old rat groups showed a significant difference before and after experimental day 0 

(P=0.016). In the Smsc rats, treatment induced a significant increase in GS3 exploration frequency 

(Fig 3-C, P=0.015). When as compared progression in the GS3 exploratory frequency (pos-treatment 

- pre-treatment), Smsc rats presented an improvement in this parameter but Sc rats showed an 

impaired behavior (Fig 3-D, P=0.001). 

 

3.3 Morphometric Changes 

3.3.1- Effects of MSCs treatment on hippocampal morphometry in old rats 

A stereological assessment of neuroblasts and microglial cells was performed in the dorsal 

hippocampus of young and senile control rats as well as in MSCs-treated aged rats. There was a 

significant increase in the number of DCX cells (neuroblasts) in the DG of MSC-treated senile 

versus control senile rats. This could be seen at qualitative (Fig 4-A, B, C) and statistical level (Fig 4 
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D, P=0.042). As expected, the number of DCX neurons in the same region was much higher in 

young than in old rats (Fig 4-D inset). Hippocampal microglial cells were classified as non-reactive 

and reactive and were counted in the Stratum Radiatum (Srad). As expected, the number of reactive 

microglial cells increased with age but in the senile rats MSC treatment induced a significant 

decrease in the number of reactive Iba-1 immunoreactive cells as compared with senile control 

counterparts (Fig 5-D, P=0.075). Non-reactive microglial cell number in the MSC-treated senile rats 

was significantly increased as compared with senile controls (Fig. 5-E, P=0.002). MSC treatment 

induced no significant changes in total Iba-1 immunoreactive cells (Fig 5-F, P=0.076). 

 

3.4 Synaptic protein changes after icv-MSCs administration 

In order to explore the effect of MSCs in the senile hippocampus synapses, we determined the 

protein levels of tree synaptic proteins by Western blot (WB) analysis (Fig. 6-A). SYP, a polypeptide 

component of small presynaptic transmitter-containing vesicles in neurons [30], neither age nor 

treatment induced changes in SYP levels (Fig. 6-B, P=0.588). However, SYT1, a synaptic vesicle-

associated membrane protein that acts as calcium sensor for fast neurotransmitter release from 

presynaptic nerve terminals [31], showed significant decrease in senile rats (Fig. 6-C, P=0.001). 

Also, PSD-95, a membrane-associated guanylate kinase (MAGUK), that is the major scaffolding 

protein in the excitatory postsynaptic density and a potent regulator of synaptic strength [32], showed 

significant decrease in senile rats (Fig. 6-D, P=0.0423). 

 

4.-DISCUSSION 

Previous studies have shown that lifelong intravenous (iv) injection of amniotic membrane-derived 

hMSCs (AM-MSCs) or adipose tissue-derived MSCs (AD-MSCs) to 10-month-old male F344 had 

life-extending effects. The AM-MSCs and AD-MSC improved cognitive and physical functions of 

naturally aging rats, extending life span by 23 and 31%, respectively [33]. The above findings, as 
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well as results from others [34] and from our group suggest that MSCs possess the ability to slow 

down the age-related decline typical of higher animal species when the treatment is begun during 

adulthood. Thus, we have demonstrated that lifelong iv injection of hMSCs begun in a rat at 6 

months of age, markedly prolonged (22%) lifespan (44 months versus the typical 36 months of 

standard laboratory rats [35, 36]). In the present study we focused our work on the effect of MSC 

treatment when begun in already old rats, in an attempt to determine whether administration of hBM-

MSCs to aged rats could be able to restore their deficient cognitive performance and altered 

hippocampal morphology. Although the main goal of the study was to assess the possible restorative 

effects of MSC on spatial memory performance and hippocampal neurogenesis in old rats, the fact 

that an exploration of the restorative effects of mesenchymal cell therapy has, to our knowledge, 

never been reported in old rats prompted us to explore the effect of MSC-treatment in another 

relevant cell population, the microglia. Since old rats are highly valuable animals, we screened a 

number of structural and cellular features in the hippocampus of these rats and found that, besides 

spatial memory performance, microglial activity was also rescued by the treatment. Consequently, 

we deemed that reporting on the beneficial effect of the treatment on microglial reactivity was a 

valuable addition.  

We chose the ependymal route of administration in order to avoid losing MSCs in extraneural 

compartments like liver and lungs. Since the time-course results reveal a slowly declining number of 

MSCs in the cerebroventricular space, it seems that the injected MSCs have a limited time-window 

of permanence in the cerebroventricular spaces of old animals. The rather modest number of Dil(+) 

cells in the brain parenchyma observed in our old rats differs from the findings reported in young rats 

icv injected with BM-MSCs [14]. The study reports that after transplantation, MSCs migrated mainly 

to the ipsilateral DG, CA1 and CA3 regions of the hippocampus, and to a lesser extent, to other 

regions of the brain. The authors used FSL rat-derived BM-MSCs whereas in our study human-

derived BM-MSCs were used. This difference might account for the contrast between the migration 
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observed by Tfilin and co-workers in the brain of their rats and the limited migration of hMSC into 

the brain parenchyma of ours. 

Concerning the effect of hBM-MSCs on behavior, our results showing an improvement induced by 

MSC-treatment in old rats on the accuracy to locate the goal sector in the Barnes maze are in line 

with documented evidence of cognitive improvement in mouse and rat models of neurodegenerative 

diseases. Thus, it has been reported that in an acute AD mouse model, intra-hippocampal 

administration of human umbilical cord blood-derived mesenchymal stem cells (hUC-MSCs) 

partially rescued cognitive performance as assessed by the Morris water maze test [37]. In a study 

mentioned above adult rat MSCs were injected (105 cells/bilaterally) into the lateral ventricle of 

Flinders sensitive line (FSL), rats, an animal model for depression. When twelve days later, rats were 

assessed by the forced swim test and the dominant–submissive relationship paradigm, results 

revealed that MSCs-transplanted FSL rats had a significant improvement in their behavioral 

performance in both tests [14].  

Our observation that MSCs-treatment significantly increased the number of DCX neurons in the DG 

of old rats suggests a mild but significant increase in either neurogenesis or mean half-life of 

neuroblasts in this region. Indeed, there is evidence that when implanted in the hippocampal DG of 

rodents, MSCs promote neurogenesis. Thus, it was reported that hMSCs implanted into the 

hippocampal DG of immunodeficient mice induced migration of BrdUrd-labeled endogenous cells 

throughout the dorsal hippocampus (positive for DCX). Some of the cells expressed markers for 

astrocytes and for neural or oligodendrocyte progenitors [9]. In the study by Tfilin et al, 2010, cited 

above, the authors reported that after icv transplantation, neurogenesis was increased in the ipsilateral 

hippocampal DG of engrafted rats (granular cell layer) and was correlated with MSCs engraftment 

and behavioral performance [14]. 

The initial assumption in exploring the mechanisms by which MSCs ameliorate central nervous 

system (CNS) injury was that they migrated to the injured tissues and transdifferentiated to replace 
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damaged neural cells [15, 16]. However, more recent studies showed that transplanted MSCs exert 

their therapeutic effect without evidence of engraftment [38–40], which indicates that their 

regenerative and differentiating abilities may not play a role in enhancing tissue repair or limiting 

tissue destruction.  

Furthermore, it is known that when stimulated by inflammatory signals, MSCs secrete a variety of 

bioactive molecules, such as trophic factors and anti-inflammatory molecules able to modulate the 

host microenvironment [41], which is likely to be the main mechanism responsible for their 

therapeutic effects when they are administered iv or icv [42]. Some of the neurotrophic factors 

responsible for these effects are likely to come from the MSCs themselves as suggested by a study in 

which screening a human MSCs cDNA library revealed expressed transcripts encoding BDNF and β-

NGF. Furthermore, immunostaining demonstrated that BDNF and β-NGF proteins were restricted to 

specific MSCs subpopulations, which was confirmed by ELISA analysis of 56 separate subclones of 

hMSCs [5]. Besides, neurotrophic factor-mediated protection was reported following human MSCs 

transplantation into rodent models of neurodegenerative diseases [see an extend revision in Volkman 

& Offen (2017), 43]. Therefore, the possibility exists that neurotrophic factors released by our hBM-

MSCs into the cerebroventricular space reached hippocampal cells thus inducing a moderate 

improvement in function and structure.  

Immune reactivity and inflammatory processes increase with aging in the brain [18], with microglia 

playing a central role in this immune dysregulation [19, 20]. Innate immunity within the central 

nervous system is primarily provided by resident microglia, brain cells that are essential in immune 

surveillance and that also mediate the coordinated responses between the immune system and the 

brain. With normal aging, microglia develop a more reactive phenotype. There are also major 

differences in microglial biology between young and old age when the immune system is challenged, 

and microglia activated. In this context, microglial activation is amplified and prolonged in the aged 

brain compared to adult brains. Prolonged microglial activation leads to the release of pro-
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inflammatory cytokines that exacerbate neuroinflammation, contributing to neuronal loss and 

impairment of cognitive function [19, 20].  

As expected, the number of reactive microglial cells in the Srad of our senile rats was significantly 

higher than in young controls but after hBM-MSC treatment the number of reactive microglial cells 

in the Srad of senile rats was back to young levels. This is in line with evidence that BM-MSCs 

maintain the resting phenotype of microglia and inhibit microglial activation through their 

production of several factors [20]. Neither aging nor MSC treatment appeared to modify the total 

number microglial cells in the Srad of our rats.   

There is growing evidence in support of a relevant role of microglia in synaptic circuit remodeling 

[44–48]. Particularly, it was observed that microglia modulates synapses through elimination of 

presynaptic material [42, 45]. Additionally, a distinctive feature of aging is the cognitive deficit, 

which in the hippocampus correlates with altered synaptic morphology including loss of pre- and 

post-synaptic proteins [49]. The present study revealed a differential expression of synaptic protein 

in the hippocampus of senile rats; specifically, the presynaptic SYT1 and the postsynaptic PSD95 

proteins are decreased. Interestingly, a single MSCs transplantation in these animals restored the 

SYT1 levels to young animal values. This observation is in line with a study in a conventional aging 

model in mice in which hUC-MSCs remarkably enhanced the synaptic plasticity in the CA1 area of 

aged hippocampus [50]. 

 

Conclusions 

We conclude that the restorative action of hBM-MSCs is stronger when they are used in adult 

animals as suggested by the life extension studies described above. The present results suggest that 

when very old rats are treated with hBM-MSCs the restorative effect is milder. Thus, it seems 

plausible to hypothesize that MSCs exert a stabilizing action on brain homeostasis rather than a 

restorative or rejuvenating effect. We used bone marrow MSCs from an adult donor; if bone marrow 
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MSCs from younger donors or umbilical cord-derived MSCs had been used in old rats, the effects 

might have been stronger.  
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FIGURE LEGENDS 

 

Figure 1. Experimental Design and time-course of hBM-MSCs after icv injection. Panel A-

illustrates the experimental design of the study. All animals were submitted to 2 daily acquisition 

trial from experimental day -9 to -6 and to a probe trial on experimental day -5. The hBM-MSCs 

were stereotaxically injected in the LV of Smsc rats on experimental day 0. Yc and Sc remained 

intact. From experimental day 15 to18 all rats received a second (post treatment) series of acquisition 

trial and a probe trial on experimental day 18. On experimental day 21 rats were sacrificed, perfused 

with fixative and the brains removed for morphological analysis. Panel B- Fluorescence microscopy 

of ventricular brain sections at different times after labeled hBM-MSC icv injection. After injection, 

hBM-MSCs numbers in the ventricular spaces declined slowly with most of the cells remaining in 

contact with the ependymal cell layer. A moderate number of Dil-labeled cells can be observed into 

the brain parenchyma near the ependymal cell layer. None was observed near the DG or other brain 

structures distant from the ventricular spaces. Abbreviation: Hab, habituation; LV, lateral ventricle; 

DG, dentate gyrus. Scale bar, 500 µm. 

 

Figure 2. Effect of MSC therapy on hole exploration frequency. At pretreatment (Panel A) both 

groups showed a similar exploratory frequency around hole #0. After treatment (Panel B) the 

exploration frequency of the MSC–treated senile rats for hole # 0 and 1, was significantly higher 

than those of the intact counterparts. Exploration frequency in the other holes remained similar for Sc 

versus Smsc rats for the equivalent holes in the platform. Insets show hole exploration frequency of 

Yc. Notice that hole exploratory frequency in young rats is 2.5-fold higher around the escape hole 

than in the senile counterparts. N=8 per group. All data is represented as mean ± SEM. *P<0.05 

versus corresponding senile control. 
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Figure 3. Effect of MSCs treatment on sector exploration frequency. A) Diagrammatic 

representation of Barnes maze sectors (GS1 and GS3). B) GS1 exploratory frequency. The Sc group 

shows no significant pre- versus post-treatment changes, but Smsc rats significantly increased 

exploratory frequency. C) In the GS3 exploratory frequency Sc and Smsc show significant post-

treatment changes namely, a decline for Sc and an increase for Smsc. D) The bar plot represents the 

progression in the GS3 exploratory frequency. It showed a positive progression in the Smsc rats and 

a negative progression in the Sc group. Abbreviations: GS, goal sector. N=8 per group. All data is 

represented as mean ±SEM. *P<0.05: ***, P<0.001.  

 

Figure 4. Doublecortin (DCX) expression in the dentate gyrus (DG) of young intact, senile 

intact and senile+MSCs rats. Images: Coronal sections of the DG in representative animals of Yc 

(A), Sc (B), and Smsc (C) showing DCX neurons. D panel corresponds to a plot showing DCX cell 

numbers in the DG of senile rats. The inset shows DCX cell number in the same hippocampal region 

of Yc rats. Abbreviations: dh, dentate hilus; gcl, granular cell layer; ml, molecular layer. N=4 per 

group. All data is represented as mean ±SEM. Comparisons were made between senile groups, 

*P<0.05. Scale bar: 25 µm. 

 

Figure 5. Iba-1 immunoreactive cells in the Stratum Radiatum of MSC-treated senile rats: 

Coronal sections of the dorsal hippocampus in representative animals of each group showing Iba-1 

immunoreactive cells. Left photomicrographs of Yc (A), Sc (B), and Smsc (C) groups show Iba-1 

positive cells in the Srad. Right plots show the reactive (D), nonreactive (E) and the total number of 

microglia (F) in the Srad in the Yc, Sc, and Smsc rats. Abbreviations: Srad, Stratum radiatum, and 

py, Stratum pyramidale. N=4 per group. All data is represented as mean ± SEM. Comparisons were 

made versus the Sc group, **P<0.01; ***P<0.001. Scale bar: 50 µm. 
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Figure 6. MSCs therapy effect on rat hippocampal protein levels. Images of VIN, SYT1, SYP, 

PSD95, and β-actin hippocampus protein levels of each animal (A). Quantification of protein levels 

of SYP (B), SYT1 (C), normalized to the relative density of VIN, and PSD95 (D) normalized to the 

relative density of β-actin. A significant decrease in SYT1 and PSD95 protein levels was observed in 

the Sc rats, while cell therapy led to a recovery of SYT1 level in the Smsc rats. SYP protein levels 

tend to decrease in the Sc group, but no significant differences are observed between both 

experimental groups. Abbreviation: VIN, Vinculin; SYT1, synaptotagmin 1; SYP, synaptophysin; 

PSD95, postsynaptic density protein 95. N=4 per group. All data is represented as mean ±SEM. 

Comparisons were made between groups, *P<0.05; ***P<0.001. 
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