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ABSTRACT. In this paper we obtain the Lipschitz continuity of nonnegative local minimizers of
the functional J(v) = [, (F(z,v, Vo) + AM(@)X{v>0}) dz, under nonstandard growth conditions of
the energy function F(z,s,7) and 0 < Amin < A() < Amax < oo. This is the optimal regularity
for the problem. Our results generalize the ones we obtained in the case of the inhomogeneous
p(z)-Laplacian in our previous work [17].
Nonnegative local minimizers u satisfy in their positivity set a general nonlinear degenerate/singular

equation divA(z, u, Vu) = B(z,u, Vu) of nonstandard growth type. As a by-product of our study,
we obtain several results for this equation that are of independent interest.

1. INTRODUCTION

In this paper we study the regularity properties of nonnegative, local minimizers of the functional

(1.1) J(v) = /Q (F(z,v,Vv) + M) X {u>0}) d,

under nonstandard growth conditions of the energy function F'(z,s,n) and 0 < Apin < A(z) <
Amax < 00.

There has been a great deal of interest in these type of problems. Their study started with the
seminal paper of Alt and Caffarelli [2] where the case F(z,s,n) = 1|n|? was considered. Later
on, [3] considered the case F(z,s,n) = G(|n|?) under uniform ellipticity assumptions. The general
power case F(x,s,m) = %|77|p with 1 < p < oo was studied in [8], and F(z,s,n) = G(|n|) with G
convex under the assumption that G’ satisfies Lieberman’s condition namely, G”(t) ~ G'(t)/t, was
analyzed in [19]. The linear inhomogeneous case F(z,s,n) = 1[n|* + f(z)s was addressed in [12]
and [15].

The minimization problem for the functional (1.1) with F(z,s,n) = flxﬂmp(x) was first con-
sidered in [6] for p(z) > 2 and then, in [16] and [17] in the inhomogeneous case F(z,s,n) =
ﬁlx)hﬂp(a@) + f(z)s, for 1 < p(z) < oo and f € L*>(Q2). In [17], among other results, we proved that
nonnegative local minimizers u are locally Lipschitz continuous and satisfy

Apzyu = div(|Vu(z)[P®)2Vu) = £ in {u > 0}.
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The operator A, ), called the p(r)-Laplacian, extends the Laplacian, where p(r) = 2 and the p-
Laplacian, where p(z) = p. This is a prototype operator with nonstandard growth. The functional
setting for the study of this type of operators are the variable exponent Lebesgue and Sobolev
spaces LP() and W1r().

Functionals and PDEs with nonstandard growth have a wide range of applications, such as the
modelling of non-Newtonian fluids, as for instance, electrorheological [21] or thermorheological fluids
[4]. Other areas of application include non-linear elasticity [24], image reconstruction [1, 7], the
modelling of electric conductors [25], as well as processes of filtration of gases in non-homogeneous
porous media [5].

As far as we know, no result on the minimization of (1.1) with F(z, s,n) a general function with
nonstandard growth has been obtained.

The main purpose of our work is to prove the local Lipschitz continuity of nonnegative local
minimizers of such an energy. We stress that this is the optimal regularity since it is known from
the particular cases refered to above that the gradient of a minimizer u jumps across QN o{u > 0}.

We prove that nonnegative minimizers of (1.1) are solutions to the associated equation in their
positivity sets. That is, a local minimizer u > 0 satisfies

(1.2) divA(z,u, Vu) = B(z,u, Vu)

in {u > 0}, where
A($>8777) = VWF(xvsan)a B(.CL',S,??) = Fs(xvsan)'

Under our assumptions, the governing equation (1.2) is given by A(x, s,n) satisfying

Xoln[P®=21¢? < Z )&i&; < Ao|nP@=2|¢]%,

and has a right hand side given by B(z, s, 7]) # 0 of p(z)-type growth in 7. This equation is singular
in the regions where 1 < p(z) < 2 and degenerate in the ones where p(x) > 2.

Our study thus presents new features, needed in order to overcome the deep technical difficulties
arising due to the nonlinear degenerate/singular nature and the z and s dependence of this general
operator associated to our energy functional (1.1).

The first part of the paper is devoted to the study of equation (1.2) in a domain 2, under
nonstandard growth conditions of p(z)-type. We prove existence results, a comparison principle, a
uniqueness result, a maximum principle and other local L* bounds of solutions of this equation.
These delicate results are of independent interest.

Some of these results are obtained under the growth assumption (3.14). We remark that this
hypothesis on the functions A and B allows to consider very general equations. This condition not
only enables us to get the inequality in Proposition 3.3 that is a main tool for all the proofs in the
paper, but also it is invariant under rescalings. All these results are included in Section 3.

In the second part of the paper we deal with the minimization problem for the functional (1.1).
In fact, in Section 4 we first get an existence result for minimizers. We also prove nonnegativity
and boundedness, under suitable assumptions. Then, we prove the local Holder and Lipschitz
continuity of nonnegative local minimizers (Theorems 4.3 and 4.5).

The proofs in Section 4 involve delicate rescalings. One of the main difficulties this problem

presents is that it is not invariant under the rescaling u(x) — "(Zz), if ¢ # k —rescaling that
is a crucial tool in dealing with this type of problems. The rescaled functionals lose the uniform
properties and nontrivial modifications are needed to get through the proofs. Even after these
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modifications, there is in general no limit equation for the rescaled problems due to the growth we
are allowing to the function B(x, s,n). Novel arguments are used to complete the proof of Theorem
4.4. In fact, we are able to show that, although there is in general no limit equation for the rescaled
problems, there is a limit function and it satisfies Harnack’s inequality (see (4.58)).

A thorough follow up of the dependence of the bounds found in Section 3 with respect to the
structural conditions on F, A and B is of most importance as well.

Let us point out that the results in the paper are new even in the case p(z) = p constant.

Finally, in Section 5 we present some examples of functionals (1.1) where our results can be used.
Our examples include functionals (1.1) involving energy functions of the form

I[P
p(z)

A possible example of admissible functions a(z, s), f(x, s) is given by

F(z,s,m) = a(x,s)

+ f(x,s).

a(z,s) = ap(z)(1 +5)"1@) ao(z) > 0,0 < q(z) < qo(x),

q0
for s in the range where the nonnegative local minimizer takes values, go(x) a function depending
on p(z) and
f(LU, S) = b(x)|s|‘r(a:)’ b(:L’) >0, T(‘T) > 2,
with 7(z) satisfying (2.7).
Our results also apply to functionals (1.1) involving energy functions of the form

F(x,s,m) = G(z,n) + f(z,5).
Some admissible G(z,n), f(z,s) are
G(z,m) = a(@)G(nP™)  a(z) >0,G" >0,
G(z,n) = A(z)n - nlnPE)—2 A(z) € RV*N uniformly elliptic,

[z, s) = g(z)s.
Also,
F(I‘, S, 77) = al(:E)Fl(x’ S, 77) + a2(x)F2(x7 S, 77)7 al(x) >0,
is an admissible function if both Fi(z,s,n) and Fy(z,s,n) are admissible.
We begin our paper with a section where we state the hypotheses on F, A, B, A and p(z) that

will be used throught the article. And we end it with an Appendix where we state some properties
of the function spaces LP() and WP() where the problem is well posed.

1.1. Preliminaries on Lebesgue and Sobolev spaces with variable exponent. Let p: ) —
[1,00) be a measurable bounded function, called a variable exponent on Q and denote ppax =
esssup p(z) and pyin = essinf p(z). We define the variable exponent Lebesgue space Lp(')(Q) to
consist of all measurable functions u : Q@ — R for which the modular g,)(u) = [, [u(z) P(®) dz is
finite. We define the Luxemburg norm on this space by

[ull ey ) = llullpey = If{A >0 gy (u/A) < 1}

This norm makes LP() () a Banach space.
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There holds the following relation between g,.)(u) and [Jul| ()

win { ([ Jup@ )" ([ 1 de) "} < oo
< max {(/Q |u|P(®) dx) l/pmm, (/Q |u[P(®) dx) 1/pmax}‘

Moreover, the dual of LP() () is LP'()(Q) with ﬁ + p,ilz) =1
Let WHP()(Q) denote the space of measurable functions u such that u and the distributional

derivative Vu are in LP()(Q). The norm

ullipey = lullpey + [1Valllp
makes W'P()(Q) a Banach space.

The space Wol’p(')(Q) is defined as the closure of the C$°(2) in W1HP()(Q).
For the sake of completeness we include in an Appendix at the end of the paper some additional
results on these spaces that are used throughout the paper.

1.2. Notation.

e N  spatial dimension

e |S| N-dimensional Lebesgue measure of the set S

e B,.(zp) open ball of radius r and center xg

e B, open ball of radius r and center 0

® X characteristic function of the set S

e vt = max(u,0), v~ = max(—u,0)

e (¢,n) and &-n  both denote scalar product in RY

2. ASSUMPTIONS

In this section we collect all the assumptions that will be made along the paper.

Throughout the paper Q will denote a C! bounded domain in RY. In addition, the following
assumptions will be made:
2.1. Assumptions on p(z). We assume that the function p(z) is measurable in Q and verifies
1 < Pmin S p(x) S Pmax < oo, T € Q

We assume further that p(z) is Lipschitz continuous in © and we denote by L the Lipschitz
constant of p(z), namely, ||Vp||p~q) < L.

When we are restricted to a ball B, we use p;” and p;' to denote the infimum and the supremum
of p(z) over B,.

2.2. Assumptions on A(z). We assume that the function A(z) is measurable in Q and verifies

0 < Amin < A2) < Apax < 00, z € Q.
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2.3. Assumptions on F. We assume that F' is measurable in Q x R x RY, and for every z € Q,
F(z,-,-) € CH{R x R¥)NC%R x RV \ {0}).

We denote A(x,s,n) = V,F(x,s,n) and B(z,s,n) = Fs(z,s,n).

2.4. Assumptions on A. We assume that A € C(QxRxRY RY) and for every z € Q, A(z,-,-) €
CHR x RN\ {0},RY). Moreover, there exist positive constants Ao and Ao, and 3 € (0,1) such
that for every z,x1, 72 € €, 5,51,50 € R, n € RV \ {0} and ¢ € RY, the following conditions are
satisfied:

(2.1) Alz, 5,0) = 0,

DA, .
22 D 5, s g 2 Nl e,

i,9 J
DA, .

(23) Z ‘ P .(35757"7)‘ < A0‘77|p( ) 2,

i, i
(24)  |Awrs,m) = Alwz, 5.0)| < Aolay — @l (Il + P21 (1 + [log [n]]),
(2‘5) |A(l‘,51,77) - A(x73277))‘ < A0|51 — 52||n|p(w)—1‘

2.5. Assumptions on B. We assume that B is measurable in Q x R xRN and for every z € Q,
B(z,-,-) € CY(R x RY), and for every (z,s,7) € Q x R x RV,

(2.6) | B, 5,m)| < Ao(1+ [P +[s|7)),

where Ag is as in the assumptions on A and

7(z) > p(x) and 7€ C(Q),
. Np(z)

T2) <p(r) = "

7(x) arbitrary if ppin > N,

T(x) = p(ﬂ?) if Pmin < N < Pmax-

if Prax < IV,
(2.7) + Pma

Remark 2.1. From (2.1) and (2.3) we get

L 04; B o)
|Ai(ZL‘,S,T])| = |Ai(fL‘,S,T]> - Ai(x7830)| = ‘/0 Z 67’] (%3,“7)%' dt?‘ < a(pmin)AU|77|p( ) 17
: J
J
so that
(2.8) A, 5,1)| < &(pmin) N o[y 1,

From (2.1) and (2.2) we have

1 0A;
Az, 5,m) 1= (A(z, 5,7) — Az, 5,0) -7 = /0 SO % s g dt,
ij

~ O
so that
(2.9) A(z,5,1) - 0 > &(Pmasx) Mol [P
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3. EXISTENCE, UNIQUENESS AND BOUNDS OF SOLUTIONS TO EQUATION (1.2)

In this section we consider A and B as in Section 2 and we prove results for solutions of the
equation

(3.1) divA(z,u, Vu) = B(z,u, Vu) in Q.

Namely, existence, comparison principle, uniqueness, maximum principle and bounds of solutions.

Our first result is Proposition 3.1, were we prove existence of a solution to (3.1) with given
boundary data. In order to prove the existence of a solution to (3.1) we show that, given u €
WPL)(Q), there exists a minimizer of the functional

(3.2) JQ(U):/QF(:):,U,VU) dx

in u+ Wol’p(')(Q), where F' is as in Section 2, A(x,s,n) = V,F(x,s,n) and B(z,s,n) = Fs(x,s,n).

Then, in Proposition 3.2 we get an existence result under a growth assumption on the function
F stronger than (3.3) in Proposition 3.1, but without the small oscillation hypothesis there.

In Proposition 3.4 and Corollary 3.2 we prove comparison and uniqueness for this problem,
assuming that condition (3.14) below holds. In Proposition 3.5 we prove that solutions to (3.1)
with bounded boundary data are bounded and in Proposition 3.6 we prove a maximum principle
for this problem, under suitable assumptions. In Proposition 3.7 we give another existence result
of a bounded solution.

We start with the definition of solution to (3.1).
Definition 3.1. Let p, A and B be as in Section 2. We say that u is a solution to (3.1) if
u € WHP0)(Q) and, for every ¢ € C3°(52), there holds that

—/A(a:,u,Vu)-Vgodx:/B(m,u,Vu)godm.
Q Q

We are using that, under the conditions in (2.7), the embedding theorem (see Theorem A.5) applies.

Our first existence result is

Proposition 3.1. Let p, F, A, B as in Section 2 and let ' C Q be a C* domain. Let u € WHPO) (Q)
and let us call p* = supg p(x), p~ = infgy p(x). Assume that there exist v,c1 € Ry, pmin > > 0
and g € L' () such that

(3.3) F(z,s,m) > V[P —c1|sP@ 0 — g(z) in Q.

Assume, moreover that § > p™ — p~ and that
(3.4) Flo,s,m) < v nfP® + s + g(a) in Q,

with T satisfying (2.7).

Then, there exists a solution v € u + Wol’p(')(Q’) to (3.1) in Q.

Moreover, [[vlly 1oy < O, for a constant C' depending only |lully 100y, [19llL1@r), (€],
diam(Q'), N, p~, p*, 0, L, v, c1, ||T||Leo () and the C' norm of O€Y.
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Proof. We will show that there is a minimizer of Jo/ in u + Wy” ( )(Q’ ) where
Jo(v) = / F(z,v,Vv)dx.
/

This minimizer is a solution to the associated Euler-Lagrange equation (3.1) in Q.

We will use the embedding theorem (see Theorem A.5) that states that, under the conditions in
(2.7), WhPO(Q) < L™ () continuously.

So, let v, be a minimizing sequence. That is, v, € u + I/VO1 P0) (€) and

I = lim Jo(v,) = inf Jo(w) < | F(z,u,Vu)dx.
n—oo u—l—W&’p(')(Q/) o

Let us show that there is a constant £ > 0 such that [[vn|[p0) (@) < k. In fact, by (3.3), for n

large,

1
V0, |P®) dz < 1+/ F(z,u,Vu) dx—i—cl/ vn]p(x)_‘sdx+/ g(x) dx.
Q/ Q/ 14 Q/ 14

Q/
By Poincare’s inequality (Theorem A.4)
lvn — ullprer @y < Cor ||V (0n — W)l oy ()
Hence, recalling Proposition A.1,

[vnll 2o @y < llll oy oy + Car [IVUnll oo @y + 11Vl poey ()]

< C[HUHW1,p(.)(Q,) + max{(/ﬂ/ ‘an‘p(x) dm)l/p_, (/Q/ ‘an‘p(x) dx)l/p+}]

< C[l —|—max{(/ |Un|p(z)—6 d$)1/p7’ (/ ‘Un’p(x)_(g da:) 1/p+}]
Q) Q/

with C' depending on Hu||W1,p(.)(Q,), gl 21y, N, 0™, pt, 4, |, diam(Q), L, |17 Loo (), the Ct
norm of 9€, and the constants in (3.3).

Observe that in case u = M, there holds that fQ, F(z,u,Vu)dz is bounded by a constant that
depends only on M, ||7][ze(q) and |Q'|. Hence, in that case C is independent of the regularity of
.

Since we want to find a uniform bound of ||v,|| Lp()(q)> We may assume that this norm is larger

than 1. Let g be the middle point of the interval [pt — 4, p~]. By Young’s inequality with r(z) =
q

p(z)=6”
/ lun|P@ =0 d < C. +s/ |vn|? dex,

for 0 < ¢ < 1 with C. depending only on |Q/|,&,p~,p" and 6. On the other hand, since lvnll Loy <
Cllvnll p) gy With C depending only on V|, p~,pT and 4,

[ ol da < (Clloullooran)"
So that
~ 1 a
”vnHLP(-)(Q’) < C[Ca +ert (HUTZHLP(')(Q’)) p_]
~ 1
S C[Cg + €p+ H,UnHLp(-)(QI)} .
By choosing e small enough, we find that

(3.5) [onll Loey oy < €



8 CLAUDIA LEDERMAN AND NOEMI WOLANSKI

with C depending on ||, diam(Q'), [lully 100,227 Ny 0, gl Ly [I7llpe (@), the Cct
norm of 9, v and c¢;.

From the computations above we find that [, |0, [P®) =0 dzz < Cy. So that we have that I > —o0
and

(3.6) IV onl ooy @y < Co,

with C2 depending on [Q', diam(Q'), [lullyree)@y,p ™2 N, 6, llgllzrys Ly (7]l @), the Ct
norm of 9, v and c¢;.

From our comment above, we have that in case v = M in €, the constant C5 is independent of
the regularity of 9€Y'.

Let us proceed with the proof of the existence of a minimizer. By the estimates above, for a
subsequence that we still call v,, there holds that there exists v € u + Wol P (')(Q’ ), such that

vy = v in WPO(Q), vy — v in LP () and almost everywhere,

and such that the bounds (3.5) and (3.6) also hold for v.

By Egorov’s Theorem, for every ¢ > 0 there exists Q. such that |\ Q| < € and v, — v
uniformly in €.

On the other hand, if we set Qx = {z € Q' /|v| + |Vv| < K}, there holds that [\ Qx| — 0 as
K — oo.

Let Q. x = Q. N Q. Then, |\ Q. x| - 0ase — 0 and K — oo.

There holds

(3.7) lim sup/ F(z,v,,Vu,)dx < I+ cl/
QE,K

n—o0o Q/\QE’K

]v\p(“"’)_‘sdm—i—/ gdz.
Q/\QE,K

Let us prove that

/ F(z,v,Vv)dx < I+cl/ |U|p(m)—6 da +/ gdz.
Qe,K Q,\QS,K Q,\Qa,K

In fact,

/ F(z,vn, Vv,) dx — / F(x,v,Vv)dr = / [F(x,vn, V) — F(z, vy, Vv)] dx
Qe,K QE,K

QE,K

+/ [F(z,vp, Vv) — F(2,v,Vv)] do = A+ B.
Qs,K

On the one hand, B — 0 since F(z,v,, Vv) — F(z,v,Vv) — 0 uniformly in € g and it is
uniformly bounded. On the other hand, by the convexity assumption on F(z,s,n) with respect to
,

AZ/ Az, vy, Vo) - (Vo, —Vu)de -0 as n— oo
QE,K
since A(x, vy, Vv) = A(z,v, Vo) uniformly in Q. g, they are uniformly bounded and Vv, — Vv

weakly in LPO)(Q. ).
Hence, for every ¢, K,

/ F(z,v,Vv)dx < I+ cl/ 0P~ dy —I—/ gdx.
Qs,K Q,\QE,K Q/\Qs,K
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Now, by letting ¢ —+ 0 and K — oo, we get

/ F(z,v,Vv)dx <1,

and therefore, v is a minimizer of Jq in u + Wol’p(')(ﬂ’) and a solution to (3.1). O

As a corollary of Proposition 3.1 we have the following existence result that will be used in the
next section.

Corollary 3.1. Let p, F, A, B as in Section 2 and let Q' C Q be a C* domain. Let u € WPO)(Q)
and let us call p* = supqy p(x), p~ = infq p(x). Assume that there exist v,c1 € Ry and pmin >
0 > 0 such that

(3.8) F(z,s,m) > v|n|P® — cl(|s|p(x)_5 +1) in Q.
Assume, moreover that § > p™ — p~ and that
(3.9) F(z,s,m) < v Y n|P@ + cl(]s]T(x) +1) in Q,
with 7(x) satisfying (2.7).
Then, there exists a solution v € u + Wol’p(’)(Q’) to (3.1) in ' and [|v|lyrpey oy < C, for a

constant C' depending only [|ully1.00) (), ||, diam(Q'), N, p~, p*, 0, L, v, c1, ||7|| oo () and the
C' norm of 0.

With a stronger growth assumption on the s variable for the function F(z,s,n) we get an
existence result without the small oscillation assumption of the function p.

Proposition 3.2. Let p, F, A, B as in Section 2 and let Q' C Q be a C' domain. Letu € WP0)(Q).
Assume that there exist v,c1 € Ry, g € LY(Q) and 1 < q¢ < pmin such that

(3.10) F(z,s,n) > v[n|P® —ci|s|? — g(z) in Q.
Assume, moreover that
(3.11) F(z,s,m) < v HnP@ 4+ ¢1]s|"® + g(z) in Q,
with T satisfying (2.7).
Then, there exists a solution v € u + Wol’p(‘)(Q’) to (3.1) in Q' and [|v|lyrec oy < C, for a

constant C depending only ||ullyo0 @y 11901y, 1], diam(€), N, pmin, Pmax, ¢ L, v, c1,
|7/ ooy and the C* norm of OSY.

Proof. We proceed as in the proof of Proposition 3.1 and we prove that a minimizing sequence {vy, }
satisfies

(3.12) 1// \an\p(x)dng F(x,u,Vu)+1+/ g(m)d:c+cl/ |vn|? dz.
Q/ Q/ / Q/

We want to prove that there is a constant such that [, |V, [P@®) dz < C. So, we can assume

that [, |V, |P®) do > 1.
Thus,

[vnllLaary < CHUHHLP(-)(Q/) < C[HUHWLP(')(Q/) + HVUHHLP(')(Q/)]

S C[HU’HWLP()(Q/) + (A/ |V'Un|p($) d(I}') l/pmin}’



10 CLAUDIA LEDERMAN AND NOEMI WOLANSKI

where C' depends on ¢, Pmin, Pmax, IV, L and ||, diam (). Hence, as ¢ < pmin,

/ [on|? dz < C’(l + (/ V0, P@ dm)(l/l)m.)
oY o

(3.13) .
< C’—l—a/ Vo |P®) da
Q/

with C' depending only on ¢, pmin, Pmax, IV, ||, diam(€Q'), L, [ullwree . and C depending on the
same constants and also on €.

Thus, by (3.12) and (3.13),

/ IV, [P®) dz < C
Q/

with C depending only on ¢, puin, Pmax, N, ¥, V], diam(Q'), L, [oy g(x) dz, c1, ||7]| o0 (ry, the C*
norm of 992" and [|ully1.00)(q)-

Now, as in the proof of Proposition 3.1, we get that there exists a subsequence that we still call
{vp} and a function v € u + Wol’p(')(Q’) such that

vy — v in LPmin(Q)), vp = v weakly in WO Q).

Now, the proof follows as that of Proposition 3.1. O

We next prove a result valid for solutions of equation (3.1) that will be of use in the proofs of
Hélder and Lipschitz continuity of minimizers of the energy functional (1.1)

Proposition 3.3. Let p, F, A and B be as in Section 2. Assume moreover that

0A;
N (.CE, 8777)525] + Bs(:r,s,n)wQ,
Ty

1
(314) 2/ Ao, s.m) Gl < 5 3
vJ

for every (z,s,m) € A x R x RV \ {0}, ¢ € RY and w € R.
Let u € WHPO(Q) N L®(Q) and let v € WHPO) (Q) N L®(Q) be such that

(3.15) {dl" (x,v, Vv) = B(z,v,Vv) in Q,
v=u on Jf.
Then,
(3.16)
(F(x,u,Vu) — F(z,v,Vv)) de >
Q

(r)—2
ako(/ Vu — VolP@) d:c+/ (\Vu| + \Vv\)p \Vu—Vv|2dac>,
2 Qn{p(z)>2} Qn{p(a)<2}

where & = a(Pmin, Pmax) and Ao is as in (2.2).
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Proof. For 0 <o <1, let u” = v+ o(u —v). Then, denoting V,F' = A and Fs; = B, we obtain
(3.17)

/(F(a?uVu) Flz,v, Vo) d:c—/ /Axu Vu) - V(u® —U)ldxda
// 20, V) — v) dmdo—// (2,1, Vi) — A(:v,v,Vv))-V(u”—v)%d:cda
+/ /(B(m,u”,Vu”)—B(:r,v,Vv))(u”—v)deda:I+II,

where we have used (3.15). Moreover,

1
I'= / / / As(z,u’",VuT) - V(u’ —v)(u? —v)—drdodr
[Vv|>|Vur| g

1
+ / / / Ag(z,u” ) V) LV (0 — ) (u” — v)= dado dr
[Vo|<|Vus| o
(3.18) / / / 8A “(a,u’, V') (u” — )y, (u” — fu)le dx do dr
Vo[> Vur| o

877J

/ / / 8A (2w V) (0 — v)g, (u” — U)le dz do dr
Vol<|Vue| 817] ’
_I1+I2+I3+I4'

Now, using (2.2), and the inequality

-

1
(3.19) ' +tn—n") > 1\77—?7’\, for || >1nl, 0<t<

we get

11
1
13—1—142/// Xo|Vul™ [P@) 2| (w7 — 0)|?= dx do dr
0 Jo J|Vv|>|Vur| g

1 1
1
(3.200 4+ / / / o[ VeI P@ -2 (47 — )22 da do dr
0 JOo J|Vu|<|Vu?| g

(2)—2
> Oz)\o(/ |Vu — Vo) dac—l—/ (|Vu\ + \Vv])p Vu — Vo|? d:v),
{p(z)>2} {p(z)<2}

where & = @(Pmin, Pmax) and Ag is as in (2.2). On the other hand,

1
II = / / / By(z,u’T, Vu’T)(u® —v)*= dx do dr
[Vv|>|Vu| o
o(1-7) o(1-7) o 2 1
+ Bs(z,u , Vu )(u’ —v)*—dxdodr
0 Jo J|Vu|<|Vue| o
1,1 1
—I—/ / / VyB(z,u’",Vu’") - V(u’ —v)(u’ —v)=dxdodr
0 JO J|Vu|>|Vur| o

1l
+ / / / YV, B(z, w1 Vur=) .V (u” — v)(u” — v)l dx do dr.
0 Jo J|Vu|<|Vue| o

(3.21)
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Finally, using that Ag(x,s,n) = V,B(x,s,n), the assumption (3.14) and estimates (3.17), (3.18),
(3.20) and (3.21), we get (3.16). O

We now prove a comparison principle for equation (3.1), which holds under assumption (3.14).

Proposition 3.4. Let p, A and B be as in Section 2. Assume moreover that condition (3.14) holds.
Let u,v € WP (Q) be such that

divA(z,u, Vu) > B(z,u, Vu) in ,
(3.22) divA(z,v,Vv) < B(z,v,Vv) in £,
u<v on df.
Then,
(3.23) u<v in Q.

Proof. We will use arguments similar to those in Proposition 3.3. In fact, for R > 0 we consider
the nonnegative function wg € Wol’p(')(Q) N L>(2) given by

0 if w—v<0,
(3.24) wr=qu—v if 0<u—v <R,

R if u—v>R,
and by (3.22) we have

(3.25) 0 2/ (A(z, u, Vu)—A(:U,v,VU))~VwRd:B+/ (B(z,u, Vu)—B(z,v, Vv))wg dz = I+11.
Q Q

Then, denoting Qp =2N{0<u—v <R} and, for 0 <7 <1, u" =v+7(u—0v), we get

1
—/ / As(z,u™,Vu") - V(u —v)(u —v)dxdr
0 JOrN{|Vv[=|Vul}

1
+ / / Ag(z, = Vul"7)) . V(1 — v)(u — v) da dr
QrN{|Vv|<|Vul}

(3.26) 4 /1 / Z 04; (2, 0", V") (u = )z, (u = v)g; do dr
QrN{|Vol>|Vul} 55 ONj

A;
/ / ((‘9) (2,17, Vu =) (1 — v),, (u — V), dz dT
QRm{|w\<|w|} 1j

=1 +1s+ I3 + 4.

Now, proceeding as in Proposition 3.3, we obtain
(3.27)

1
I+, 2/ / Xo| VT [P@ 2|V (u — v)|? da dr
QrN{|Vv|>|Vul}

1
+/ / Xo| V= P@ =217 (4 — ) |? d dr
0 JOArN{|Vv|<|Vul}

/\0</ IV — V@ dx—i—/ (qu\ + ywy)
QrN{p(z)>2} QrN{p(x)<2}

where & = &(Pmin, Pmax) and Ag is as in (2.2).

p(z)—2

vV
joN

\Vu — Vo? d:c),
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On the other hand, we observe that the evaluation of (3.14) in £ = 0 implies that Bs(z,s,n) > 0.
Then, we get

1
IIZ/ / By(2,u™, Vu")(u — v)* dx dr
0 JQrN{|Vv|>|Vul}

1
-l—/ / By(z, "™ Vu' ") (u — v)? da dr
0 JOrN{|Vv|<|Vul}

1
+ / / VyB(z,u",Vu") - V(u—v)(u—v)drdr
0 JQrN{|Vv|=|Vul}

1
+ / / V,B(z,ur=)  Vul=") . V(u — v)(u — v) dz dr
0 JOrRN{|Vo|<|Vul}

1
+/ / By(z,u™, VuT ) w% dx dr
0 J{u—v>R}IN{|Vv|>|Vul}
1
+/ / By(z,u") Vu " wd dx dr
0 J{u—v>R}IN{|Vv|<|Vul}

1
+ / / VyB(z,u",Vu") - V(u—v)wgdedr
0 J{u—v>RIN{|Vo|>|Vul}

1
+ / / V,B(z, '™ Vull=)) . V(u — v)wg dz dr.
0 J{u—v>RIN{|Vv|<|Vul}

Now, using that A(x,s,n) = V,B(z,s,n), (2.3), (3.19), assumption (3.14) and estimates (3.25),
(3.26), (3.27) and (3.28), we get
(3.29)

1 (z)-2
0> d)\g(/ |Vu — VoP®) da:+/ (|Vu|+|Vv|)p |V’LL*VU|2dCL‘>
2 QrN{p(z)22) QrN{p(x)<2)

—dAg(/ (|Vu| + |Vv!>p(x) dm+/ Vu — VolP®) dx),
{u—v>R}N{p(z)>2} {u—v>R}N{p(z)<2}

where & = &(Pmin, Pmax) and Ag is as in (2.3). Since R > 0 is arbirtrary, we can use that u,v €
w20 (Q) and let R — co and we obtain
(3.30)

(z)—2
0> 107)\0 IV (u — v)TP@ da + |Vu| + [Vl g IV (u— )" > dz),
2
Qn{p(z)>2} Qn{p(z)<2}

which implies that V(u—v)" = 0in Q. Since (u—v)" € Wol’p(')(Q), Poincare’s inequality (Theorem
A.4) gives (u —v)T =0 in Q. That is, (3.23) holds. O

(3.28)

As a corollary of Propostion 3.4 we obtain the following uniqueness result

Corollary 3.2. Let p, A and B be as in Section 2. Assume moreover that condition (3.14) holds.
Let o € WHPO!(Q) and let uy,us € WHPC)(Q) be such that

(3.31) {diVA(ﬁvuiv Vu;) = B(x,ui, Vu;) in €2,

u; =@ on 0f),

fori=1,2. Then, u; = ug in €.
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We next prove that solutions to (3.1) with bounded boundary data are bounded, under the
assumptions of Proposition 3.1.

Proposition 3.5. Let p, A and B be as in Section 2 and let ' C Q be a C' domain. Assume
moreover, that conditions (3.3), (3.4) and (3.14) hold in ' for some p* —p~ < § < pmin where

pt = supgy p and p~ = infq p and with T satisfying (2.7). Let us also assume that there ewists a
positive constant Ay such that the following condition holds:
(3.32) | B, s,m)| < Ag(1 4 [s|"™) 7" + [p|Pt)—h),

for every (z,5,m) € V¥ x R x RN, Let u € WP (') be such that

{diVA(:U,u, Vu) = B(z,u,Vu) in Q,

3.33
(3:33) lul <M  on 0%,

for some positive constant M. Then, there exists C such that |u| < C in Q, where C depends only
on M, ’Q/’7 diam(Ql)7 N, )\o,Ao,L,pf,er, 9, HgHLl(Q’)7 HTHLOO(Q/); v and 1.

Proof. Let v be the solution to (3.1) with boundary data M. Then, from the proof of Proposition
3.1 it follows that \|U+|]W1,p(A)(Q,) depends only on the constants in the structural conditions, on

|€Y], diam(2") and M. Since (recall Remark 2.1) we are under the assumptions of Theorem 4.1 in

[11], then vt € L () with bounds depending only on the constants in the structural conditions,

on ||, diam(2’) and M. Now, the comparison principle (Proposition 3.4) implies that u < v*

in Q" and the upper bound follows. Proceeding in an analogous way with v~ the solution to (3.1)

with boundary data —M, we obtain the lower bound, thus concluding the proof. O
As a corollary of Propositions 3.1 and 3.5 we get

Corollary 3.3. Let p, F, A and B as in Section 2 and let Q' C Q be a C' domain. Assume,
moreover that F' satisfies (3.8) and (3.9) with T satisfying (2.7) and A and B satisfy (3.14) and
(3.32) in & for some p™ — p~ < § < pmin where pT = supg p and p~ = infg p.
Let u € WYPO(Q) N L>®(Q'). Then, there exists v € u + Wol’p(')(ﬂ’) a solution to
divA(z,v, Vv) = B(z,v,Vv) in .
Moreover, v € L>(Q') and ||v|| e (qv) is bounded by a constant C' that depends only on |[ul| e (qry,
||, diam(Q), N, Xo, Ao, L,p~,p", 8, ||7]| ooy, ¥ and c1.

We also prove the following maximum principle

Proposition 3.6. Let p, A and B be as in Sectiong. Assume moreover that condition (3.14) holds.
We also assume that B(z,0,0) = 0 for every z € Q. Let u € WYPO)(Q) be such that

divA(z,u, Vu) = B(x,u, Vu) in Q,
—M1 S u S MQ on 89,

for some nonnegative constants My, Ms. Then, —M; < u < Mo in €.

(3.34)

Proof. Since condition (3.14) implies that Bs(w, s,1) > 0in QxRxRN\{0}, we have B(z, M3,0) > 0
and also B(z,—Mj,0) < 0, for every x € Q. Recalling (2.1), we take v" = My and v~ = —M;
and observe that divA(z,v", Vo') < B(z,v", Vot) and divA(z,v~,Vov~) > B(z,v™, Vo) in Q.
Then, we can apply the comparison principle (Proposition 3.4) and obtain —M; = v~ <u <ot =
My in Q and the conclusion follows. O
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As a corollary of Propositions 3.1 and 3.6 we get

Corollary 3.4. Let p,F, A and B as in Section 2 and let Q' C Q be a C' domain. Assume,
moreover that F satisfies (3.8) and (3.9) with 7 satisfying (2.7) and A and B satisfy (3.14) in
Q' for some p© —p~ < 6 < pmin where pt = supy p and p~ = info p. We also assume that
B(x,0,0) =0 for every x € Q.

Let u € WHPO)(Q') N L®(SY). Then, there exists v € u + Wol’p(')(ﬂ’) a solution to

divA(z,v,Vv) = B(x,v,Vv) in Q.
Moreover, v € L*>(Y) and [|v|| oo (qry < ||ull Loo (or)-
We also have the following existence result of a bounded solution

Proposition 3.7. Let p as in Section 2. Assume that F(x,-,-) is locally Lipschitz in R x RN for
almost every x € Q and that F(z,s,-) € CH{RYN)NC?(RN \ {0}) for s € R and almost every z € (2.
Let A=V,F, B=F,. Assume that A satisfies (2.2) and (2.5),

(A, 5,m), 1B(@,s,m)] < Ao(1+ 5" + ") ace. in QxR xRY,
and F satisfies (3.3) and (3.4), where T satisfies (2.7). Assume moreover that

(3.35) F(z,s,n) = G(x,s,n) + f(x,s) with G, f measurable functions

and,

(3.36) G>0m QAxRxRY, G(z,5,7) =0 <= n=0,

(3.37) f(x,-) monotone decreasing in (—oo,0] and monotone increasing in [0, +00).

Then, for every Q' C Q of class C' there holds that, if p© —p~ < § < pmin where pt = supg p
and p~ = infg p for § in (3.3), given u € WHPO)(Q') such that 0 < u < M in Q' there exists v that
minimizes the functional Jo(v) in u+ W&’p(')(ﬂ'). Moreover, 0 < v < M in .

In addition, if there exists €9 > 0 such that for almost every x € Q, F(x,-,-) € CY((—eo, M +
g0) x RN), then there holds that v is a solution to

i = O
(3.38) {dWA(%% Vo) = B(z,v,Vv)  in €,

v=1u on 0.

Proof. To begin with, the existence of a minimizer v follows proceeding as in Proposition 3.1. Let
us prove that a minimizer satisfies 0 < v < M. In fact, both wy =v — (v — M)+ and wg = v + v~
are admissible functions. So that on the one hand,

OS/ F(J:,wl,le)—F(x,v,Vv):/ F(x,M,0) — F(z,v,Vv)
! v>M

:/ flx, M) — f(z,v) —/ G(z,v,Vv)
v>M v>M
< —/U>MG(33,U,VU) <0.

Hence, G(z,v,Vv) =0 in {v > M}. So that, V(v — M)" =0in Q. As (v—M)" =0 on 9¢,
we deduce that v < M in Q.
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On the other hand, proceeding in a similar way with ws,

0</ F(x,wz,ng)—F(x,v,Vv):/ F(x,0,0) — F(x,v, Vo)
' 0

= f(x,0) — f(x,v) — /<0 G(x,v,Vv)

/ G(z,v,Vv) <0,
v<0

and we deduce as before that v~ = 0. This is, v > 0 in Q'.

Now, in order to proceed with the proof we assume further regularity of F' for —gg < s < M +¢9.
Let 0 < ¢ € C°(Y) and 0 < € < eo/|l¢l|zee. Then, w = v + ¢ is an admissible function,
—gg < w < M + ¢y and we deduce that

divA(z,v,Vv) < B(x,v,Vv) in Q.
Replacing ¢ by —p we reverse the inequality. So that, v is a solution to (3.38). g

4. ENERGY MINIMIZERS OF ENERGY FUNCTIONAL (1.1)

In this section we prove properties of nonnegative local minimizers of the energy functional (1.1).
We prove that nonnegative local minimizers are locally Holder continuous (Theorem 4.3) and are
solutions to

divA(z,u, Vu) = B(x,u, Vu) in {u > 0},

where A(x,s,n) = V,F(x,s,n) and B(z,s,n) = Fs(x,s,n). In particular we prove our main result
which is the local Lipschitz continuity on nonnegative local minimizers (Theorem 4.5).

We start with a definition, some related remarks and an existence result of a minimizer. We also
prove nonnegativity and boundedness, under suitable assumptions.

Definition 4.1. Let p, F' and A be as in Section 2. Assume that F satisfies (3.3) and (3.4) with 7
satisfying (2.7). We say that u € WP()(Q) is a local minimizer in  of

J(v) = Jo(v) = /Q (F(z,v,Vv) + /\(x)x{v>0}) dx
if for every @ cC Q and for every v € WHP0)(Q) such that v = u in Q \ € there holds that
J(v) > J(u).

We point out that the energy J is well defined in W1P()(Q) since, under the conditions in (2.7),
the embedding theorem (see Theorem A.5) applies.

Remark 4.1. Let u be as in Definition 4.1. Let Q' CC Q and w —u € Wol’p(')(Q’). If we define
_ w in @,
w =
u inQ\,
then w € W'P()(Q) and therefore J(w) > J(u). If we now let

Jor (v / (2,0, Vv) + M) X {o>0}) d

it follows that Jo/(w) > Jo/ (u).
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Remark 4.2. Let J be as in Definition 4.1. If u € W'P()(Q) is a minimizer of .J among the
functions v € u + Wol’p(')(Q), then v is a local minimizer of J in €.

We start with an existence result of a minimizer to (1.1).

Theorem 4.1. Let p, F, A, B and X\ be as in Section 2. Let ¢ € Wl’p(')(Q) and assume moreover
that F satisfies (3.10) and (3.11) with T satisfying (2.7).

Then, there exists a minimizer u € qb—l—WOl’p(')(Q) to (1.1) and there holds that [|ul[y1.p¢) () < C,
for a constant C' depending only on ||¢|ly1.00) () 119]l21()s Amax, [Qf, diam(Q), N, pmin, Pmax; ¢;
L, v, c1, [|7]|p(q) and the C* norm of Q.

Proof. The proof is immediate from the computations in the proof of Proposition 3.2. O

We also have,

Theorem 4.2. Let p and A be as in Section 2. Let F, A and B be as in Propostion 3.7, except for
the fact that we require that F' satisfies (3.10) and (3.11) with T satisfying (2.7), instead of (3.3)
and (3.4), and with no oscillation assumption on p. Let ¢ € W PC)(Q) such that 0 < ¢ < M, for
some M > 0.

Then, there exists a minimizer u € ¢ + Wol’p(')(Q) to (1.1) and 0 <u < M in Q.

Proof. Proceeding as in the proof of Proposition 3.2 we obtain that there exists a minimizer u €

o+ Wol’p(')(Q) to (1.1). The proof that 0 < u < M is similar to that of Proposition 3.7. We only
have to observe that

{fu—(u-—M)">0}={u>0} and {u+u >0}={u>0}

For local minimizers of (1.1) we first have
Lemma 4.1. Let p, F, A, B and X be as in Section 2. Assume that F' satisfies (3.3) and (3.4) with
T satisfying (2.7). Let u € WHPO(Q) be a local minimizer of

J(v) = /Q (F(:J:, v, Vov) + )\(1‘)X{v>0}) dz.

Then
(4.1) divA(z,u, Vu) > B(z,u, Vu) in §,
where A(x,s,m) =V, F(x,s,m) and B(x,s,n) = Fs(x,s,n).
Proof. In fact, let t > 0 and 0 < ¢ € C3°(€2). Using the minimality of u we have

0< %(J(u — &) — J(u)) < 1/ (F(z,u— 1§, Vu = tVE) = F(z,u, Vu)) do
Q

and if we take t — 0, we obtain
(4.2) 0< —/ Vo F(z,u, Vu) - VEdx — / Fs(z,u, Vu)é dz,
Q Q

which gives (4.1). O

From now on we will deal with nonnegative, bounded, local minimizers of (1.1). Next we will
prove that they are locally Lipschitz continuous.
We first prove that nonnegative, bounded, local minimizers are locally Holder continuous.
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Theorem 4.3. Let p, F, A, B and A be as in Section 2. Assume that F' satisfies (3.3) and (3.4) with
T satisfying (2.7). Let xg € Q, 7o > 0 such that By,(xo) CC Q. Assume that A, B satisfy condition
(3.14) in By, (xo) and either B(x,0,0) = 0 for x € By (x) or B satisfies (3.32) for x € By, (xo).
Let u € WPO(Q)N L®(Q) be a nonnegative local minimizer of (1.1). Then, there exist 0 < v < 1,
¥ =Y(N,Pmin) and 0 < pg < 7, such that u € CV(Bj,(xo)). Moreover, HuHm(m) < C with po
PO

and C dependmg O’I'lly on Bypmaxapmina N7L7f07 >\07A07 ||g||L1(B;,O(xO))7 v, 1, )‘mam ||u||L°°(B7:O(:E0))7
HTHLO"(B%(IO)) and 9.

Proof. We will prove that there exist 0 < v < 1and 0 < pg < ro < 7o such that, if B,,(y) C Bi,(z0)
and p < pg, then

1/p—
(4.3) (][ [Vul- de) <o,
Bp(y)

where p_ = inf{p(z),z € B,,(y)}. Without loss of generality we will assume that y = 0.
In fact, let 0 < 7o < min{%,1}, 0 < r < rg and v the solution of

(4.4) div A(z,v, Vv) = B(xz,v,Vv) in B, v—u € Wol’p(')(Br).

Observe that, under our assumptions we can apply either Proposition 3.1 and Proposition 3.5 or
Proposition 3.6 and deduce that such a solution exists and it is bounded in B, if r¢ is small enough
depending on § and L = ||Vp| e (q). Hence, by Proposition 3.3, we have
(4.5)

(F(z,u,Vu) — F(z,v,Vv)) do >
Br
1

(z)—2
a)\()(/ Vu — VolP@® d$+/ <|Vu\ + |Vv|>p |Vu—Vv\2dx),
2 B,n{p(z)>2} B,N{p(z)<2}

where o = @(Pmin, Pmax) and Ao is as in (2.2).
By the minimality of u, we have (if A} = B, N {p(z) < 2} and Ay = B, N {p(x) > 2})

(4.6) / IVu — VolP® dz < CrV,
Az

(4.7) / IVu — Vo> (V| + |[Vo)P@ =2 dz < OV,
Ay

Where C = C(pminupma)h N7 >\maX) )\0)

Let € > 0. Take p = 7' and suppose that 7° < 1/2. Take 0 < i < 1 to be chosen later. Then,
by Young’s inequality, the definition of A; and (4.7), we obtain

/ Vu — VolP® dz gQC/ (V| + [ Vo )P 72|V — Vo|? da
AlﬂBp n /pmm A1NB;.

(4.8) + Cn/ (|Vu| + [ Vo] )P@) dg
B,NA;

C
<+ On [ (Vul 4 TP da,
’[’] Pmin BpﬂAl

Therefore, by (4.6) and (4.8), we get

(4.9) / \Vu — VolP®) dz < rN 4 C’n/ (IVu| 4 |V|)P@) d,
BP BpﬂAl

nz/pmin
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where C' = C(Pmin, Pmax> Vs Amax, Ao)-
Since, |Vul? < C(|Vu—Vu|?+|Vol|)?), for any ¢ > 1, with C' = C(q), we have, by (4.9), choosing
7 small, that

(4.10) /B p

where C' = C(pminapmaxa N, Amax; )\0)
Now let M > 1 such that |[v|[ze(p,) < M and define

(VulP® dz < CrN + C’/ |VulP@) de,
By

w(a:):v(]\;[;) in Bj.

Observe that M depends only on HuHLoo(B%(xo)) if B(x,0,0) = 0 or it depends also on the

structural conditions on F', A and B, on 7y and on the bound L of ||Vp||re if not.
There holds that,

divA(z,w,Vw) = B(xz,w,Vw) in B
where
A(z,s,m) = A(rz, Ms, %n), B(x,s,n) = rB(rz, Ms, %n)
Now, let

~ r\Pr—1_ ~ r \pr—1_
A(.ZL‘,S,T]) - (M) A(xvsan)a B(xas7n) - (7) B(xa&??)-
Observe that w € WP (By) N L>®(B;) satisfies
(4.11) divg(x,w, Vw) = B(z,w,Vw) in By,

where p(x) = p(rz).

Let us see that (4.11) is under the conditions of Theorem 1.1 in [10].

First, we clearly have g(az, 5,0) = 0. Moreover, as 1 < rPr -pt < (Cp < oo if r <1 and we have
assumed that M > 1,

DA; =1, M DA,
%: o (z,8,m&¢&; = (ﬁ)p <7> > o, (m,Ms,¥n)§i§j

(4.12)

r \Pr—1/M\p(rz)=1 | () —
>x(17)" (5)7 PR = A2 g

On the other hand,
04 pr—1/M\pra)-1 )
@) S [gesn| <ho(g)" (T)TT PO < Ay e,
ij
Then, assuming without loss of generality that p(rz;) > p(rzs),

~ ~ r \pr—1
Ao, s.m) = Awasn)| < (57) [AGw, Ms, M) = A(ras, Ms, Un)

(4.14) < (%)p;_le((%)p(ml)_lmp(rm)fl I (%)p(mz)_l‘mp(mg)fl)

(1 + |log (Xn])[)rP|ay — zo)?
< ApCrhprpuin ([P 4 |y Pe) ) (14 [log )y — 2l
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if T S rM,ﬁ-
Similarly,
|A(z, s1,m) — Z(w,s%n)\ < Aylsy — so|nP@)—1
Wlth A4 = AocLMpmaxfpmin‘i’l'
On the other hand, denoting 7(z) = 7(rx),

~ ro\Pr—1 5 ro\pPr—1 -
pmax_pmin+1 p(x) . T(J?)

1B(z, s,n)| < Aofr(—M) + ACL M In| +AOT(M) | M|

< As(1+ [n|P@ + |s]7®)

with As depending on Ag, L, Pmax, Pmin, M and ||THL00(B;NO (20))-
Since |w| < 1, we may assume that

B(z,s,m) < Ag(1+ [n["™)),

with Ag depending on Ag, L, pmin, Pmax, M and HTHLoo(B% (@0))-
From Theorem 1.1 in [10], it follows that w € Cllo’?(Bl) for some 0 < o < 1 and that

sup [V < C,
B2
with C' depending only on 3, pmax, Pmin, IV, L, Ao, Ao, M and HTHLOO(BiO (z0))» Which implies
CM
(4.15) sup |Vo| < —.
r

B’V'/2

Therefore, from (4.10) and (4.15), we deduce that if r is small depending on M and £,

(4.16) / \VulP@ de < CrN 4+ CpNrPr,
P
with py = sup{p(z),z € B,,} and C depending on B, pmax,Pmin, NV, L, Ao, Ao, Amax, M and
Tl Loe (B4, (o)) -
Then, if we take ¢ < 222 we have by (4.16) and by our election of p, that

1
][ |VulP- da 5][ \VuP®) de + —— |VulP- da
B, B, |Bp’ B,n{|Vu|<1}

g][ |VuP®) dz + 1
B

P
r\N
<1+ C<7) + COr P
p
<14+ Cr N 4 orr+
Pt
S Cr P+ = Cp_(1+€).
Now let 79 < 7¢(&, Pmin, L) so that

b+ p+(B7"0)
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and small enough so that, in addition, r§ < 1/2. Then, if p < py = ré+

depending on M and S,

¢ and moreover, rq is small

(1+5)
][ |VulP-dx < Cp TP~ = Cp—(l—W)IL’
B.D

+e

o |

= Y(N, pmin)- That is, if p < pg = r{

ey =
1/p—
(][ |VulP- dx) & <CcpL.
Bp

Thus (4.3) holds, with C depending only on £, pmax, Pmin, N, L, 7o, Ao, Ao, ”9||L1(B,ao(:po))7 v, c1,

where v =

Amas, [[tl| Lo (B, (w0))> 17| Lo0 By, () and 0.
Applying Morrey’s Theorem, see e.g. [18], Theorem 1.53, we conclude that v € C7(B,,(z0))
and HUHC’Y(W) < C for C depending only on 3, pmax, Pmin, NV, L, To, Ao, Ao, HgHLl(BiO(rO))v v,

€1, Amax; ||u||L°°(B7:O(:c0))7 HTHL"O(B,:O(JJ())) and 0.
As a corollary we obtain

Corollary 4.1. Let p,F, A, B and X\ be as in Section 2. Assume that F satisfies (3.8) and (3.9)
with T satisfying (2.7). Assume that A, B satisfy condition (3.14) and either B(x,0,0) = 0 for
x € Q or B satisfies (3.32) for z € Q. Let u € WHPO) (Q)NL®(Q) be a nonnegative local minimizer
of (1.1). Then, there exists 0 < v < 1, v = y(IN, pmin) such that u € C7(Q). Moreover, if ' CC Q,
then Hu||m(@) < C with C depending only on dist(2',09), 8, N, Pmins Pmaxs L, Amax, Ao, Ao, V,

€1, Hu||L°°(Q); ||THLOO(Q) and 9.

Then, under the assumptions of the previous corollary we have that u is continuous in €2 and
therefore, {u > 0} is open. We can now prove the following property for nonnegative local mini-
mizers of (1.1)

Lemma 4.2. Let p, F, A, B and X be as in Corollary 4.1. Ifu € WHPO) (Q)NL®(Q) is a nonnegative
local minimizer of

J(v) = /Q (F(a:,v, Vo) + )\(x)X{wo}) dz,
there holds that,
(4.17) divA(z,u, Vu) = B(z,u, Vu) in {u> 0},
where A(x,s,m) = VyF(z,s,m) and B(z,s,n) = Fs(x,s,n).

Proof. From Lemma 4.1 we already know that (4.1) holds. In order to obtain the opposite inequality
in {u >0}, welet 0 < ¢ e Cg°({u > 0}) and consider u — ¢, for ¢t < 0, with |¢| small.
Using the minimality of v we have

0> %(J(u—tf) —J(u)) = 1/ (F(z,u —t&,Vu —tV§) — F(z,u, Vu)) dv
Q

and if we take t — 0, we obtain
0> —/ Vo F(z,u, Vu) - VEdx — / Fs(z,u, Vu)¢ dx,
Q Q

which gives the desired inequality, so (4.17) follows. O
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We will next prove the Lipschitz continuity of nonnegative local minimizers of (1.1).
Before getting the Lipschitz continuity we prove the following result

Theorem 4.4. Let p,F, A, B, A and u be as in Corollary 4.1. Let Q' CC Q. There exist constants
C >0, rg > 0 such that if o € Q' NO{u > 0} and r < ry then
sup u < Cr.
Br(zo0)
The constants depend only on dist(Q',09Q), B, N, Pmin; Pmax, Ls Amax; Mo, Ao, v, c1, [[ullze(q),
HTHLoo(Q) and 9.

Proof. Let us suppose by contradiction that there exist a sequence of nonnegative local minimizers
uy corresponding to functionals Ji given by

Ju(v) = /Q (File, v, Vo) + Me(@)xqos0y) do

with wu € Wka(.) (Q) N LOO(Q)7 Pmin < pk(ﬂf) < Pmax; ”VPkHLOO < L, 0 < Ak(x) < Amax;
[ug|| oo () < M, for some M > 1, and points z3, € Q' N d{up > 0}, such that
sup up > krpy and 1 < 1
B, ja(@k) k

We denote Ay(x,s,n) = V,Fi(x,s,n) and By(x,s,n) = (Fi)s(x,s,n) and we also suppose that
Dk, Fr, A, B and 7, satisfy the assumptions in Section 2 with constants Ay, Ay and 3, we assume
that Ay, By, satisfy condition (3.14) and Fj, satisfy (3.8) and (3.9) with 7, satisfying (2.7) and either
and By (z,0,0) = 0 for z € Q or By, satisfy (3.32) for x € Q. All these conditions with exponent py
and constants independent of & and with || ||z ) < 7o, for some 75 >0 .

Without loss of generality we will assume that Z; = 0.

Let us define in By, for k large, g (z) = iuk(rkx), Pe(x) = pr(rex) and Ag(x) = A\g(rpz). Then
Prin < Pk(Z) < Prax, ||V]3k||Loo(Bl) < Lry and 0 < A\g(2) < Amax. Moreover, @, is a nonnegative

minimizer in g + WOl Pr (')(Bl) of the functional

(4.18) Jo(v) = /B (Fue.v. Vo) + Ms(@) gm0y ) der

where
Fy(z,8,m) = Fp(rpw, ris,m),
with
ar(0) =0 and max ug(z) > k.
By
1—|z|
3

Let dy(z) = dist(z, {a; = 0}) and Oy = {x € By : dylz) <
§1/4 C O, therefore

}. Since 4 (0) = 0 then

=~ w

my = sup(L — [])ag () > max(1 - |e|)iy(z) >

3
max ug(z) > —k.
Ok Bl/4 B 4

1/4
For each fixed k, @y is bounded, then (1 — |z|)ux(xz) — 0 when |x| — 1 which means that there
exists zp € O such that (1 — |xx|)ug(2r) = supp, (1 — |z|)ur(z), and then

(4.19) ﬂk(l‘k) =
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as r € O. Observe that 0 := di(zy) < % Let y, € 0{ur > 0} N By such that |y — x| = k.
Then,

(1) Bas, (yk) C B,
since if y € Bas, (yx) = |y| < 30k + |ag| < 1,

(2) B%k (yx) C Ok,

3 3 0 1-—
since if y € By, (y) = |yl < 50k + [an| <1 =50k = dily) < 5’“ < 3’?‘/‘ and
2
(3)if z € Bs, (yr) = 1 — |2| > 1 — |ag| — |z — 2| 21—|$k|—§5k27.
2
By (2) we have
1—
max(1l — |z|)ug(z) > max (1 — |z|)ug(r) > max Mﬂk(b@),
Ok Bs, (k) Bs, (yk) 2
2 2

where in the last inequality we are using (3). Then,

(4.20) 2u(xg) > max ug(x).
Bs, (k)
2

As B, (vr) C {ug > 0}, then By, 5, (rxxi) C {ur > 0}. Hence, divAy(z, ug, Vug) = B(x, uk, Vug,)
in By, 5, (rkxk). Recalling that ||uk||L°°(Brk5k(rkwk)) < M, we can replace |s|™(*) in (2.6) for By, by
M7, Then we can apply Harnack’s inequality (Theorem 3.2 in [23]) and we thus have

(ri@K) B, s, (Thk)

(4.21) max  ug(z) <C[_ min  wp(z) + rdi),

371k

with C a positive constant depending only on N, pmin, Pmax, s M, Ao, Ag and 7p.
It follows that

(4.22) max Ug(z) < C[_min  ag(z) + 0.

By, () By, (xx)

Recalling (4.19), we get from (4.22), for k large,

(4.23) min g (z) > cug(zr),
B%‘sk (zk)

with ¢ a positive constant depending only on N, pmin, Pmax, L M, Ao, Ag and 9. As Bs,, (zx) N
. 4
Bs, (y) # 0 we have by (4.23)

4

(4.24) ~max ug(z) > cup(zk).

Bs, (k)
Y

UL (yk + %’“:1:)
g ()

(4.25) max wy < 2 max wy > ¢ > 0.
By By /2

Let wy(x) = . Then, wi(0) = 0 and, by (4.20) and (4.24), we have
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Now, recalling that @ is a nonnegative minimizer in +W01’ﬁ’“(')(31) of the functional Jj, in (4.18)

7ﬁk(yk+%$) (B )

5 1
and that Bs, (yr) C By, we see that wy, is a nonnegative minimizer of Jj, in wy, + W, 1),
2

where
Ji(v) = / (Bl 0, 90) + Ae@)xusoy ) o
B

R _ 1) 2t (T - - 0
Fy(z,s,m) = F(yp + Ekx, ug(z)s, l}i k)ﬁ) and Ae(®) = A (yr + Ekw)-

We let ¢, = 211%55%) and we notice that ¢, — co. So we define pi(x) = pr(yr + %’“ﬂ:) and divide the

functional Jj, by czk , with p,. = infp, pr. Then, it follows that wy is a nonnegative minimizer of
Jy, in wy, + I/Vol’pk(')(Bl)7 where

Jr(v) = /B (Fk(a:,v, V) + S\k(ﬂﬁ)X{wo}) dz,

Fy(x,s,n) = clzﬁ’:ﬁk(a@, 5,1M) and () = c,:ﬁ’; j\k(m)
We claim that

(4.26) Ak — 0 uniformly in By,
(4.27) cik(x)_‘ﬁ’; — 1 uniformly, 1< C}Zk(x)_ﬁ’; < M; in By,
(428) ﬁk — Do uniformly and Pmin < P0 < Pmax in Bl7

up to a subsequence, for some constants M, and pg, where My = My(M, L).

On the one hand, 0 < A\;(z) < Amaxcy, ' — 0 gives (4.26).

In addition, in B; there holds, for k large, that 1 < cp,zk(x)_ﬁ’“ < 2IVklieeloger - Byt we have
IV Pk || Lo log cx, < er%’“ log (fkj‘i) — 0, which implies (4.27).

To see (4.28) we observe that pmin < pr(z) < pmax and [|[Vpg|lpe@) < L and then, for a

subsequence, pr — p uniformly on compacts of €, so prp(z) = pr(re(yx + %’“a:)) — po = p(0)
uniformly in Bj. 3 y 3
We define Ay, = V, F}, and By, = (F},)s and we observe that

Prla) = pelrely + ), o) = el + o),

~ by £ —pr = o _
Fi(z,5,m) = ¢, " Fy(z,5,n) = ¢, "* F(ye + 5% g (x,

)S, QUIBE;IZ]C) 77)

—Pr O _
= ¢ " B (re(ye + 5 ) TRk (Tk)S, k),

. 5
Az, s,m) = " A (ri(ye + Ekx% Tk (T1)S, Ckn)

- 5 Ok _
By(z,s,m) = Ckp’“ Tkt (k) By (?”k(yk + 596), k(TS Ck:77)-

There holds that py, Fk, flk, Bk and 7 are under the assumptions of Section 2, with constants
independent of k. In fact, recalling (4.27), we get for k large

Pmin < Pe(T) < Pmax,  |VDkllze@) < L, Pr(x) < Ti(z) < 70,
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Ak(a:, 5,0) =0,
8 -’Zl ) — 8 A i 5 _
(3 %) (z, 8,m)&; —Ckpk i (8 k,) (r(yk + gkx)vmuk(ﬂck)s,cm)&@
(4.29) iy 9N 7 o
2 Mot IR D=2 g2 > ol -2¢]?,

0 A i —D. (A i 1) B

)(ak)(ZE, 577’)‘ =cC Py C% Z ‘gw(rk(yk + §k$), Tkuk(fk)s,ckn)‘
(4.30) i M I ;)

SAocp;k(x)iﬁ; In[PE®)=2 < Ao My | |Pr(@)=2

Assuming, without loss of generality, that px(z1) > pi(z2) and using that (rk%)ﬂl logepr <
(r )ﬁl log ( ) — 0, we get

N ] - 5 o o)
Akl s.0)~Ap(rz, 5,m)| < e erolrizg )M e — a2l (JexnP 0 4 e (P21

(1+ [log [exn]|) < 2MyAg|zr — wo|” (|71 4 [n[PEE)=1) (1 4 | log [n]]).
Finally, recalling that riuy(zy) < M, we obtain

(4.31)

(4.32) Az, s1.m) = A(, 52,7)] <ep ™ epNorytig(xp)|s1 — ol [en|PF 1
<AOM; M sy — sl [nfPH@)1,
(4.33)
Bt som)| e, ) Ao (1 +lexnlP )+ [y o))
<MAo(cp ™ + MyJn|P® 4 ¢ P [Ms[®)) < MyMAg(1+ n|P®) 4 Mo +(2)).

On the other hand, A, and By, satisfy condition (3.14). In fact, since Ay, and B, satisfy condition
(3.14),

1 Za Ap)i 5
5 ij (a’l’]k) (',E7Sa"7)£i£j + (Bk)s($,8,77)w2
1 O(Ar) 0
pk 2 Z k)i .+ Ekm), ritg(zr)s, cen) &&;

5T )
+ Ckpk (Tkﬂk(xk))Q(Bk)s(Tk(yk + ix)a Ty (T)s, Clm)’w

2
> C;ﬁEQ‘(Ak)S(Tk(yk + %x)7rkak(mk)87 C’fn) ’ (Ckg)(rkﬂk(xk)w)‘

= 2| (Ap)s(x, 5.7) - Ewl.
Also, since Fj, satisfy (3.8) and (3.9) with 7 satisfying (2.7), with exponent p, and constants

independent of k, then Fj satisfy (3.8) and (3.9) with 7 satisfying (2.7), with exponent p; and
constants independent of k. In fact,

Fiw,5,1) > ¢ vlegn|™@ — ¢ ex (|ryiin(g) s~ 4 1)

(4.34) ) )
> V|7]|pk(w) _ ClMpmax(’S’pk(x)*(S + 1)_
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Analogously,

(4.35) Fi(w,s,m) < o™ v ewnP @ 4 P e (|ratn ()| () + 1)
< M1V_1|77]13k($) + ClMTo(|S|%k(ac) i 1).

If By, (x,0,0) = 0 for 2 € Q, then Bj(z,0,0) =0 for x € Bj.
On the other hand, if By, satisfy (3.32) for z € Q with exponent pi and constant independent of
k, then By satisfy (3.32) for z € By with exponent py and constant independent of k. In fact,

. 5 Ok _
|By.(z, s,m)| =c, * rtin(xx) | B (ri(yr, + §$)7 Tty (), cen)|

(4.36) <ep " rptig (o) Ao (1 + [rxig (zr)s[P*@ 71 4 |op|Pr(®) =1
Sc];]-MlMpmaxAO(l + |S|ﬁk($)*1 + ’mﬁk(fﬂ)*l)
SMlMpmaxA()(l + ‘S‘ﬁk(x)_l + ’n’ﬁk(z)_l)
We now take vy, the solution of
(4.37) din‘ik(J}, (N Vvk) = Bk(.%', (U V’Uk) in B3/4, Vg — W € Wol’ﬁk(A)(Bg/ZL).
In fact, from Corollaries 3.3, 3.4 and 3.2 and the upper bound in (4.25), it follows that if & is
large enough
(4.38) ||vkl| oo (B, < C,
where C depends only on N, pmin, Pmaxs Ls Ao, Ao, v, ¢1, 6, M and 79. Here we have used that
supp, , D — inf33/4 . < HVﬁkHLm% < 3L7’k% < ¢ in (3.8), for k large.
Then, by (4.38), we can replace |s|™(*) in (4.33) by 1 + C™ and applying Theorem 1.1 in [10]
we obtain that, for k large,

(4.39) 1kl e gy < C with 0<a<l1

where C depends only on 8, N, pmin, Pmax, L, Ao, Mo, v, c1, 6, M and 79. Therefore, there is a
function vg € C1*(B; /2) such that, for a subsequence,

(4.40) vp =~ vo and Vg — Vg uniformly in By .

Let us now show that

(4.41) wy, —vg — 0 in LP=in(By ).
From the minimality of w; we have

(4.42) /B y Fy(w, wp.Vwy) — Fi(w, 0 Vor) < C(N)||[ Al Lo (8,,4);

which together with Proposition 3.3 gives

(143) [ IV = Vo) do < Ol s,
>

(4.44) /Ak [Vwg — Vo (|Vwg| + [Vor )72 de < C| Al 1o (8y,),
1

where A} = By, 0 {pr(z) < 2}, Al = By 0 {pr(z) > 2} and C' = C(pmin; Pmax; N, Ao)-
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Applying Holder’s inequality (Theorem A.3) with exponents f)kz(x) and 27152]6 @) We get
(4.45) /Ak |Vewy, = VoplP ) da < 2 |GE i (i IGE | 2/2-500 (4t
1
where

G = |Vwy, — Vog|PE (| V| + [Vuy|) Pe=2Pe/2

GY = (|[Vwg| + [Vug|)2PEIPe/2,
Since

[ G = [ [~ (T + T2
Af Ak
then, from (4.44), (4.26) and Proposition A.1, we get, for k large,
a 3 min/2

(4.46) HGkHLQ/ﬁk(-)(AIIc) < CH)\kH’zw(gw),

C' = C(Pmin, Pmax; N, Ao). On the other hand, (4.37) and the bounds (4.34), (4.35) and (4.38) give

C1/ ’VUk‘i)’“(m) S/ Fk(%ka?}k) + Cy
B3y B34
< / Fk(a?, wiVwg) + Co
B34

§0(1+/ | Vg, [P(@)),
3/4
This implies
(4.47) / |G2|2/(2—15k(1’))dx§0/ (,Vwk|m(x>+|Vvk|ﬁk(m))dx§@(1+/ Vg @),
A} By Bsy

for some C' > 1, depending only on pmin, pmax and the uniform constants and functions in (4.34),
(4.35) and (4.38). Now (4.47) and Proposition A.1 give

(4.48) ||G2||L2/(2fﬁk<-))(A/f) <C(1+ /B | Vg [Pr()).
3/4

Let us show that the right hand side in (4.48) can be bounded independently of k.
In fact, let 95 be the solution of

(4.49) divAg(z, o, Vi) = By(z, 4, Vi) in Brs, o — wy, € Wy PO (B g).
Then, similar arguments to those leading to (4.38) and (4.39), give, for k large enough,
(4.50) Okl oo (B, 5) < C,

and

where C and C depend only 8, N, Pmin, Pmax, L, Ao, Ao, v, ¢1, 0, M and 7.
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Since wy, is a nonnegative minimizer of J;, in By, then we can argue as in the proof of Theorem
4.3 and get estimate (4.10) for u = wg, v = Vg, p(x) = pr(z), A(x) = \g(x), r =7/8 and p = 3/4.
That is,

(4.52) / V[P de < C + C |V [P+®) da,
Bgy B3y

where C' = C(Pmin, Pmaxs Vs Amax; Ao). Therefore (4.52) and (4.51) give, for k large, a uniform
bound for the right hand side in (4.48). That is,

(4.53) Gk 2/ ary < C,

with C' a constant depending only on 3, N, pmin, Pmaxs L, Mo, Ao, v, c1, 6, M and 7.
Now, putting together (4.43), (4.45), (4.46), (4.53) and (4.26), we obtain

(4.54) / [Vwy, — Vo [P+ — 0.
B34

Thus, using Poincare’s inequality (Theorem A.4 ) and Theorem A.2, we get (4.41). .

In order to conclude the proof, we now observe that, since pi, Fi, Ak, By, Tr, Ar and wy fall
(uniformly) under the assumption of Corollary 4.1 in By, there exists 0 < v < 1, v = v(NN, Pmin ),
such that

Hwkch(m) <C
with C' depending only on 3, N, Pmin, Pmax, Ly Amax, Ao, Ao, v, c1, 7o and § (recall that
Wil Loe(By) < 2)-
Therefore, there is a function wy € C7(Bj/2) such that, for a subsequence,
(4.55) wg — wo  uniformly in By /.
In addition, recalling (4.40) and (4.41), we get vo = wp in By s.
We then observe that, since there holds that wy > 0, wi(0) = 0 and (4.25), then (4.55) implies

wo >0, we(0) =0, maxwy>c>0.

By 2

That is,

(4.56) vo >0, vp(0) =0, maxuvg>c>0.
By /2

Let us show that (4.56) gives a contradiction. We will divide the proof in two cases.

Case I. Assume that Bk(x,0,0) =0 for x € Bj.
We first observe that, since wy > 0, from Proposition 3.6 we deduce that v, > 0.
Recalling (4.39), we choose My > 0 such that, for every k,

||UkHL°°(Bl/2) < Mo, ||vvk”L°°(Bl/2) < My,
and define

o

Ak($7 S5, 77) = a(s, 77) k(xa 3777) + (1 - a(sa 77))‘77|p0_2777

Bk(ﬂjv S, 77) = a(s, U)Bk(x’ S, 77)7
where

a(s,1) = X{|s|<Mo,ln|<Mo}-
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Then,
divlek(x,vk,Vvk) = ék(x,vk,Vvk) in By /s.
From (4.29) and (4.30) (recall Remark 2.1) we deduce
[Ap(@, s,m)| < Aol

457 i o
(457 Ag(z,5,m) -0 > Ay,

for some constant Ay > 0 independent of k.
Let us now fix € > 0. Then, if k > ko(g), (4.57), (4.33) and (4.28) give, for large k,

|1‘~1k(33>5a77)‘ < A0|77|p0—1 + ce,
= ~—1
Az, s,m) - =Ny || — ce,
| Bi(x, s,m)| < Ao|n|P°~" + ce,

for some positive constants Ag and ¢ (independent of & and k).
Applying Harnack’s inequality (see [22], Theorems 5 and 6 and Section 5), we get for any
0<r<l1

1
max vy < C,,(minvk + 61’0),
B'I‘/Q Br/?
with C, a positive constant.
Now, letting k — oo first, and then € — 0, we get

(4.58) max vy < C, min vy,
Br/2 BT‘/Q

with

(4.59) vy > 0, v(0) = 0.

Since 0 < r < 1 is arbitrary, we get vo = 0 in By,. This is in contradiction with (4.56) and
concludes the proof of Case I

Case II. Assume that By, satisfy (3.32) for # € B; with exponent p;, and constant independent
of k. Then, (4.30), (4.31), (4.32) and (4.36) imply that, for a subsequence,

A — A uniformly on compacts of By x R x RN\ {0} and pointwise on By x R x RV,
Bj, — 0 uniformly on compacts of By x R x RV,
and from (4.29) and (4.30) (recall Remark 2.1) we deduce
Az, 5,m)] < Aoln™~Y,
A(a,s,m) -n = Ag ™,
for some constant Ag > 0. Then, (4.37) and (4.40) imply that
divA(z,vp, Vvg) =0 in By .

Applying Harnack’s inequality (see [22], Theorems 5 and 6 and Section 5), we get again, that (4.58)
and (4.59) holds for any 0 < r < 1. This contradicts once more (4.56) and concludes the proof. [

We can now prove the Lipschitz continuity of nonnegative local minimizers of (1.1)
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Theorem 4.5. Let p, F, A, B, X and u be as in Corollary 4.1. Then wu is locally Lipschitz continuous
in Q. Moreover, for any ¥ CC Q the Lipschitz constant of u in Q' can be estimated by a constant
C dependmg Onl?/ on dlSt(Q’,aQ), 67 N; Pmin, Pmax, Ly Amax: /\07 AO; v, c, HUHLOO(Q)7 HTHLO“(Q)
and 9.

Proof. The result is a consequence of Corollary 4.1, Lemma 4.2 and Theorem 4.4 above, and
Proposition 2.1 in [16]. We point out that, although the proof of Proposition 2.1 in [16] is written
for the particular case in which A(z,s,n) = [n[P®~2p and B(z,s,n) = f(x), this same proof is
valid for general A and B under the present assumptions, without changes. ]

5. EXAMPLES

In this section we present some examples of application of our results.

Theorem 5.1. Let f(x,s) be a measurable function such that f(x,-) € C*(R) for every x € Q. Let
a(x,s) be a Holder continuous function with exponent o, a(x,-) € C*(R) for every x € Q. Let p,
7 and A as in Section 2 and 0 < § < pmin. Assume that there exist positive constants ag, a1, az, c1
and Ay such that

f1 —cr (14 [sP@=0) < fx,5) < er(1+ |s]7@) in Q x R.

£2 fs(x,0) =0 in Q.

3 fss(z,s) >0 in Q x R.

f4 | fo(z,8)| < Ao(1 + |s|7®)) in Q x R.

And
al 0 <ag <a(z,s) <ap <ooinxR.
a2 las(z,s)| <agin Q x R.

a3 (a(:v,s)l_”’(x))ss <0 in Q x R with v(x) = % > 1.
Let
[P

p(x)
and let u € WHPO(Q)NL®(Q) a nonnegative, local minimizer of (1.1). Then, u is locally Lipschitz
continuous in €.

Proof. We only have to see that F, A, B satisfy the hypotheses of Theorem 4.5.
There holds that

A(z,s,m) = a(z, s)]n‘p(m)ﬂn’ B(z,s,m) = as(z, s) (@) + fs(z, s).

And
W@ — ey (14 |sPPD %) < F(a,5,m) < ——[p[P@ + ¢ (1 + [s]7@).

pmax min
Moreover,
(1) A(z,s,0)=0.
(2) Zz,] %(l’, 3777)515] Z )\0|,’7‘p(x)—2|£|2' In faCta

0A; _ _
2 ani(%s,n)&&j = a(,5)| (p(x) = 2) [P, €)% + [P 2]
iy Y

(5.1)
> a(w, s) min{1, p(x) — PO 72(¢> > Ao|n[P™) 2 [¢]?

with A\g = ap min{1, ppin — 1}.
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(3) Zi,j ‘gﬁ; (.ZU, S, 77)‘ < A0|77|p(z)72 if AO > alN(pmax + 3)

(4) |A(w1,8,m) = A(2,5,1)| < Aolzr—za| (I[P~ 4 |nP#)=1) | (14 log |n]]) for a big enough
constant Ag. In fact, without loss of generality we may assume that p(z1) > p(z2). There

holds,
A, 5,m) = Az2,8,1)| < a(ar, s) |07 = [P~ 4 a(er, s) — al@s, s)| e
Now, if |n| > 1,

(I[P~ — [P < Ly — 2ol )~ [log ]| < Llay ~ le(!n!”(x”‘l + \nl”(“)‘l) | log|n]|.
A similar inequality holds if || < 1. So that,
(A1, 5,m) = A, s,m)| < axLley = ol (InPe) = + 0?27 ) [ 1og ]| + Calrs — wal* =71,

where C,, is the Holder constant of the function a. And the result follows if Ag > aj Ld(2)! =2+
C,, with d(Q2) the diameter of 2.
(5) |A(z, 51,m) — Az, s2,7)| < as|n|P ™~ s1 — so.
We clearly have,
(1) |B(z,8,1)] < Ao(1 + |n[P@® + |s|7@®)) (as we may assume, without loss of generality that
Ao 2 750).
(2) B(,0,0) = 0.
Finally, let us see that

1
2/ Au(a,s,) €0l < 53
1’7J

0A;
on. (:L‘a Svn)gigj + Bs(:va 3777) w2'
Ty

In fact, let
lx) = ———— e(x,s) = a(x,s) min{l, p(z) — 1}.

Then,
2|As(w,5,m) - €] < (V/e(@, )| @Djel)

e(x, s)
2

2
e(x,s)

as(, )% P

(@ (@, 5)| g = HDED ) g

< [nP21e? +

2
e(x, s)

1 . o)
= jale, s)min{1, p(z) — 1HinlP@ 2l +

By (5.1), we only have to check that

2a,(z, 5)?

p(z), 2
oz symin{Lp@ 1

2a4(z, s)?

B, S p(x)
(%3777) - a(x,s) mln{17p(x) — 1} |77’
Since fou(x, 5) > 0 it is enough to check that
as(x,s)Z ) Qp(l')
2 ss(@,8) = y(2)— - h ~ mi -
(5.2) ass(z,8) > () a(ws) " (@) min{1,p(x) ~ 1}

And, (5.2) holds by hypothesis a3. O
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If a(x, s) is smooth in —M; < s < My with My, My > 0, condition a3 only holds in 0 < s < M <
M> and the local minimizer u satisfies that 0 < u < M, we can still apply the results in this paper
and get that v is locally Lipschitz continuous.

Theorem 5.2. Let f(x,s) be a measurable function such that f(x,-) € C*(R) for every x € Q.
Let a(z, s) be a Hélder continuous function with exponent o, a(x,-) € C*(—My, Ms) N Lip(R) for
almost every x € Q0 with My, My > 0. Let p, 7 and X as in Section 2 and 0 < § < pmin. Assume
that there exist positive constants ag, a1, as,c1, Ay and 0 < M < My such that
f1 —c1(1+ [sP@=9) < f(z,5) < er1(1+|s]7®) in Q x R.
2 fs(z,0) =0 in Q.
f3 fss(x,s) >0 in Q x R.
f4 | fs(x,5)] < Ao(1 + |s|7@) in Q x R.
And
al 0 <ag <a(z,s) <ap <ooinQxR.
a2 las(z,s)| <az ae inQxR.
a3’ (a(m,s)1*7(x))ss <0 in Q x [0, M] with v(x) = % > 1.
Let

p(x)
and let u € WPO)(Q) N L®(Q) be a local minimizer of (1.1) such that 0 < u < M. Then, u is
locally Lipschitz continuous in .

Proof. By Proposition 3.7 for such a function f and with a satisfying al and a2, for every ball

B, () C © with r small enough there exists a solution v € u + Wol’p(’)(Br(:co)) of (1.2) such that
0 < v < |lullpoo(B, (z0))- And this result also holds for all the rescaled equations and functions that
appear in the proofs of Section 4. Hence, condition (3.14) is only needed for s € (0, M) and this is
a consequence of a3’. ]

Example 5.1. A possible example of functions ¢ and f satisfying the assumptions of Theorem 5.2
is
(1+5)79=) if —1/2<s< My,
a(z,s) = { 2@ if s <—-1/2,
(1 + MQ)_Q(CE) if s > Mo,
1

with My > 0 and ¢ € L*°(€Q)) a Holder continuous function such that 0 < ¢(z) < S@)=1 and

f(x,8) = ba)|s|™

with 0 < b€ L>®(Q) and 7(x) > 2 in Q satisfying (2.7).
Another possible choice of f is

(5-3) fz,s) = b(x)f(z,s)
with 0 < b € L>®(Q) and

o s) s if [s| <1,
xr,S) = ~
’ a(a)|s[") +b(x)|s| +E(x) if s[> 1,

where 7(z) satisfies (2.7) and the functions a,b,¢ € L(9) are chosen in such a way that f(z, )€
C?(R) for every x € €.
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With this choice of a and f, for every 0 < M < M, there holds that any local minimizer u such
that 0 < wu < M is locally Lipschitz continuous in €.

Observe that, by Theorem 4.2, if ¢ € WP()(Q) is such that 0 < ¢ < M < My, such a minimizers
always exists.

We have another example.

Theorem 5.3. Let f(x,5s) be a measurable function such that f(x,-) € C2(R) for every x € Q. Let
G(z,m) be a measurable function such that G(z,-) € CHRN) N C2(RN \ {0}) for every x € Q. Let
p and A as in Section 2 and assume that either f satisfies conditions f1,--- ,f4 in Theorem 5.1 or
f satisfies {1, £3 in Theorem 5.1 and

B4 £ 5)] < Ag(1+ [s]"@1).
On the other hand, G satisfies

G1 v(jnP® —1) < G(z,n) < v=Y(|In|P® + 1) with v > 0.
G2 V G’(ﬂz O)ZOinQ

G3 Y, agn&ibi = /\olnlp(”” el

G4 Zw ‘877 on; < Ao[n|P)

G5 (9, (an) — aGlan )] < Noler — aal? (P01 + [gp91) (14 |1og ) for some
0<p<l.

Let

F(xz,s,m) = G(x,n) + f(,s)
and let w € WHPO(Q) N L®(Q) be a nonnegative, local minimizer of (1.1). Then, u is locally
Lipschitz continuous in 2.

Proof. There holds that
A(fvaSﬂ?) :an(ﬂ?,ﬁ), B(JUaSﬂ?) :fs(I,S)-
And it is clear that F, A and B satisfy the assumptions in Theorem 4.5. O

Example 5.2. A possible example of function G satisfying the assumptions of Theorem 5.3 is

G(x,m) = a(2)G (In|"™),
with p(x) as in Section 2, a(x) a Holder continuous function such that ag < a(x) < a;, with ag, a;
positive constants and G € C*([0,00)) a function satisfying:
co < G'(t) < C,
Co

0< é"(t) < co, Cp positive constants.

In fact, since ¢ < G/'(t) < Cp, condition G1 in Theorem 5.3 holds. We have V,G(x,n) =
a(:c)é"(]n]p(x))p(x)\n\p(z)ﬂn, so we get condition G2. We obtain condition G3 by reasoning as
n (5.1), using that in the present case we have G”(t) > 0 and G'(t) > co.

We get condition G4 by using in our computations that G'(t) < Cy and G ()t < Cy.

Finally, applying again that G”(t)t < Co, we can obtain the estimate

|G (In[PD) = G (|Inl"">))| < Colp(ar) — p(x2)l| log]nll,

which combined with computations similar as those in (4) in Theorem 5.1 leads to condition G5.
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A possible example of function f satisfying the assumptions of Theorem 5.3 is

f(z,s) = g(x)s, with g € L>(Q).
In fact, it is immediate that f satisfies conditions f1, f3 and f4’.

On the other hand, f(z,s) = b(z)|s|"® with b and 7 as in Example 5.1 and f(z,s) as in (5.3)
are other possible choices.

Let us present another example

Example 5.3. Another possible example of function G satisfying the assumptions of Theorem 5.3
is

Ga,n) = A(z)n - nlnl" =2,
with p(x) as in Section 2 and A(x) € RV*N symmetric, Holder continuous in §2 and such that

Ma)I < Az) < A(z)1.

Here Ao < A(z) < A(z) < A with g, A positive constants and A(z) —A(z) < ¢p, with ¢g a suitable
positive constant depending only on N, Pmin, Pmax and Ag.

In fact, conditions G1 and G2 in Theorem 5.3 are easy to verify. The computations leading to
G4 and G5 are similar to the computations in Theorem 5.1. ~

In order to verify G3, we observe that, denoting a(z) the smaller eigenvalue of A(z), there holds
that

A(z) = a(x)] + B(z),  with [|B(z)|[r=(q) < [[A(z) = A@)|[L=(0)-
Then we can write _
Gla,n) =a(@)|n["™ + B(z)n - nlnP >
=G4 (xa 77) + G2(x> 77)'
Now, proceeding as in Theorem 5.1, we get

0’°G
(54) 3 ny 5 2 ool e

It is not hard to see that

(5.5) Z( dacs 2| < ClIAW) = M@)oy 17,

with C' depending only on N, ppin and pmax. Then, combining (5.4) and (5.5) we deduce that
G(x,m) satisfies condition G3, if we take [[A(z) — A(2)|[1(q) < co, With co depending only on Ao,
N, pmin and prax.

For choices of suitable functions f(z,s) for this G(x,n) we refer to Example 5.2.

Remark 5.1. We can present further examples of functions satisfying our assumptions. Let p
and A be as in Section 2. Let F} and Fy satisfy the assumptions on Theorem 4.5, with B; = 0, F;
satisfying B;(x,0,0) =0 for x € , i = 1,2. Then Theorem 4.5 also applies to the function

F(z,s,m) = a1(z)Fi(x, s,n) + az(x)Fa(x, s,1m),

for any choice of Holder continuous functions a1 (), az(z), which are bounded from above and below
by positive constants.

The same result holds if F; and Fy satisfy the assumptions on Theorem 4.5, with B; = 0F;
satisfying (3.32) for z € Q, i =1, 2.

Similar consideration applies to functions F; and F5 under the assumptions of Theorem 5.2.
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APPENDIX A

In Section 1 we included some preliminaries on Lebesgue and Sobolev spaces with variable
exponent. For the sake of completeness we collect here some additional results on these spaces.

Proposition A.1. There holds

min{ (1 ) ([ )} < o
< max { ( /Q (@) dx)l/ A /Q u[P@) dx)l/pma*}.

Some important results for these spaces are

Theorem A.1. Let p'(x) such that
1 1

_ _.I_
p(x)  p(z)
Then LP'C)(Q) is the dual of LP")(Q). Moreover, if pmin > 1, LPO(Q) and W'P)(Q) are reflexive.

Theorem A.2. Let ¢(z) < p(z). If Q has finite measure, then LPO)(Q) < LI (Q) continuously.

We also have the following Holder’s inequality
Theorem A.3. Let p'(x) be as in Theorem A.1. Then there holds

[ 1#lsldz < 217l llalyr
for all f € LPO(Q) and g € LV O)(Q).
The following version of Poincare’s inequality holds

Theorem A.4. Let Q) be bounded. Assume that p(x) is log-Hélder continuous in Q0 (that is, p has
a modulus of continuity w(r) = C(log 2)=1). For every u € Wol’p(')(Q), the inequality

||U||Lp(-)(Q) < CHVUHLP(‘)(Q)

holds with a constant C depending only on N, diam(QQ) and the log-Hélder modulus of continuity
of p(x).

The following Sobolev embedding holds. We assume for simplicity that the domain is C*, but
the result holds with weaker assumptions on the smoothness of the boundary.

Theorem A.5. Let Q be a C! bounded domain. Assume that p(x) is log-Hélder continuous in

Q and 1 < pmin < p(x) < Pmax < 00. Let 7 be such that T(z) > p(x) and 7 € C(). Assume
moreover that 7(z) < p*(x) = ]\],V_pl(f:z) if Pmax < N, 7(x) is arbitrary if pmin > N, 7(x) = p(z) if
Pmin < NV < Pmax-

Then, WP (Q) — L™O(Q) continuously. The embedding constant depends only on N, |Q|, the

log-Hélder modulus of continuity of p(), Pmin, Pmax, ||T||z and the Ct norm of 0.

For the proof of these results and more about these spaces, see [9], [14], [20], [13] and the
references therein.
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