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Abstract: The robust stability and convergence to the true state of a moving horizon estimator based on an adaptive arrival cost
are established for non-linear detectable systems in this study. Robust global asymptotic stability is shown for the case of non-
vanishing bounded disturbances, whereas the convergence to the true state is proved for the case of vanishing disturbances.
Two simulations were made to show the estimator behaviour under different operational conditions and to compare it with the
state of the art of estimation methods.

1 Introduction
State estimation plays a fundamental role in feedback control,
system monitoring, and system optimisation because noisy
measurement is the only information available from the system.
Several methods have been developed for accomplishing such task
(see [1, 2] among others). All these methods have been developed
upon assumptions on the knowledge of noises and the system
model as well as the absence of constraints.

In practice, these assumptions are not easily satisfied, and
research efforts were focused on approaches that do not rely on
such requirements (see [3–5] among others). For example, H∞
filters are designed minimising the H∞ norm of the mapping
between disturbances and estimation error. Estimators based on
least-square estimation problems have been presented in [3, 6, 7].
Both approaches are based on the adequate selection of the
uncertainty model, resting on the available information of the
system, instead of relying on statistical assumptions on noises. In a
similar way, robust estimation algorithms based on min–max
robust filtering, set-valued estimation and guaranteed cost
paradigm, have attracted the attention of the research community
(see [4, 8]).

Building on the success of moving horizon control, moving
horizon estimation (MHE) has attracted the attention of researchers
since the pioneering work of Jazwinski [9] (see also [10–12]). The
interest in such estimation methods stems from the possibility of
dealing with a limited amount of data and the ability to incorporate
constraints. In recent years, both theoretical properties of several
MHE schemes, including efficient computational methods, have
been studied (see [13–18]).

In recent years several results on robust stability and
convergence properties have been obtained, advancing from
idealistic assumptions (observability and no disturbances) to
realistic situations (detectability and bounded disturbances). For
non-linear observable systems, Rao et al. [12] established the
asymptotic stability of the estimation error for the least-square cost
function. Furthermore, for convergent disturbances, the estimation
error is also convergent [19–21]. Alessandri et al. [14, 22]
proposed an estimation scheme, based on a least-square cost
function of estimation residuals, that guaranteed the boundedness
of estimation error for observable systems subject to bounded
additive disturbances. The review made by Rawlings and Li [20]
provides a general view of the problem relying on incremental
input/output-to-state stability (i-IOSS, see Definition 1 in Section
2) for detectability [23] and robust global asymptotic stability
(RGAS) for robust stability of the state estimator. This work

reveals two major challenges in the field: (i) conditions and a proof
of RGAS for a MHE subject to bounded disturbances and (ii) the
development of computational efficient MHE algorithms. Hu et al.
[24] identified a broad class of cost functions that ensures RGAS of
full information estimators (FIEs). The implication of RGAS on
MHE was further investigated in [25] based on the results of [26].
Moreover, Müller [25] showed RGAS and convergence of
estimation error in the case of bounded or vanishing disturbances,
respectively. In these works, the least-square cost function was
modified by adding a max term to guarantee the stability. For a
particular choice of weights of the cost function, these results were
extended to least-squares type [25]. Finally, the necessary
assumptions on the cost function were generalised in [27].

The results described for non-linear detectable systems subject
to bounded disturbances show a number of drawbacks. In
particular, the disturbance gains obtained in [25] are conservative,
and they depend on the estimation horizon. The same happens with
the estimate on the minimal estimation horizon in the case of
MHE. These estimates depend on a priori bounds of worst-case
disturbances. One attempt to solve these flaws is presented in [28],
where the authors introduce a novel formulation of the cost
function that allows ensuring robust global exponential stability of
the estimation error under a suitable exponential detectability.
Using this idea, they obtain improved estimates for the disturbance
gains and the minimal estimation horizon.

This paper introduces the RGAS and convergence analysis for
an MHE estimator based on adaptive arrival cost proposed in [18]
for the practical case of non-linear detectable systems subject to
bounded disturbances. This formulation allows us to overcome
several drawbacks in the existing literature, obtaining improved
estimates for the disturbance gains and the minimal estimation
horizon and providing the stability proof for both FIE and MHE.
To establish robust stability properties for MHE, it is essential that
the adequate selection of the arrival cost is employed by the cost
function. In various MHE schemes, the necessary assumptions of
the arrival cost are difficult to verify [12, 19], while in others, they
can be verified a priori [25]. In the MHE scheme analysed in this
work, the assumption on the arrival cost can be satisfied a priori by
design. Furthermore, the disturbances gains become uniform (they
are valid and independent of estimation horizon N), allowing us to
extend the stability analysis to FIE estimators with least-square
cost functions.

The rest of the paper is organised as follows: Section 2
introduces the notation, definitions and properties that will be used
through this paper. Section 3 presents the main result and shows its
connections with previous stability analysis. Section 4 discusses
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two examples previously used in the literature with the purpose of
illustrating the concepts and showing the difference with other
MHE algorithms. Finally, Section 5 presents conclusions.

2 Preliminaries and setup
2.1 Notation

Let ℤ a, b  denote the set of integers in the interval a, b  and ℤ ≥ a
denote the set of integers greater or equal to a. Boldface symbols
denote the finite sequences w[k1, k2] := {wk1, …, wk2} for some
k1, k2 ∈ ℤ ≥ 0 and k1 < k2, and infinite sequences
w := {wk, wk + 1, …}, k ∈ ℤ ≥ 0, respectively. We denote x^ j k as the
estimation of xj at time k ∈ ℤ ≥ 0. By x  we denote the Euclidean
norm of a vector x. Let ∥ x ∥ := supk ∈ ℤ ≥ 0 xk  denote the
supreme norm of the sequence xand ∥ x ∥ a, b := supk ∈ ℤ a, b xk .
In short, we will use simply ∥ x ∥ without indices where it is clear
from the context. A function γ :ℝ ≥ 0 → ℝ ≥ 0 is of class K if γ is
continuous, strictly increasing and γ 0 = 0. If γ is also unbounded,
it is of class K∞. A function ζ:ℝ ≥ 0 → ℝ ≥ 0 is of class ℒ if ζ k  is
non-increasing and limk → ∞ ζ k = 0. A function
β:ℝ ≥ 0 × ℤ ≥ 0 → ℝ ≥ 0 is of class Kℒ if β ⋅ , k  is of class K for
each fixed k ∈ ℤ ≥ 0, and β r, ⋅  of class ℒ for each fixed r ∈ ℝ ≥ 0.

The following inequalities hold for all
β ∈ Kℒ, γ ∈ K and aj ∈ ℝ ≥ 0 with j ∈ ℤ 1, n :

γ ∑
j = 1

n
ai ≤ ∑

j = 1

n
γ nai , β ∑

j = 1

n
ai, k ≤ ∑

j = 1

n
β nai, k . (1)

The preceding inequalities hold since max {aj} is included in
the sequence {a1, a2, …, an} and K functions are non-negative
strictly increasing functions.

A sequence w is bounded if ∥ w ∥ is finite. The set of bounded
sequences w is denoted as W wmax := {w: ∥ w ∥ ≤ wmax} for some
wmax ∈ ℝ ≥ 0. Moreover, a bounded infinite sequence w is
convergent if wk → 0 as k → ∞. Let us denote the set of
convergent sequences C:

Cw := {w ∈ W wmax w is convergent} . (2)

Analogously, Cv is defined for the sequence v.

2.2 Problem statement

Let us consider the state estimation problem for non-linear
discrete-time systems of the form

xk + 1 = f xk, wk ,
yk = h xk + vk,

(3)

where xk ∈ X ⊆ ℝnx, wk ∈ W ⊆ ℝnw, yk ∈ Y ⊆ ℝny and
vk ∈ V ⊆ ℝnv are the state, process disturbance, output
measurement and estimation residual (measurement disturbance)
vectors, respectively. The process wk and measurement vk
disturbances are unknown but bounded, i.e. w ∈ W wmax  and
v ∈ V vmax  for some wmax, vmax ∈ ℝ ≥ 0. X, Y, W and V are compact
and convex sets with the null vector 0 belonging to them. In the
following, we assume that f :ℝnx × ℝnw → ℝnx is locally Lipschitz
on its arguments and h:ℝnx → ℝny is continuous. The solution of
system (3) at time k is denoted by x k; x0, w , with initial condition
x0 and process disturbance sequence w. The initial condition x0 is
unknown, but a prior knowledge x̄0 is available and its error is
bounded:

x̄0 ∈ X0 := {x̄0: x0 − x̄0 ≤ emax}, X0 ⊆ X . (4)

The solution of an estimation problem aims to find an estimate
x^k k of the current state xk at time k by minimising a performance

metric Ψ. At each sampling time k, given the previous N
measurements y k − N , k , the following optimisation problem is
solved:

min
x̂k − N k, ŵ

Ψ := Γk − N k χ + ∑
j = k − N

k
ℓ w^

j k, v^ j k

s.t.

χ = x^k − N k − x̄k − N,
x^ j + 1 k = f x^ j k, w^

j k ,
yj = h x^ j k + v^ j k,

x^ j k ∈ X, w^
j k ∈ W, v^ j k ∈ V,

(5)

where x^ j k is the optimal estimated and w^
j k is the optimal

process noise estimate at sample k − j, j ∈ ℤ[0, N] based on
measurements yk − j available at time k. The prior estimate x^k − N k
and the process noise w^

j k are the optimisation variables. The stage
cost ℓ w^

j k, v^ j k  penalises the estimated process disturbance w^
j k

and the estimation residuals v^ j k = yj − h x^ j k , while the arrival
cost Γk − N k χ  penalises the prior estimate x^k − N k. ℓ ⋅ , ⋅  and
Γk − N k ⋅  and their parameters allow us to ensure the robust
stability of the estimator [25]. When the estimation window is not
full, k < N, problem (5) is reformulated and solved as an FIE:

min
x̂0 k, ŵ

Ψ := Γ0 k χ0 + ∑
j = 1

k
ℓ w^

j k, v^ j k

s.t.

χ0 = x^0 k − x̄0,
x^ j + 1 k = f x^ j k, w^

j k ,
yj = h x^ j k + v^ j k,

x^ j k ∈ X, w^
j k ∈ W, v^ j k ∈ V,

(6)

as k increases this problem becomes (5) ∀k ∈ ℤ ≥ N.
In previous works, the robust stability of MHE has been

achieved by modifying the standard least-square cost function
through the inclusion of a max term [25, 26] or by a suitable choice
of the cost's function parameters [25]. Another way to solve this
problem is combining a suitable choice of ℓ w^

j k, v^ j k  with a time-
varying arrival cost of the form

Γk − N k χ = x^k − N k − x̄k − N Pk − N k
−1 , (7)

whose parameters Pk − N k
−1  and x̄k − N are recursively updated

using the information available at time k [18]. This way of defining
Γk − N k avoids the introduction of artificial cycling in the estimation
process (see [19]). The arrival cost matrix Pk − N k is given by

Pk − N k =
1
αk

Wk if  1
αk

Tr Wk ≤ c,

Wk otherwise,
(8)

with

αk = 1 − 1
Nk

,

Nk = 1 + x^k − N k − 1
T Pk − N − 1 k − 1x^k − N k − 1

σ
v^k − N k

2 ,

v^k − N k = yk − N − y^k − N k,
Wk = Pk − N − 1 k − 1

− Pk − N − 1 k − 1x^k − N k − 1x^k − N k − 1
T

1 + x^k − N k − 1
T Pk − N − 1 k − 1x^k − N k − 1Pk − N − 1 k − 1

,

where σ, c, λ ∈ R > 0 are tuning parameters, c > λ, P0 = λIn × n
and σ ≫ σw, where σw denotes the process noise variance. The
prior knowledge of the window x̄k − N is updated using a smoothed
estimate [29]:
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x̄k − N = x^k − N k − 1 . (9)

The optimisation problem (5) can be reformulated in terms of
the initial condition x^0 k, the estimated process noises w^

j k and the
measurement noise v^ j k as follows:

min
x̂0 k, ŵ

Ψ := αk
k Γ0 k χ0 + ∑

j = 1

k − N − 1
αk

k − jℓ w^
j k, v^ j k

+ ∑
j = k − N

k − 1
ℓ w^

j k, v^ j k

s.t.

χ0 = x^0 k − x̄0,
x^ j + 1 k = f x^ j k, w^

j k ,
yj = h x^ j k + v^ j k,

x^ j k ∈ X, w^
j k ∈ W, v^ j k ∈ V

(10)

with αk ∈ (0, 1]. This problem allows us to explicitly see the
effect of past data on x^k k. It is easy to see the exponential
weighting on x^0 k, w^

j k and v^ j k, j ∈ ℤ0, k − N − 1 by αk
j ∈ (0, 1] that

deemphasises their effect on x^k k. In this way, only w^
j k and v^ j k,

j ∈ ℤk − N , k have the full effect on x^k k.
As αk changes in time as a function of the estimation residual

v^k − N k, modulates weighting based on the information available in
y[k − N , k]. This way of computing Pk − N k introduces a feedback
action between the arrival cost matrix Pk − N k and the estimation
residual v^k − N k. The updating mechanism (8) provides adaptation
capabilities that allow the estimator to incorporate the relevant
information available in y[0, k] and follow changes in the system (see
Figs. 3 and 4 of [18]).

The updating mechanism (8) is a time-varying filter whose
inputs are x^k − N k − 1x^k − N k − 1

T  and the initial condition P0. It generates
recursively a real-time estimation of Pk − N k by updating Pk − N − 1 k − 1

with an exponential time averaging of x^k − N k − 1x^k − N k − 1
T .

 
Remark 1: The sequence P := P0 0, …, P0 N − 1, Pk − N k

∀k ∈ ℤ ≥ 0 is positive definite, it is decreasing in norm and it is
bounded. The proof of these properties follows similar steps as in
[18].

Now, we introduce a definition of detectability for non-linear
systems using a stability definition [30, 31].

 
Definition 1: System (3) is i-IOSS if there exist functions

β ∈ Kℒ and γ1, γ2 ∈ K such that for every initial states z1,
z2 ∈ ℝnx, any two feasible disturbance sequences w1, w2 ∈ ℝnw and
output sequences y1, y2, the following inequality holds:

x(k, z1, w1) − x(k, z2, w2) ≤ max β z1 − z2 , k ,
γ1 ∥ w1 − w2 ∥ 0, k − 1 , γ2 ∥ h(x1) − h(x2) ∥ 0, k − 1 ,

(11)

where x1 = x(k, z1, w1) and x2 = x(k, z2, w2). Basically, this
definition compares any two system trajectories (x k; z1, w1  and
x k; z2, w2 ), verifying the stability of their difference ∀k ∈ ℤ ≥ 0

x(k, z1, w1) − x(k, z2, w2) ≤ η, η ∈ ℝ ≥ 0 . (12)

The difference η ∈ ℝ ≥ 0 would be stable if and only if the
system is detectable and stabilisable. The value of η depends on the
difference between the disturbance sequences w1, w2 and output
sequences h(x1), h(x2). Since y = h(x) + v, then
y1 = h(x k, z1, w1 ) + v1 and y2 = h(x k, z2, w2 ) + v2. If we take
x k, z1, w1  as the true trajectory of the system and x k, z2, w2  as the
estimated trajectory, then yj = h(xj) + vj and yj = h(x^ j k) + v^ j k and
the difference ∥ h(x1) − h(x2) ∥ becomes ∥ v1 − v2 ∥.

In the following section the updating mechanism (8) and the
assumption of i-IOSS [32] will be used to prove the robust stability
of the proposed MHE in the presence of bounded disturbances and

convergence to the true state (x^k k → xk) in the case of convergent
disturbances (w1, w2 ∈ Cw, v1, v2 ∈ Cv). Before proceeding to the
development of the main results, we state the main properties of
system (3) and assumptions about Γk − N ⋅  and ℓ ⋅ , ⋅ .

 
Assumption 1: The prior weighting Γk − N k is a continuous

function Γk − N k:ℝnx → ℝ lower bounded by γ p:ℝ → ℝ, γ p ∈ K∞,
and upper bounded by γ̄p:ℝ → ℝ, γ̄p ∈ K∞, such that

γ p χ ≤ Γk − N k χ ≤ γ̄p χ , (13)

and

γ p χ ≥ cp χ a , γ̄p χ ≤ c̄p χ a . (14)

where χ = x^k − N k − x̄k − N, 0 ≤ cp ≤ c̄p and a ∈ R ≥ 2.
Given the updating scheme (8), inequality (13) verifies [18]

P0
−1 χa ≤ Γk − N χ ≤ P∞

−1 χa . (15)

 
Assumption 2: The stage cost ℓ ⋅ , ⋅ :ℝnw × ℝnv → ℝ is a

continuous function bounded by γw, γv, γ̄w, γ̄v ∈ K∞, such that
∀w ∈ W and v ∈ V the following inequalities are satisfied:

γw w + γv v ≤ ℓ w, v ≤ γ̄w w + γ̄v v . (16)
These assumptions allow us to build upper and lower bounds of

the elements of Ψ. Then, functions γ1 and γ2 (from Definition 1) are
used to measure the distance between the disturbance sequences
w1, w2, v1 and v2. They are related with γw w , γv v , γ̄w w  and
γ̄v v  through the following inequalities:

γ1 3γw
−1 w ≤ c1 w α1 , γ2 3γv

−1 w ≤ c2 v α2 , (17)

for c1, 2, α1, 2 ∈ ℝ ≥ 0. Finally, an assumption about the structure
and properties of function β(r, s) is introduced

 
Assumption 3: The function β(r, s) ∈ Kℒ and satisfies the

following inequality:

β(r, s) ≤ cβrps−q, (18)

for some cβ, p, q ∈ ℝ ≥ 0 and q ≥ p.
Inequalities (17) and (18) have been used in previous works

[25, 26] to bound the estimator performance metric Ψ. Finally, the
definition of a RGAS is introduced to study the stability of a non-
linear system subject to bounded disturbances.

 
Definition 2: Consider system (3) subject to disturbances

w ∈ W wmax  and v ∈ V vmax  for wmax, vmax ∈ ℝ ≥ 0, with prior
estimate x̄0 ∈ X emax . The MHE equation (5) with adaptive arrival
cost (8) is robustly globally asymptotically stable (RGAS) if there
exists functions Φ ∈ Kℒ and πw, πv ∈ K such that ∀ x0 ∈ X and
∀ x̄0 ∈ X0 the following inequality is satisfied ∀k ∈ ℤ ≥ 0:

xk − x^k ≤ Φ x0 − x̄0 , k + πw ∥ w ∥[0, k − 1]

+πv ∥ v ∥[0, k − 1] . (19)

In the next section we will show that if system (3) is i-IOSS and
Assumptions 1 to 3 are fulfilled, the MHE estimator (5) with
adaptive arrival cost (8) is RGAS. Furthermore, if the process and
measurement disturbances are convergent (i.e. w ∈ Cw, v ∈ Cv),
then x^k k → xk as k → ∞.
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3 Robust stability of MHE under bounded
disturbances
With all the elements introduced in the previous section, we are
ready to derive the main result: the RGAS of the proposed moving
horizon estimator with an estimation horizon ℕmin for non-linear
detectable systems under bounded disturbances. Furthermore, Kℒ
and K functions exist such that (19) is valid with Φ, πw and πv for
all estimation horizon N ≥ ℕmin.
 

Theorem 1: Given the i-IOSS non-linear system (3) with a prior
estimate x̄0 ∈ X0 of its unknown initial condition x0 and bounded
disturbances w ∈ W wmax , v ∈ V vmax , Assumptions 1–3 are
fulfilled, the prior weighting Γk − N is updated with algorithm (8)
and the estimation horizon verifies

ℕmin := δ
ζ
ηe

max

ζ − 1
η ℂ

P

ρ
η cβ18p + λmin

α1 P0
−1 c13α1

+c23α2 + cβ2p
1
η ,

(20)

then the resulting MHE estimator is stable.
 

Proof: See the Appendix in Section 8. □
The proof of Theorem 1 is constructive and provides an

estimate of the estimation horizon N required to guarantee the
stability of the MHE estimator analysed in this work. The estimates
ℕmin and functions β̄, ϕw and ϕv are conservative, since their
derivation involved conservative estimates of noises, errors, stage
and arrival costs. Functions β̄ r, s , ϕw r  and ϕv r  are given by
(see (21) and (22)) (see (22) and (23)) (see (23)) 

such that the estimation residual can be written as follows:

xk − x^k k ≤ β̄ xk − N − x̄k − N , k + ϕw ∥ w ∥ + ϕv ∥ v ∥
∀k ∈ ℤ 0, N . (24)

To guarantee the validity of previous results on the entire time
horizon we must determine if the resulting system is robust
globally stable. Firstly, we determine the decreasing rate of the
function β̄ r, s  ℕmin samplings time in the future. Adopting an
estimator with a window length N = ℕmin such that

β̄ δr, N ≤ ℕmin

N
η
r, (25)

the effects of the initial conditions x0 will vanish with a
decreasing rate δ. As k → ∞, x^k k will entry to the bounded set
XI w, v ⊆ X defined by the noises of the system w and v as
follows:

XI w, v := xk − x^k k ≤ δ 1 + μ ϕw ∥ w ∥
+ϕv ∥ v ∥ , μ ∈ ℝ > 0 .

(26)

This set defines the minimum size region that can be achieved
by removing the error in initial conditions ( x0 − x̄0 ≤ emax). For
any MHE with adaptive arrival cost and window length N = ℕmin,
two situations can be considered:

• The estimator has removed the effects of x0 on x^k k such that
xk + j − x^k + j k + j ∈ XI w, v  for all j ∈ ℤ > 0.
• The estimator has not removed the effects of x0 on x^k k such that
xk + j − x^k + j k + j ∉ XI w, v  for some j ∈ ℤ > 0,

Assuming the first situation, moving forward N samples ahead
(24), the following inequalities hold:

xk + N − x^k + N ≤ β̄ xk − x̄k , N + ϕw ∥ w ∥ + ϕv ∥ v ∥

≤ xk − x̄k
δ + ϕw ∥ w ∥ + ϕv ∥ v ∥

≤ δ 1 + μ ϕw ∥ w ∥ + ϕv ∥ v ∥ .

(27)

This equation implies the fact that xk + j − x^k + j k + j ∈ XI w, v
∀ j ∈ ℤ ≥ 0. In the other case, when the estimation error is outside of
XI w, v , (24) and (25) are recalled again and the following
inequalities hold:

xk + N − x^k + N ≤ xk − x^k
δ

ℕmin

N
η

+ ϕw ∥ w ∥

+ϕv ∥ v ∥

≤ xk − x̄k
ℕmin

N
η 2 + μ

δ 1 + μ .

(28)

If

δ > 2 + μ
1 + μ , (29)

then

∀N ≥ ℕmin:θ := ℕmin

N
η 2 + μ

δ 1 + μ < 1. (30)

Equation (28), under condition and (29), reveals a contractive
behaviour of the estimation error with a contraction factor θ. Then,
for some finite time k* ∈ ℤ > ℕmin the estimation error will decrease
until

xk* − x^k* k* ∈ XI w, v . (31)

In equivalent formulations, (27) and (28) put in evidence the
existence of a positive invariant set and a Lyapunov like function
for the proposed estimator. From (28), one can see that for the case
that the estimation error belongs to the set XI w, v C ∩ X,
(XI w, v C denotes the complement of the set XI w, v ) the
estimation error decreases in a factor of θ every ℕmin sampling time.

β̄ xk − N − x̄k − N , j

:=
kβ xk − N − x̄k − N

ζ ℂP
ρ cβ 18p + λmin

α1 P0
−1 c1 3α1 + c2 3α2 + cβ 2p , j = 0

xk − N − x̄k − N
ζ

jη
ℂP

ρ cβ 18p + λmin
α1 P0

−1 c1 3α1 + c2 3α2 + cβ 2p , j ∈ ℤ 1, N

(21)

ϕw ∥ w ∥ := cβ 18p

P0
−1 γ̄w

p
a ∥ w ∥ + c2 3α2γ̄w

α2 ∥ w ∥ + γ1 6 ∥ w ∥ + γ1 6γw
−1 3γ̄w ∥ w ∥ , (22)

ϕv ∥ v ∥ := cβ 18p

P0
−1 γ̄v

p
a ∥ v ∥ + c1 3α1γ̄v

α1 ∥ v ∥ + γ2 6 ∥ v ∥ + γ2 6γv
−1 3γ̄v ∥ v ∥ , (23)
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Taking into account the general case in which
xk − x^k k ∈ XI w, v  for k ∈ ℤ ≥ ℕmin, following the same procedure
as in [25], we could define i := ⌊k /N⌋ (where ⌊ ⋅ ⌋ denotes the
floor function) and j := k mod N, therefore k = iN + j.
Combining (27) and (28) and taking into account that
xk − x^k k ≤ δemax for k ∈ ℤ 0, N − 1 , the following inequalities are
obtained: (see (32)) 

Equation (32) can be rewritten as follows:

xk − x^k k ≤ θiβ̄ x0 − x̄0 , j + 2 1 + μ
ϕw ∥ w ∥ 0, k − 1 + ϕv ∥ v ∥ 0, k − 1 , (33)

which is just (19) with

Φ x0 − x̄0 , k = θiβ̄ x0 − x̄0 , j , (34)

πw ∥ w ∥ 0, k − 1 = 2 1 + μ ϕw ∥ w ∥ 0, k − 1 , (35)

πv ∥ v ∥ 0, k − 1 = 2 1 + μ ϕv ∥ v ∥ 0, k − 1 . (36)

This equations imply the fact that the proposed estimator is
RGAS.

 
Remark 2: Functions ϕw and ϕv in (22) and (23), and hence πw

and πv in (35) and (36), do not depend on the estimation horizon N
which means that the moving horizon estimator with adaptive
arrival cost is RGAS with uniform gains given by (22) and (23).

This fact implies that the size of the invariant set XI(w, v) is
independent of the horizon length N and it only depends on the a
priori bounds for the maximum disturbances (see Example 2).
Moreover, starting with a poor estimate of initial condition x̄0,
estimation error will decrease thanks to the arrival-cost updating
mechanism, which improves the prior estimate x̄0. When the
knowledge about the state at the beginning of the estimation
window is accurate [i.e. function (34) is near zero], one can
considerate that the estimation error has entered in the invariant
space XI w, v , reaching its minimum value determined by
functions (35) and (36).

 
Remark 3: Equation (33) also holds for ∥ w ∥ k − N , k − 1  and

∥ v ∥ k − N , k  instead of ∥ w ∥ and ∥ v ∥ [it can be done omitting last
step in (42)].

This fact is a consequence of the exponential averaging
introduced by variable forgetting factor αk. This fact improves the
robustness and performance of the estimator by adapting the
relative significance of the arrival cost Γk − N on the estimate x^k k.
The effect is to generate more accurate estimates of ϕw and ϕv,
since they depend on the information available within the
estimation window.

Finally, the convergence of the estimation error xk − x^k k → 0
is shown for wk ∈ Cw and vk ∈ Cv. Since Φ x0 − x̄0 , k ∈ Kℒ by
construction and sequences w and v are convergent, the right-hand
side of (33) can be rewritten taking into account only the
disturbances within the estimation window, i.e. ∥ w ∥ k − N , k − 1  and
∥ v ∥ k − N , k − 1 . Since limk → ∞ wk = 0 and limk → ∞ vk = 0, one can
choose some k1 large enough such that
max wmax, vmax ≤ min πw

−1 ε/3 , πv
−1 ε/3 . Since

Φ x0 − x̄0 , k ∈ Kℒ, there exists some k2 such that
Φ ⋅ , k2 ≤ ε/3. Taking k ≥ max {k1, k2},
xk − x^k k ≤ (ε/3) + (ε/3) + (ε/3) = ε. Since ε is arbitrary,
xk − x^k k → 0 when k → ∞ (see Fig. 1 from Example 2). Note

that to prove convergence to the true state, one has to take into
account only the disturbances acting on the horizon of the
estimator. On the other hand, to prove RGAS is necessary to take
into account all the history of disturbances.

For the case of non-vanishing disturbances, whenever the
horizon length is chosen as N ≥ ℕmin, the minimum estimation
error is determined by functions (35) and (36). However, when
wk ∈ Cw and vk ∈ Cv, we have shown that xk − x^k k → 0. This

Q1

Q2

seems to be an unrealistic situation. However it entails that in a
noiseless (ideal) scenario, the algorithm does not introduce
artificial noise, and the estimation error will be upper bounded only
by (34), which behaves asymptotically stable to zero whenever
N ≥ ℕmin.

Note that ℕmin, which guarantees the RGAS of the system,
depends on emax, the class of disturbances considered (upper bounds
of w and v), P0 and the bounds of the stage cost, while it is
independent of ∥ w ∥, ∥ v ∥. Therefore, the same ℕmin ensures
RGAS for all bounded disturbances and emax. This implies that we
can prove the RGAS property for FIE with least-square objective
function.

4 Examples
The following examples will be used to illustrate the results
presented in the previous sections and compare the performance of
the estimators. The examples considered in this work are taken
from [25] for a direct comparison of the results.

4.1 Example 1

The first example considers the system

x(k + 1) = 0.8x1(k) + 0.2x2(k) + 0.5w(k)
−0.3x1(k) + 0.5cos(x2(k)) (37)

y(t) = x2(t) + v(t)

The stage cost is chosen as ℓ(w, v) = 10w2 + 10v2 and the
horizon length is N = 10 for all estimators. The arrival cost is
chosen as Γ(χ) = 0.1(χ − x^(t t))T(χ − x^(t t)) for the MAX
estimator [25] and Γt(χ) = (χ − x^(t t))TΠk

−1(χ − x^(t t)) for the
ADAP estimator, respectively, where Π0 = 10I2 and Πk is
computed using (8) with σ = 0.2 and c = 1 × 106. The MAX
estimator uses δ = 1, δ1 = κN with κ = 0.892 and δ2 = 1/N (see (3)
of [25]). The FIE (MAX, see [26]) is configured with the same
parameter used by Müller [25], arrival cost Γ0 and δ = 1, δ1 = κk

and δ2 = 1/k.
Table 1 shows the mean square estimation error of each

estimator averaged over 300 trials. It can be seen that the proposed
estimator average mean square estimation error is smaller than
MAX ones and closer to FIEMAX. The main performance
difference between ADAP and FIEMAX estimators is the inclusion
of the max term in the last one, which allows us to follow the
sudden changes in the signals (see Fig. 2). The EKF provides the
worst performance of the estimators analysed in this example. The
FIE estimator is the ones that uses the bigger amount of
information (all the samples available). On the other hand, the EKF
uses the smaller amount of information (the actual sample). This is
the main reason why the FIEMAX provides the best performance
and EKF provides the worst performance of the estimators
considered in this example. The ADAP and MAX estimators use
the same amount of information (N samples) but they process the
information of previous samples in different way. This is the main
reason for the difference of performance between these estimators.

Fig. 2 shows simulation results for initial condition
x0 = [0.5, 0]T and prior estimate x̄0 = [0, 0]T. The process and
measurement disturbances w and v are sampled from an uniform
distribution over the intervals [ − 0.3, 0.3] and [ − 0.2, 0.2],
respectively. This figure shows that the estimators that use the max
term (FIEMAX and ADAP) are able to follow the sudden changes;
however, in the remaining of the signal the MAX estimator is
moving away from the FIEMAX while ADAP remains closer it.
This behaviour is due to the presence of the max in the
performance index of the MAX estimator, while the ADAP
estimator smooths the estimates x^k k. It is interesting to point out
that the three receding horizon estimators (FIEMAX, MAX and
ADAP) have the same behaviour during the first part of transient
behaviour (k < 5). During the second part of transient behaviour
(5 < k < 10) the FIEMAX and MAX estimators still have the same
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behaviour while the ADAP move away. Finally, after the transient
behaviour (k > 10), the three estimators have a different
behaviours. These behaviours are explained by the structure of the
performance index and the amount of information used by each
estimator, as it was explained in the previous paragraph.

4.1.1 MHE in the presence of variable measurement
noise: Now the MHE estimator is evaluated in the presence of
time-varying measurement noise. The variance of the measurement
noise is changed from 0.2 to 1.0 between times 20 and 40, then it
returns to 0.2.

Table 2 shows the average mean square error in the presence of
variable measurement noise. In this case we can see that the mean
square error of the ADAP estimator is marginally affected (<2%)
by the changes of the measurement noise, while the mean square
error of the MAX estimator increases significantly (>40%). The
behaviour of ADAP estimator performance is due to the adaptation
capabilities of the prior weighting updating mechanism, which is
able to track the changes of noises by adapting the arrival cost
Γk − N k. In the case of MAX estimator, the arrival cost is updated
using the information of the system model and noises [25],

therefore any change in the operational conditions is not
incorporated into the arrival cost, affecting the remaining estimates
of the window. In the case of the FIEMAX estimator, its
performance is not affected (<2%) because the FIEMAX uses all
the information available until the current sample.

Fig. 3 shows the evolution of the trace of Pk − N
−1  used in the prior

weight of ADAP estimator in both cases, fix and variable
measurement noise. It can be seen that the trace of both matrices
grow in similar way, however when the measurement noise
changes its variance from 0.2 to 1.0 the trace of Pk − N

−1  increases its
value (from 12.5 to 22.5) and them both traces have the same
behaviour again. This change in the arrival cost weight helps
ADAP to acquire information that allows it to keep the
performance (from MSE = 0.02181 to 0.02088) while the MSE of
MAX increases a 40% (from MSE = 0.02211 to 0.03085). The
trace of Pk − N

−1  keeps changing until k = 50 since the last
measurement affected by the noise with variance 1.0 is abandoning
the estimation window (remember N = 10).

4.2 Example 2

As a second example, we consider a second-order gas-phase
irreversible reaction of the form 2A → B. This example has been
considered in the context of MHE in [25, 26, 33]. Assuming an
isothermal reaction and that the ideal gas law holds, the system
dynamics

ẋ(t) = −2κx1
2(t) + w(t)
κx1

2(t)
,

h(x) = x1(t) + x2(t) + v(t),
(38)

where x = [x1, x2], x1 is the partial pressure of the reactant A, x2
is the partial pressure of the product B, and κ = 0.16 is the reaction
rate constant. The measured output of the system is the total
pressure. The system is affected with additive process and
measurement noise w and v drawn from normal distributions with
zero mean and covariance Qw = 0.0012I2 and Rv = 0.12,
respectively. The stage cost and prior weighting are chosen as
ℓ(w, v) = wTQw

−1w + Rv
−1v2 and Γt(χ) = (χ − x^(k k))TΠk

−1(χ − x^(k k)
with Π0 = (1/36)I2, where Πk is determined by an extended
Kalman filtering recursion in the case of the MAX estimator and
the adaptive method in the case of the ADAP estimator with
σ = 0.1 and c = 1 × 106. For the MAX estimator we use δ1 = 1/N,
δ2 = 1 and δ = 0. In the case of the ADAP estimator, the stage cost
weight matrices are chosen as Qw = 0.001I2 and Rv = 0.1. We use a
multiple shooting strategy with a sampling time of Δ = 0.1 Seg
and we add the restrictions x1 ≥ 0 and x2 ≥ 0.

Table 3 shows the values of the mean squared error computed
from the time 10 (in order to neglect the initial transient error) up
to the simulation end time and averaged over 300 trials for horizon
sizes of N = 2, 5 and 10. 

The results show that the performance of ADAP estimator is
superior to the one of MAX estimator for any horizon (two to three
times smaller), showing a decrement of the absolute value of MSE
with the size of the estimation window for both estimators. The
FIE provides the best performance at the price of its computational
burden. Since the FIE has into account all measurements, as time
increase the problem become intractable from a practical point of
view. However, it is useful for benchmark purposes. In this
example we can see again the effect of the arrival cost on the
performance of MHE estimator, playing a central role on the
behaviour of the estimators. This effect is stronger for shorter
horizons, since the significance of the arrival cost on the cost
function decreases with the size of the estimation window. The

xk − x^k k ≤ max { xj − x̄ j θi, δ 1 + μ ϕw ∥ w ∥ + ϕv ∥ v ∥ }
≤ max {θi β̄ x0 − x̄0 , j + ϕw ∥ w ∥ + ϕv ∥ v ∥ , δ 1 + μ ϕw ∥ w ∥ + ϕv ∥ v ∥ }
≤ θiβ̄ x0 − x̄0 , j + 2 1 + μ ϕw ∥ w ∥ + ϕv ∥ v ∥ .

(32)

Fig. 1  Convergence of the estimation error for the case of convergent
disturbances

 
Table 1 Example 1 averaged MSE

FIEMAX ADAP MAX EKF
x1 0.02040 0.02176 0.02206 0.02296
x2 0.00135 0.00151 0.00156 0.00154
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ADAP estimator always provides a better performance than the
MAX, providing performance improvements ranging from 277%
(for N = 10) to 588% (for N = 5).

Figs. 4 and 5 show the simulation results for x0 = [3, 1]T,
x̄0 = [0.1, 4.5]T and estimation horizons of sizes N = 2, 5 and 10,
along with results for an FIE using the same parameters. These
figures show that the behaviour of ADAP estimator hardly changes
with horizon length (only the startup behaviours show significant
differences), providing estimates x^k k that converge to a
neighbourhood of the true states xk, whose size depends on the
variance of the noises of the initial value of the arrival cost weight
(P0) and the stage costs [see (22) and (23)]. This result is consistent
with the independence of observer gains πw and πv from the size of
estimation window N (see Remark 2). On the other hand, the
behaviour of the MAX estimator changes significantly with the
size of the estimation window. In all the cases it provides estimates
x^k k that do not converge to the true states xk, showing an offset that
depends on the size of the estimation window. This result is
consistent with the dependence of observer gains πw and πv with the
estimation window size N (see Remark 16 of [25]). In addition, the
MAX estimator also exhibits the cycling effect caused by the use
of the filtered estimate to update x̄k − N [29].

Fig. 2  Comparison between different estimators and system states
 

Table 2 Example 1: average MSE with variable
measurement noise

FIEMAX ADAP MAX
x1 0.02060 0.02068 0.03067
x2 0.00168 0.00290 0.00335

 

Fig. 3  Comparison of the evolution of trace(Pk − N
−1 ) used by ADAP

estimator for time-varying (red dash dotted) and constant (blue dashed)
measurement noise parameters

 
Table 3 Example 2: averaged MSE over 300 trials and
different horizon size

N = 2 N = 5 N = 10
ADAP MAX ADAP MAX ADAP MAX FIE

x1 0.18808 0.58652 0.03367 0.04615 0.00171 0.00772 0.00024
x2 0.23037 0.66768 0.04074 0.05077 0.00285 0.00951 0.00120

 

Fig. 4  Comparison of x1 between ADAP, MAX and FIEMAX estimators for
different horizon length (top N = 2, middle N = 5 and bottom N = 10)

 

IET Control Theory Appl.
© The Institution of Engineering and Technology 2020

7



These figures also show that the main difference in the
performance between ADAP and FIE is due to the transient phase
(0 < k < 10), while during the steady-state phase (k > 10) both
estimators have a similar behaviour. On the other hand, MAX and
FIE estimators show different behaviours along all simulation.

Finally, Fig. 1 shows through simulations the convergence of
x^k k to xk when disturbances are convergent. In these simulations
the only source of error is x̄0 ≠ x0, therefore sequences of noises are
convergent w ∈ Cw and v ∈ Cv. In this figure we can see that
independently of the initial conditions x̄0, x^k k converge to xk.

5 Conclusions
In this paper we established RGAS for moving horizon estimator
with a least-square-type cost function for non-linear detectable (i-
IOSS) systems in the presence of bounded disturbances. It was also
shown that the estimation error converges to zero in the case that
disturbances converge to zero. This was done for an estimator
which uses a least-square-type cost function whose arrival cost is
updated using adaptive estimation methods. An advantage of this
updating mechanism is that the required conditions on prior

weighting are such that it can be chosen off-line. Furthermore, it
introduces a feedback mechanism between the arrival cost weight
and the estimation errors that automatically control the amount of
information used to compute it, which allows us to shorten the
estimation horizon.

The standard least-square-type cost function is typically used in
practical applications and RGAS has been proved in [25].
However, for this formulation, the disturbance gains depend on the
estimation horizon. Hence, this result does not allow us to establish
RGAS for an FIE. We showed that by changing the updating
mechanism of arrival cost weight the disturbance gains becomes
uniform, allowing to extend the stability analysis to FIEs with
least-square-type cost functions.
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8 Appendix: proof Theorem 1
 
The following optimal cost of problem (5) can be given by

ΨN* = Γk − N χ* + ∑
j = k − N

k
ℓ w^

j k* , v^ j k* , (39)

which is bounded (Assumptions 1 and 2) ∀ w^
j k  and ∀ v^ j k  for all

j ∈ ℤ k − N , k  by

ΨN* ≤ γp χ* + Nγw w^
j k* + Nγv v^ j k* , (40)

ΨN* ≥ γ p χ* + Nγw w^
j k* + Nγv v^ j k* . (41)

Due to optimality, the following inequalities hold
∀k ∈ [k − N, k − 1]:

Ψ x^k − N k* , w^ ∗ ≤ Ψ xk − N, w ,
≤ γ̄p xk − N − x̄k − N + Nγ̄w ∥ w ∥ + Nγ̄v ∥ v ∥ ,

(42)

then, taking into account the lower and upper bounds we have

χ ≤ γ p
−1 γ̄p xk − N − x̄k − N + Nγ̄w ∥ w ∥ + Nγ̄v ∥ v ∥ .

By mean of Assumptions 1 and 2 the last inequality can be written
as follows:

χ ≤ γ p
−1 3 γ̄p xk − N − x̄k − N + γ p

−1 3Nγ̄w ∥ w ∥ + γ p
−1 3Nγ̄v ∥ v ∥ ,

≤ 3
1
a

P0
−1 P∞

−1
1
a xk − N − x̄k − N + N

1
a γ̄w

1
a ∥ w ∥ + N

1
a γ̄v

1
a ∥ v ∥ .

(43)

Analogously, bounds for v^ j k  and w^
j k  can be found

w^
j k ≤ γw

−1 3
N γ̄p xk − N − x̄k − N + γw

−1 3 γ̄w ∥ w ∥ + γw
−1 3 γ̄v ∥ v ∥ ,

v^ j k ≤ γv
−1 3

N γ̄p xk − N − x̄k − N + γv
−1 3 γ̄w ∥ w ∥ + γv

−1 3 γ̄v ∥ v ∥ .
(44)

Next, let us consider some samples k ∈ ℤ ≥ N and assume that
system (3) is i-IOSS with z1 = xk − N, z2 = x^k − N k, w1 = {wj},

w2 = {w^
j k}, v1 = {vj} and v2 = {v^ j k} for all j ∈ ℤ k − N , k − 1 .

Since x(k) = x N, z1, w1 , x^(k) = x^k k = x N, z2, w2  we obtain

xk − x^k k ≤ β xk − N − x^k − N k , N + γ1 ∥ wj − w^
j k ∥ + γ2

∥ vj − v^ j k ∥ . (45)

In order to get a finite upper bound for the estimation error, the
three terms in the right-hand side of (45) must be upper bounded.
The first term can be written

β xk − N − x^k − N k , N ≤ β 2 xk − N − x̄k − N , N + β 2 χ , N ,

≤ β 2 xk − N − x̄k − N , N + β
6 3

1
a P∞

−1
1
a

P0
−1 xk − N − x̄k − N , N

+β 6 3
1
a N

1
a

P0
−1 γ̄w

1
a ∥ w ∥ , N + β 6 3

1
a N

1
a

P0
−1 γ̄v

1
a ∥ v ∥ , N .

(46)

Using Assumptions 1 and 3, function β( ⋅ ) is bounded by

β xk − N − x^k − N k , N ≤ cβ 2p

Nq xk − N − x̄k − N

p

+ P∞
−1

P0
−1

p cβ 6p 3
p
a

Nq xk − N − x̄k − N

p

+ cβ 6p 3
p
a N

p
a − q

P0
−1 γ̄w

p
a ∥ w ∥ + γ̄v

p
a ∥ v ∥ .

(47)

Taking into account that Pk
−1 is a symmetric positive definite matrix

∀k ∈ ℤ 0, ∞ , then Pk
−1 ≤ λmax Pk

−1 , where λmax Pk
−1  denotes the

maximal eigenvalue of matrix Pk
−1. Denoting λmin Pk

−1  as the
minimal eigenvalue of matrix Pk

−1 and taking into account that
Pk

−1 ≤ Pk + 1
−1 , the maximum conditioning number of matrix Pk

−1

can be defined as ℂP := λmax P∞
−1 /λmin P0

−1 , then

β xk − N − x^k − N k , N ≤ cβ

Nq 2p + ℂP
p18p xk − N − x̄k − N

p

+ cβ 18p

P0
−1 γ̄w

p
a ∥ w ∥ + γ̄v

p
a ∥ v ∥ .

(48)

The first term on the right side of this equation is bounded due to
the assumption that xk − N − x̄k − N ∈ X0 emax , while the second
term are finite constants. To guarantee the validity of previous
results on the entire time horizon we extend the definition of β r, s
to N = 0. It is sufficient to define β̄ r, 0  as follows:

β̄ r, 0 := max {r, kββ̄ r, 1 } kβ ∈ ℝ > 1 . (49)

The second term on the right-hand side of (45) can be bounded
by the following inequality ∀ j ∈ ℤ k − N , k − 1 :

γ1 ∥ wj − w^
j k ∥ ≤ γ1 ∥ w ∥ + ∥ w^

j k ∥

≤ γ1 ∥ w ∥ + γw
−1 3

N γ̄p xk − N − x̄k − N + γw
−1 3 γ̄w ∥ w ∥ + γw

−1 3 γ̄v ∥ v ∥ .(50)

Recalling Assumption 2 and properties (1), the reader can verify
the following inequality:

γ1 ∥ wj − w^
j k ∥ ≤ c13α1 P∞

−1 α1

Nα1
xk − N − x̄k − N

aα1

+ c13α1γ̄v
α1 ∥ v ∥ + γ1 6 ∥ w ∥ + γ1 6γw

−1 3γ̄w ∥ w ∥ .
(51)

In an equivalent manner, a bound for the third term on the right-
hand side of (45) can be found

γ2 ∥ vj − v^ j k ∥ ≤ c2 3α2 P∞
−1 α2

Nα2
xk − N − x̄k − N

aα2

+ c2

3α2γ̄w
α2 ∥ w ∥ + γ2 6 ∥ v ∥ + γ2 6γv

−1 3γ̄v ∥ v ∥ .
(52)

Once the upper bounds for the three terms of (45) were found,
defining ζ := max {p, aα1, aα2}, η := min {q, α1, α2} and
ρ := max {p, α1, α2}, (45) can be rewritten as follows:
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xk − x^k k ≤ xk − N − x̄k − N
ζ

Nη ℂP
ρ cβ 18p + c1 3α1 + c2 3α2 λmin

α1 P0
−1 + cβ 2p

+ cβ 18p

P0
−1 γ̄w

p
a ∥ w ∥ + c2 3α2γ̄w

α2 ∥ w ∥ + γ1 6 ∥ w ∥ + γ1 6γw
−1 3γ̄w ∥ w ∥

+ cβ 18p

P0
−1 γ̄v

p
a ∥ v ∥ + c1 3α1γ̄v

α1 ∥ v ∥ + γ2 6 ∥ v ∥ + γ2 6γv
−1 3γ̄v ∥ v ∥ .

(53)

This equation can be written as follows:

xk − x^k k ≤ β̄ xk − N − x̄k − N , N + ϕw ∥ w ∥ + ϕv ∥ v ∥
∀k ∈ ℤ 0, N − 1 . (54)

Defining the following functions as follows:

β̄ xk − N − x̄k − N , N := xk − N − x̄k − N
ζ

Nη ℂP
ρ cβ 18p + λmin

α1 P0
−1 c1 3α1 + c2 3α2 + cβ 2p ,(55)

ϕw ∥ w ∥ := cβ 18p

P0
−1 γ̄w

p
a ∥ w ∥ + c2 3α2γ̄w

α2 ∥ w ∥ + γ1 6 ∥ w ∥ + γ1 6γw
−1 3γ̄w ∥ w ∥ ,(56)

ϕv ∥ v ∥ := cβ 18p

P0
−1 γ̄v

p
a ∥ v ∥ + c1 3α1γ̄v

α1 ∥ v ∥ + γ2 6 ∥ v ∥ + γ2 6γv
−1 3γ̄v ∥ v ∥ .(57)

Functions ϕw and ϕv only depend on the characteristic of the noises
w and v, stage costs ℓ w, v  (through its bounds γw, γv, γ̄w and γ̄v),
the functions γ1 and γ2 (used to measure i-IOSS property), and the
initial value of the prior weight matrix P0, therefore they only affect
the steady-state value of the residual defining a bounded set
X(w, v) ∈ X where the estimated states x^k will remain.

On the other hand, the function β̄ depends on the error at the
beginning of the estimation window (xk − N − x̄k − N), stage costs
ℓ w, v  (through its bounds γ̄w and γ̄v), the initial (P0) and final (P∞)
values of the prior weight matrix through their eigenvalues and the
size of the estimation horizon N.

The only term that can affect the stability of the estimates is β,
since it depends on the error at the beginning of the estimation
window (xk − N − x̄k − N), functions γ1 and γ2 (used to define IOSS)
and the behaviour of the updating mechanism of the arrival cost
parameters (Pk). Then, we want to determinate the minimum
horizon length ℕmin required to accomplish a decreasing rate
δ ∈ (0, 1) such that ∀r, s: β̄(r, s) ≥ β(r, s), which is given by

N ≥ ℕmin

= δζ emax
ζ − 1 ℂP

ρ cβ18p + λmin
α1 P0

−1 c13α1 + c23α2 + cβ2p
1
η .

(58)

Adopting an estimator with a window length N ≥ ℕmin, β̄(r, s) is
bounded by

β̄ δr, N ≤ ℕmin

N
η
r, (59)

and the effects of the initial conditions x0 − x̄0 > 0 will vanish
with a decreasing rate δ. As k → ∞, the estimates x^k k will entry to
the bounded set XI w, v ∈ X defined by the noises of the system

XI w, v := { xk − x^k k ≤ 2 1 + μ
ϕw ∥ w ∥ + ϕv ∥ v ∥ } μ ∈ ℝ > 0 . (60)

This fact completes the proof of Theorem 1. ◻
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