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In this work, the multi-center continuum distorted wave-eikonal initial state (MC-CDW-EIS)
model is introduced. In contrast to previously reported CDW-EIS analyses for electron-molecule
collisions, in which the ionized electron interacted with the molecular ion via a one-center effec-
tive potential, the multi-center nature of the molecular ion is explicitly taken into account. Results
obtained for electron impact ionization of oriented H2 molecules at the fully differential level are pre-
sented and contrasted to recent experimental data and to reported theoretical calculations obtained
with the Time Dependent Close Coupling method. Present results suggest that this simple molecule
still represents a challenging target from the theoretical point of view and that many aspects of the
ionization process at the fully differential level remain to be understood.

I. INTRODUCTION

The electron-impact ionization of atoms and molecules
has represented a challenging field for decades [1–3].
While a large fraction of these studies stemmed from
the development of new experimental techniques, since
the mid 1990s the introduction of reaction microscopes
allowed for an unprecedented level of detail regarding col-
lisions systems at the fully differential level. It is worth
noting that this technique has not only been applied to
the electron collisions field but in ion-impact and photon-
impact studies as well [4–9]. Different laboratories world-
wide adopted the technique since then [10–13]. These
operating setups gave rise to large sets of data that have
been useful to benchmark the existing theoretical models
in different collisional processes.

From a theoretical point of view, we can distinguish
the applied methods in two families: numerically inten-
sive and perturbative treatments. While the former are
nowadays considered capable to accurately reproduce the
reported experimental cross sections at different collision
geometries for simple atoms like H and He [14–16] and
have been lately implemented for more complex atomic
targets [17, 18], their extension to complex molecular tar-
gets is not so straightforward, even when the problem is
simplified to a one electron treatment [19]. In contrast,
distorted wave methods have proved to lead to accept-
able results regarding simple targets like H, He and Ar
[20–26], and can be in principle extended to deal with
complex molecular targets at a considerably inferior com-
putational cost. Such complex scenario has been mostly
explored by means of variations of the distorted-wave-
Born-Approximation (DWBA) [27–30] or variations of
the 3C (sometimes termed BBK) model [31–33]. The
post-collision interaction (PCI) among the projectile and
the emitted electron at the wave function level was ei-
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ther neglected, or modelled by a simple multiplicative
factor (such as the Gamow factor or the Ward-Macek fac-
tor [34]) that would not affect the computational cost in
many of these calculations. Only recently, more elaborate
DWBA models that explicitly incorporate the electron-
electron interaction at all levels in the final state wave
function have been introduced [27, 35].

In a previous work, we have implemented the CDW-
EIS model for electron collisions with H2O molecules [36].
This model has been largerly and successfully used to de-
scribe ion-atom collisions at intermediate to large impact
energies [37–41] and to a much lesser extent in electron-
atom collisions [21–25]. Compared to the Born initial
state, the introduction of the eikonal initial state retains,
in an asymptotic picture, the interaction of the projec-
tile with the active electron and the molecular ion at the
wavefunction level. In our case, we calculated fully dif-
ferential cross sections for the single ionization of H2O
at an electron impact energy of 81 eV and found very
good agreement with the reported experimental data for
the denominated collision, semi-perpendicular and full-
perpendicular planes [36]. In that work, the theoretical
cross sections were properly averaged over the molecu-
lar orientation angles provided that the data were not
orientation-resolved. Full account of the PCI at the wave-
function level was performed in this study.

In this work, we introduce a multi-center continuum-
distorted wave-eikonal initial state model (MC-CDW-
EIS) which in contrast to the usual CDW-EIS model,
explicitly considers the multi-center nature of the recoil-
ing molecular ion in the final state wave function. This
model is benchmarked against the recent single ioniza-
tion fully differential cross sections for e− + H2 collisions
at the impact energy of 54 eV from Ren et al. [42] and
other theoretical methods used to describe these data,
such as the time-dependent close coupling (TDCC) [43].
We point out that this system is particularly relevant in
our case, since the experimental studies have been car-
ried out for oriented targets, thus providing a much more
demanding test compared to other studies in which the
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molecular orientation is not resolved.
In the next section we describe the theoretical model.

Results are discussed in section III, and the conclusions
and outlook are drawn in section IV. Atomic units are
used throughout this work unless otherwise stated.

II. THEORETICAL MODEL

Within this framework we analyse the (e, 2e) processes
through the Gellman-Goldberger transition amplitude
(Tfi), which is represented in its post version by

Tfi =
〈

Ψ−f |Wf |Ψ+
i

〉
+
〈

Ψ−f |Vi −Wf |ψi
〉
. (1)

Here, ψi is the Born Initial State (BIS)

ψi =
eik0·r1

(2π)
3/2

ϕi (r2) (2)

and Ψ+
i is the Eikonal Initial State (EIS)

Ψ+
i =

eik0·r1

(2π)
3/2

ε (r1) ε (r12)ϕi (r2) (3)

where ε (r1) and ε (r12) are the eikonal phases

ε (r1) = e−
iZ
k0

ln(k0r1−k0·r1)

ε (r12) = e
i

k0
ln(k0r12−k0·r12)

(4)

solutions to the Coulomb potentials in the asymptotic
limit between the projectile and a single center of charge
Z = 1 and the active electron respectively, as described
in previous works [36, 44]. We define k0 as the impinging
electron momentum, r1 and r2 are the positions of the
projectile and the active electron respectively and r12 =
r1−r2. In this work, the molecular orbital wave function
ϕi(r2) was calculated by means of the linear combination
of atomic orbitals (LCAO) approximation

ϕi(r2) =

NAO∑
m=1

Cmϕ
′
m(r2). (5)

NAO is the number of atomic orbitals ϕ′m(r2) used, which
were expanded by the 3-21G basis set and the coefficients
Cm for the molecular orbital were determined by a self-
consistent field calculation performed by the GAMESS
quantum chemistry package [45].

The initial-state perturbation Vi in Eq. (1) is equal to
Vi = −Z/r1 +1/r12. The final perturbation operator Wf

is obtained from the Schrödinger equation (H − E) Ψ−f =

WfΨ−f and is equal to Wf = ∇r1 ·∇r12 −∇r2 ·∇r12 . The
final state wave function represents two electrons in the
continuum of the molecular ion and is given by

Ψ−f =χ− (k1, r1)χ− (k2, r2)

×N− (α3) 1F1 (iα3, 1,−ik12r12 − ik12 · r12) .
(6)

Here, k1 =
√

2E1 and k2 =
√

2E2 are the scattered
projectile and emitted electron final momenta, respec-
tively, being E1 and E2 their emitted energies, k12 =
(k1 − k2)/2, α3 = 1/(2k12) is the Sommerfeld parame-
ter for the electron-electron interaction and N− (α3) =
eπ/2α3Γ (1− iα3). The post-collisional interaction is rep-
resented by the confluent hypergeometric function, solu-
tion to the Coulomb potential between the pair of elec-
trons. The distorted waves χ− (ki, ri) take into account
the interaction of the projectile and emitted electron with
the molecular ionic core via the potential

Vion (ri) = V e−N (ri) + V e−e (ri)

=

︷ ︸︸ ︷
−

N∑
j=1

Zj
Rij

+

︷ ︸︸ ︷
NMO∑
n=1

Ne

∫
d3r′
|ϕn (r′)|2

|ri − r′|
.

(7)

Here, the first sum V e−N represents the particles inter-
actions with the N nuclei of the molecule, where Zj are
the different atomic numbers corresponding to each nu-
clei and Rij is the modulus of the vector Rij = ri −Rj ,
being Rj the position of each nueclei with respect to
the ion center of mass. The second sum V e−e of Eq.
(7) stands for the particles interactions with the ion-
remaining electrons. NMO is the number of molecular

orbitals, |ϕn (r′)|2 are the different electron densities cor-
responding to each orbital and Ne is the number of elec-
trons present in the n-th orbital. In this work, for the
wave function ϕn (r′) we make use of the molecular or-
bital of H2 calculated for the initial state ϕi(r2). We per-
formed a calculation of Vion considering the eigenstate of
the molecular ion H+

2 for ϕn (r′) and no significant dif-
ferences were observed. In addition, we decided to fix
the modulus of Rj at 0.55 a.u. in order to mimic the
experimental conditions from Ref. [42].

It can be seen from Eq. (7) that the anisotropy of
Vion (ri) can be difficult to take into account, in partic-
ular for perturbative methods. In this sense, in its sim-
plest form the CDW-EIS model completely neglects the
multi-center nature of the residual ion by considering it
as a single center with effective charge Z (Belkic’s charge

Z =
√

2n2 |εi| has been a frequent choice in the ion-atom
context [41], where εi represents the ionization energy
of the i-th orbital). In this case, the distorted waves
χ− (ki, ri) are just described by Coulomb functions

C− (ki, ri) =
eiki·ri

(2π)
3/2

N− (αi)

× 1F1 (iαi, 1,−ikiri − iki · ri) ,
(8)

eigenstates of the potential V1C (ri) = −Z/ri.
Despite its simplicity regarding the molecular ion de-

scription, the CDW-EIS model was employed with suc-
cess to describe the ionization of H2O by electron impact
in energetic asymmetrical emission conditions [36]. In
that work, the molecular ion was considered in the final
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state as a single center of charge Z = 1 and led to good
agreement with the reported data. Nevertheless, a more
robust and straightforward approach which incorporates
the anisotropy of the residual ion is desirable, specially
to study ionization processes at low impact energies and
for energetically symmetric emissions.

A first approximation can be to spherically average the
anisotropic potential Vion (ri) to obtain

U (ri) =
1

4π

∫
dΩ Vion (ri) . (9)

Although the implementation of this average procedure
provides an isotropic description of the molecular ion, the
main advantage relies on the fact that the distorted waves
χ− (ki, ri) can be separated in a radial and an angular
part with respect to only one center,

χ− (ki, ri) =

∞∑
l=0

(2l + 1)

kiri
ile−iσlul (ki, ri)Pl(k̂i·r̂i), (10)

where σl = σCoull + δl, σ
Coul
l = arg [Γ (l + 1 + iαi)], δl is

the non-Coulombic phase shift of the radial waves (δl = 0

for the Coulomb radial waves) and Pl(k̂i · r̂i) are the Leg-
endre polynomials. The radial wave function ul (ki, ri)
satisfies the equation

[
−1

2

d2

dr2i
+
l (l + 1)

2r2i
+ U (ri)

]
ul (ki, ri) =

k2i
2
ul (ki, ri) .

(11)
This approximation was employed in previous works on
ion-CH4 and ion-H2O obtaining good overall agreement
with the experimental data [46, 47].

Previous approaches presented by Chuluunbatar and
co-workers [32, 33] neglect the second sum in Eq. (7) to
obtain

V e−N (ri) = −
N∑
j=1

Zj
Rij

(12)

By doing so, the molecular anisotropy information is re-
tained at the potential level, neglecting any spatial detail
on the repulsive ion-remaining electrons interaction be-
sides charge screening. The approximated distorted wave
function for the final state, then consists in the product
of Coulomb functions,

χ− (ki, ri) =
1

(2π)
3/2

N∏
j=1

eiki·RijN− (αij)

× 1F1 (iαij , 1,−ikiRij − iki ·Rij)

(13)

In this approximation, effective charges Zj need to be
considered subjected to the condition that their sum

leads to the asymptotic charge of the molecular ion
(Z = +1 for single ionization). The Sommerfeld param-
eters αij take into account the interaction of electron i
with respect to the atomic center j.

In this work we focus ourselves on preserving not only
the molecular anisotropy but also the repulsive potential
electron terms of Eq. (7), which provide information on
the electron screening spatial dependence. In this sense,
following a recent work on ion-H2O multiple ionization
collisions [48], we proceed by fitting Vion (ri) with the
potential function:

Φ (ri) =

N∑
j=1

Φj (Rij) =

N∑
j=1

−
Zasj + Zinj e

−ajRij

Rij
(14)

Here Zasj represents the asymptotic charge of the atom j

and Zinj is a correction factor in order that, at the vicin-
ity of that atom, the continuum electrons feel a charge
close to Zj . The fitting parameters aj control the charge
decaying rate from

(
Zasj + Zinj

)
to Zasj . The restriction

Zas1 + Zas2 + ... + ZasN = +1 is imposed in order to re-
produce the asymptotic charge of the molecular ion. It
should be noted that with this fitting procedure no in-
formation from Vion (ri) is lost. Therefore, this method
can be seen as a step forward in describing the ioniza-
tion of multi-center targets. We call this approximation
Multi-Center CDW-EIS (MC-CDW-EIS). In this work,
and provided that the experimental data was collected
for the ground state dissociation (GSD) channel only, we
set Zas1 = 1 and Zas2 = 0. The parameters obtained for
Φ (ri) are presented in Table I.

TABLE I. Fitting parameters obtained from Φ (ri) for
H+

2 .

H(j) Zasj Zinj aj
H(1) 1 0 1
H(2) 0 1.00 1.28

The ground state dissociation (GSD) is almost iden-
tical to nondissociative ionization since both processes
involve vertical transitions without change of the inter-
nuclear distance [49]. The difference resides in the fact
that GSD starts from smaller internuclear distances (1.1
a.u. for the ionization of H2 in Ref. [42]) and populates
continuum vibrational levels of the electronic ion ground
state, which in the case of H+

2 will subsequently fragment
into a H atom and a proton. One of the advantages of
studying this type of ionization is that the molecular ori-
entation for a given ionization event can be determined
from triple coincidence measurements between the two
electrons and the proton, as reported in Ref. [42]. The
energy conservation equation of this process can be writ-
ten as

E0 = E1 + E2 +Q (15)
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where E0 is the impact energy and Q is the energy trans-
ferred to the target during ionization. This quantity
contains information about the final vibrational level,
though the energy resolution reported in Ref. [49] ex-
ceeds the energy spacing by about an order of magnitude.

The different potential approximations to Vion (ri) dis-
cussed so far are contrasted in Fig. 1 for an electron in
the continuum of an H+

2 ion aligned in the z axis. These
are plotted along this axis as well. The effective charges
considered for V e−N (ri) are Z1 = Z2 = 0.5.

Since Φ (ri) is a sum of different potentials, each one
centered in a single atom, we approximate the final wave-
function as the product of the two-body solutions corre-
sponding to each Φj (Rij)

χ− (ki, ri) =

N∏
j=1

χ−j (ki,Rij)

=

N∏
j=1

[ ∞∑
l=0

(2l + 1)

kiRij
ile−iσjlujl (ki, Rij)Pl(k̂i · R̂ij)

]
(16)

The partial waves ujl (ki, Rij) satisfy Eq. (11) with po-
tential Φj (Rij) and, together with the non-Coulombic
phase shifts δjl, can be obtained through Salvat’s code
[50]. Interestingly, these phase shifts become negligible as
l increases, and due to the asymptotic limit of these po-
tentials, the radial wave functions ujl (ki, Rij) converge
to the Coulombic ones uCouljl (ki, Rij), which are solu-

tions of Eq. (11) with potential V (Rij) = −Zasj /Rij .
Of particular relevance in our case, is to analyse how the
distorted wave solution of Φ(2) differs from the free par-
ticle case (Zas2 = 0). This can be seen in Fig. 2 where
we consider an electron emitted with energies of 4 eV, 10
eV and 18 eV from the atomic center described by Φ(2)

and compare in each case its first two partial waves to
those obtained for a free particle. It can be seen that the
l = 0 partial wave is the most affected one and that at
this emission energy a fast convergence towards the free
particle partial waves is achieved. In our computer code,
the different χ−j (ki,Rij) are written as

χ−j (ki,Rij) = C− (ki,Rij) +

L∑
l=0

(2l + 1)

kiRij
ilPl(k̂i · R̂ij)

×
(
e−iσjlujl (ki, Rij)− e−iσ

Coul
jl uCouljl (ki, Rij)

)
.

(17)
By doing so, the infinite partial waves can be accounted
for by correcting from the asymptotic Coulomb wave
function the partial waves for l-values lower than a cer-
tain L. The latter is determined by analysing the L-
value from which the non-Coulombic phase shift δjl can
be considered negligible thus reaching convergence. This
strategy considerably reduces the numerical effort to be
perfomed.

The calculation of the transition amplitude (Tfi) in-
volves a 6 dimensional integration which was directly

performed by the adaptive Vegas Monte Carlo algorithm
[51]. The wave-packet approach of Malcherek and Briggs
[52] was used, in order to treat the continuum-continuum
transition. We estimate our numerical uncertainty to be
less than 5%.

The fully differential cross section (FDCS) for the ion-
ization of molecules by electron-impact as a function of
the (Tfi) is given by

d6σ

dEdΩ1dΩ2dαdβdγ
=Ne (2π)

4 k1k2
k0

×
[

1

4

∣∣TDfi + TEfi
∣∣2 +

3

4

∣∣TDfi − TEfi∣∣2] .
(18)

Here, Ne is the number of electrons present in the molec-
ular orbital to be ionized, TDfi and TEfi are the direct

and exchange transition amplitudes, with TEfi (k1,k2) =

TDfi (k2,k1) and (α, β, γ) is the set of Euler angles which
define the orientation of the molecular axes, following
Landau convention [53]. For linear targets, such as H2,
the FDCS is invariant under γ rotations since these
molecules have axial symmetry. The wave functions pre-
sented in Eq. (1) are defined in the molecular frame of
reference. Therefore, in our calculations, we performed
a rotation of these quantities by the set of Euler angles
(α, β) to the laboratory frame in order to compute the
transition amplitudes TDfi and TEfi.

The capture channel is not included in our one-active
electron treatment for this collision system and its inclu-
sion would require of a full 5-body treatment. To gain
insight on the potential role of this channel we have per-
formed classical trajectory Monte Carlo simulations in
the context of a 5-body code succesfully employed to de-
scribe electron capture by ion impact at intermediate to
low impact energies [54, 55]. These suggest that the in-
fluence of this channel is in the order of our numerical
uncertainty. More work is currently under way in order
to provide a quantitative assesment regarding this point.

III. RESULTS

In what follows we present the calculated fully dif-
ferential cross sections (FDCS) for the single ionization
of aligned H2 molecules by electron-impact. These are
benchmarked against the set of experimental data re-
ported by Ren and co-workers [42] at the low impact
energy of 54 eV and for different orientations of the
molecular target for both equal- and unequal-emission
energy sharing. In their setup one electron is scattered
at θ1 = −50◦ from the impinging projectile direction and
the other is emitted perpendicular to this direction into
the denominated perpendicular plane. Since these data
are relative, a common factor was employed to normalize
them to our theoretical results.

All these features (low impact energy, aligned targets,
emission to the perpendicular plane and equal energy
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sharing) play an important role in testing different the-
oretical methods. In this sense, we have performed cal-
culations for three different approximations within the
CDW-EIS formalism. In first place the residual ion is
considered as a single center of charge Z = +1 leading
to the well-known CDW-EIS model, which we will here-
after refer to as 1 Center (1C). Secondly, we employed
the approximation V e−N , which incorporates the multi-
center nature of the target by neglecting the remaining-
electron repulsive potential terms. Therefore, the resid-
ual ion is approximated by two centers with effective
charges Z1 = 1 and Z2 = 0, since as it has been already
mentioned that the experimental data is restricted to the
ground-state dissociation (GSD) channel [42, 49], where
H+

2 dissociates into H+ and H. We term this model 2
Center (2C). The third approximation considered is the
multiple-center (MC) model introduced in the previous
section. Considering that the specific location of H+ and
H for a particular molecular orientation is not reported,
the theoretical curves presented are the average of two
different FDCS with the asymptotic charges of H(1) and
H(2) interchanged for a given orientation of the molecular
axis.

First, in Fig. 3 we focus on the FDCS corresponding
to both electrons being emitted with 18 eV for six differ-
ent molecular orientations. In the top panel of Fig. 3 the
molecular target is aligned along the z- and x-axes and
therefore, symmetry considerations require structures to
be symmetric around φ2 = 0◦. For both cases the exper-
imental data present a maximum along this direction,
which corresponds to an electron being emitted in the x-
axis direction. This obeys to the fact that the projectile
momentum k1 lies in the (−x)z-quadrant of the collision
plane, indicating a post-collisional interaction (PCI) ef-
fect. A narrower peak is observed in the case of x-axis
alignment (Fig. 3(b)) suggesting a focusing mechanism
along the molecular axis. No substantial differences are
noted in these two cases between the theories hereby pre-
sented. From the comparison with the TDCC results
from Ref. [42], we note that no theory provides perfect
agreement with the data. For these two cases, the MC
model is the one in better shape agreement with the data.

In the center and bottom panels of Fig. 3 the symme-
try with respect to the xz plane is broken and a strong
alignment dependence is observed in the experimental
data. First, in Fig. 3(c) the molecular target is rotated
45◦ with respect to the z-axis from Fig. 3(b), and the ex-
perimental maximum is shifted following this molecular
axis rotation. Here, the MC model correctly reproduces
the peak position, while the 1C and 2C do not. A simi-
lar structure is observed in Fig. 3(d) where the molecular
axis is tilted 45◦ from the xy plane, and the theories give
analogous results with a slight decrease of magnitude pre-
sented by the MC model. With an additional rotation of
45◦ around the z-axis in Fig. 3(e), a more complicated
experimental structure is found and the exhibited theo-
ries are in good overall agreement with it. In Fig. 3(f)
a new 45◦ rotation around the z-axis is made. Except

for this particular case, the MC model correctly repro-
duces the experimental peak position in contrast to the
other theories. However, it should be pointed out that
no perfect agreement is achieved by any of these models.

In Figs. 4 and 5, we analyse the FDCS as a function of
the angle θ12 between the continuum electrons momenta
k1 and k2, a representation to which not much atten-
tion has been paid so far for these data. Within the MC
model we present the two calculated cross sections before
the average procedure is performed, i.e., with the asymp-
totic charges of H(1) and H(2) interchanged. The dashed
curves represent the case when the asymptotic charges of
H(1) and H(2) are +1 and 0 respectively, while the solid
curves stand for the opposite case. We also make the dis-
tinction when the proton lies inside or outside the cone of
angle θ12 generated by the vectors k1 and k2 by means of
blue and orange lines respectively. In this sense, we can
gain insight on the possible role played by this proton on
the receding electrons and its eventual responsibility for
the unsymmetric patterns observed in Fig. 3 when the
symmetry with respect to the xz plane is broken.

In the first column of Fig. 4 we study the molecu-
lar orientation defined by the pair of Euler angles (α =
45◦, β = 90◦) where the target lies in the xy perpendic-
ular plane and is rotated 45◦ from the x-axis around the
z-axis, which corresponds to the case presented in Fig.
3(c). In Fig. 4(a), a graphical representation for the
punctual case φ2 = 0◦ is shown, together with the cone
generated by k1 and k2 as they recede from the target.
As k2 changes its direction along the xy plane, this cone
changes its geometry and we find φ2-ranges in which ei-
ther H(1) or H(2) lie inside this cone. The lowest value
of θ12 = 40◦ in Fig. 4(c) corresponds to the lowest value
of φ2 = −180◦ in Fig. 4(e). Therefore, increasing val-
ues of θ12 correspond to increasing values of φ2, until θ12
reaches its highest value of θ12 = 140◦ which corresponds
to φ2 = 0◦. Following the curves in Fig. 4 (c), θ12 now
decreases its value until it arrives again at θ12 = 40◦,
which is equivalent to increasing φ2 from 0◦ to 180◦ in
Fig. 4(e). In Fig. 4(c) we observe a gap for the same
values of θ12 within a single curve that accounts for the
asymmetry observed in the bottom panel. When H(2)

represents the proton (solid curve), we observe that the
FDCS increases its magnitude when θ12 goes from 40◦ to
140◦, which corresponds to the first half of the Fig. 4(e).
When φ2 goes from 6◦ to 45◦, H(2) lies inside the cone
generated by k1 and k2. Present results suggest that this
emission geometry is responsible for the peak presented
by the solid curve and the wide gap observed in the center
panel. On the other hand, when H(1) has an asymptotic
charge of +1 (dashed curve), this gap is almost negli-
gible, since H(1) falls inside the cone for values of φ2
between −135◦ and −35◦ which correspond to values of
θ12 much lower than the previous case, indicating that
the continuum electrons are emitted closer to each other.
Therefore, the probability of emission into this region is
disfavoured by the PCI, and so we observe a much wider
structure in Fig. 4(e), without a maximum in the direc-
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tion of H(1). This representation then provides a clue on
why after the average procedure the maximum is shifted
to higher values of φ2 when the molecule is rotated 45◦

from Fig. 3(b) to Fig. 3(c) and is located around the di-
rection of H(2), in agreement with the experimental data.
In the right column of Fig. 4 the target alignment is de-
fined by the pair of Euler angles (α = 45◦, β = 45◦),
and the results are very similar to the previous orienta-
tion considered, though in this case H(1) never falls inside
the cone defined by θ12. Then, we observe in Fig. 4(f)
that both FDCS, with the asymptotic charges of H(1)

and H(2) interchanged, give a maximum around the H(2)

projection into the xy plane, and the contribution of con-
sidering H(2) as the proton seems to be dominant in the
comparison with the experimental data.

For both cases of Fig. 4, Ren and co-workers [42] as-
sumed that the emission to negative values of φ2 was
suppressed due to PCI effects. Present results support
this statement. However, for the case shown in the first
column of Fig. 5, where the molecular target lies in the
yz plane, they expected that electron emission along the
projections of the atoms H(1) and H(2) into the xy plane
(φ2 = ±90◦), should experience identical post-collisional
interaction, but this was not the case. As it can be seen
from Fig. 5(c) the gaps are still significant, so the pattern
in Fig. 5(e) is not symmetric. We also observe that the
gap of the solid curve is wider than for the dashed curve,
since H(2) falls inside the cone defined by θ12 for high
values of this angle. Besides, H(1) never falls inside the
cone, so the gap is narrower and the relative magnitude
between the two peaks exhibited in Fig. 5(e) for the case
of considering H(1) as the proton is close to unity. From
these results we are led to conclude that the emission for
positive values of φ2 is favoured due to a PCI effect af-
fected by the orientation of the target atoms, as for the
two cases presented in Fig. 4.

Finally, in the right column of Fig. 5 we study the
molecular orientation defined by the pair of Euler an-
gles (α = 135◦, β = 45◦) where the target is rotated 45◦

around the z-axis, which corresponds to the case pre-
sented in Fig. 3(f). In this case, emission for positive
values of φ2 is still preferred. Nevertheless, the asymme-
try shrinks down beacuse H2 lies near the direction of
k1. Consequently, the influence of H2 when it falls inside
the cone of angle θ12 is not enough to increase the FDCS
magnitude for positive values of φ2, since the continuum
electrons are emitted closer to each other in comparison
with the three previous cases. It can be seen in Fig. 5(d)
that the gap for considering H2 as a proton is narrower
than for the dashed curve. Therefore, after the averaging
procedure the MC model gives a preferential emission to
negative values of φ2, in disagreement with the experi-
mental data.

This departure from the experimental FDCS structure
raises the question of whether an averaging procedure for
the theoretical model is the proper choice, since at this
case H2 is at the nearest position from the direction of
k1, and therefore we can think that ionization events are

most likely to occur when H2 leaves the collision as a pro-
ton, hence making the solid curve dominant. However,
this question remains unanswered at this point, since, as
it was mentioned, the relative orientation of H+ and H0

for each ionizing collision event has not been reported.

In Fig. 6 we compare the FDCS obtained through
the methods described above with the experimental and
TDCC data for the molecular target aligned along the y-
axis and three different electron emission energies. In
the top panel of Fig. 6 an equal-energy emission of
E1 = E2 = 18 eV is considered, where the experimen-
tal data present three different peaks. The first one lies
among the x-axis direction (φ2 = 0◦) and it seems to be a
result of the PCI as explained for the two cases presented
in the top panel of Fig. 3. The other two are shown at
φ2 = ±75◦, roughly along the molecular axis, indicating
again a strong alignment dependence. While the TDCC
results from Ref. [42] correctly describe the positions of
the three peaks, we observe that the three theories pre-
sented here only predict two peaks in this case, which
are in good agreement with the data but are not able
to reproduce the third structure consisting in the x-axis
direction maximum. We ascribe our subestimation of
the central structure to the fact that the employed wave-
functions neglect the dynamical correlation among the
different pairs or particles [56] in contrast to the TDCC
method that includes such physical information explic-
itly.

In the center and bottom panels of Fig. 6, one elec-
tron emission energy is reduced from E2 = 18 eV in (a)
to E2 = 10 eV in (b) and E2 = 4 eV in (c). It can be
seen that as the difference between the two electron en-
ergies ∆E = E1 − E2 is increased, the two side peaks
become dominant, and the x-axis direction maximum
is decreased. Ren and co-workers concluded that this
trend confirms the influence of the residual ion poten-
tial in the angular pattern exhibited by the continuum
electrons. In these two other cases, neither of the three
models presented here exhibit the φ2 = 0◦ maximum,
while the TDCC model correctly reproduce it as in the
equal-energy sharing case. In addition, the MC model
shows an increase of magnitude from Fig. 6(a) to Fig.
6(c) not exhibited in the experimental data nor in the
other methods. A close inspection of Fig. 2, where the
first two partial waves for an electron emitted with 18
eV, 10 eV and 4 eV from the atomic center described
by Φ(2) are presented, clearly shows that the l = 0 par-
tial wave is responsible from the magnitude departure of
MC from 2C in Figs. 6(b) and 6(c). A more accurate
description of the ionized electron interaction with the
molecular ion is clearly needed at this point, specially
regarding the electron distribution in the H+

2 ion in the
field of the receding electrons.
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IV. CONCLUSIONS

In this work, we have introduced the multi-center
CDW-EIS model with the aim to provide an improved
description of the final channel, with respect to the sin-
gle center modellization, following the single ionization
of anisotropic molecules.

We have evaluated its performance at the fully differ-
ential level in electron-H2 collisions at low impact ener-
gies. This collision system was chosen due to the fact
that orientation-resolved experimental data have been
recently reported together with highly numerically in-
tensive calculations, thus providing an ideal scenario to
benchmark its performance.

Present results suggest that at present no theoretical
method is capable of providing an accurate description
of the reported data for the studied collision geometries.
The numerical intensive TDCC method provides a good

overall description of the relative magnitudes and shapes
of the cross sections but discrepancies still remain with
respect to peak positions and width of structures. In con-
trast, the MC-CDW-EIS model hereby introduced pro-
vides a good overall description of the peak positions and
structures but fails to describe the relative magnitudes of
the FDCS at different emission energies for the emitted
electron. More experimental data for this particular tar-
get at different impact energies and emission geometries
are welcome at this point, to provide assistance for future
theoretical endeavours.
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FIG. 1. Approximations to the H+
2 ion residual potential for a continuum state electron.

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

 

 

 

-1.5

-1.0

-0.5

0.0

0.5

1.0

 u 
jl 

 u Coul
jl  

u jl (
a.

u.
)

 

0 2 4 6 8 10 12 14 16 18
-1.5

-1.0

-0.5

0.0

0.5

1.0

r (a.u.)
0 2 4 6 8 10 12 14 16 18 20

 

(f) l = 1, E = 4 eV

(d) l = 1, E = 10 eV

(e) l = 0, E = 4 eV

(c) l = 0, E = 10 eV

(b) l = 1, E = 18 eV(a) l = 0, E = 18 eV

r (a.u.)

FIG. 2. Partial waves ujl (k, r) (solid lines) and uCoul
jl (k, r) (dashed lines) for l = 0 − 1 for continuum electron energies of 4

eV, 10 eV and 18 eV.



10

0.00

0.03

0.06

0.09

0.12

0.15
Expt. Ren et al. 

   TDCC 
       MC 
        2C 
        1C 

k1

(a) 

 

 

(b) 
k0

k2

z

y
x 2

 

k0

k2

z

y
x 2

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180
0.00

0.03

0.06

0.09

0.12

 

(e) 

FD
C

S 
(a

.u
.)

 

k0

k2

z

y
x 2

(d) 

  
 

  

k0

k2

z

y
x 2

0.00

0.03

0.06

0.09

0.12
(c) 

2 (°)

 

k0

k2

z

y

x
2

-150 -120 -90 -60 -30 0 30 60 90 120 150 180

(f) 

 

2 (°)

 

 

k0

k2

z

y
x 2

FIG. 3. Fully differential cross sections for the 54 eV electron-impact ionization of aligned H2 molecules and equal energy
sharing (E1 = E2 = 18 eV) with one electron emission angle fixed at θ1 = −50◦ [k1 indicated in (a)] as a function of the
emission angle of the second electron into the perpendicular xy plane. The light-grey dashed vertical lines indicate the direction
of the atoms positions or their projections to the xy plane. The experimental and theoretical data from Ref. [42] are scaled to
the present theoretical results.



11

40 50 60 70 80 90 100 110 120 130 140
0.00

0.05

0.10

0.15

0.20

0.25

FD
C

S 
(a

.u
.)

 Expt. Ren et al. (with H1 or H2 inside the cone)
 Expt. Ren et al. (with H1 or H2 outside the cone)

(f)  = 45°;  = 45°(e)  = 45°;  = 90°

(d)  = 45°;  = 45°(c)  = 45°;  = 90°

 

FD
C

S 
(a

.u
.)

(a)  = 45°;  = 90°
      2 = 0°; 12 = 140°

(b)  = 45°;  = 45°
      2 = 0°; 12 = 140°

-150-120 -90 -60 -30 0 30 60 90 120 150
0.00

0.05

0.10

0.15

0.20

 MC - Average (with H1 or H2 inside the cone)
 MC - Average (with H1 or H2 outside the cone)

 

 

 

40 50 60 70 80 90 100 110 120 130 140

 MC - Zas
1  = +1 (with H1 inside the cone)

 MC - Zas
1  = +1 (with H1 outside the cone)

 MC - Zas
2  = +1 (with H2 inside the cone)

 MC - Zas
2  = +1 (with H2 outside the cone)

12 (°)

 

12 (°)

-150-120 -90 -60 -30 0 30 60 90 120 150

 

2 (°) 2 (°)

 

 

 

 

FIG. 4. Same as Fig. 3 for the MC-CDW-EIS model for two different molecular orientations: (α = 45◦, β = 90◦) in the left
column and (α = 45◦, β = 45◦) in the right column as a function of the angle θ12 between the continuum electron momenta k1

and k2 (center panel) and the emission angle φ2 (bottom panel). Graphical representations of these two emission geometries
for the particular case φ2 = 0◦ are shown in panels (a) and (b).



12

40 50 60 70 80 90 100 110 120 130 140
0.00

0.05

0.10

0.15

0.20

0.25
 

FD
C

S 
(a

.u
.)

FD
C

S 
(a

.u
.)

2 (°) 2 (°)

(c)  = 90°;  = 45° (d)  = 135°;  = 45°
 MC - Zas

1  = +1 (with H1 inside the cone)

 MC - Zas
1  = +1 (with H1 outside the cone)

 MC - Zas
2  = +1 (with H2 inside the cone)

 MC - Zas
2  = +1 (with H2 outside the cone)

 Expt. Ren et al. (with H1 or H2 inside the cone)
 Expt. Ren et al. (with H1 or H2 outside the cone)

(e)  = 90°;  = 45° (f)  = 135°;  = 45°

-150-120 -90 -60 -30 0 30 60 90 120 150
0.00

0.05

0.10

0.15

0.20

 MC - Average (with H1 or H2 inside the cone)
 MC - Average (with H1 or H2 outside the cone)

 

 

 

40 50 60 70 80 90 100 110 120 130 140
12 (°)12 (°)

 

 

 

(a)  = 90°;  = 45°
      2 = 0°; 12 = 140°

(b)  = 135°;  = 45°
      2 = 0°; 12 = 140°

-150-120 -90 -60 -30 0 30 60 90 120 150

 

 

  

FIG. 5. Same as Fig. 4 for two other molecular orientations: (α = 90◦, β = 45◦) (left column) and (α = 135◦, β = 45◦) (right
column).



13

0.00

0.03

0.06

0.09

0.12

0.15

 Expt. Ren et. al.
 TDCC
 MC
 2C
 1C  

 

k0

k2

z

y
x

2

0.00

0.03

0.06

0.09

0.12

(a) eV, eV; E = 0 eV

(c) eV, eV; E = 28 eV

 

 

FD
C

S 
(a

.u
.)

(b) eV, eV; E = 16 eV

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180
0.00

0.03

0.06

0.09

0.12

0.15

0.18

 

2 (°)

FIG. 6. Same as Fig. 3 with the H2 molecule aligned along the y-axis and for variable-energy sharing. Emission energies are
indicated in the insets.


