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Comment on ‘“Boosted Kerr black holes in general relativity”
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We discuss a recently presented boosted Kerr black hole solution which had already been used by other
authors. This boosted metric is based on wrong assumptions regarding asymptotic inertial observers, and
moreover the performed boost is not a proper Lorentz transformation. This Comment aims to clarify some
of the issues that arise when boosting black holes and the care required to interpret them.
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I. INTRODUCTION

Recently, an algorithm to construct boosted Kerr black
hole solutions was presented in the peer-reviewed
Refs. [1,2]. In the first work [1], the author presented a
simplified analysis, where the Kerr black hole is boosted
along the z axis. The subsequent article [2] covered the
general boost in arbitrary directions. In both, the author
claimed that these solutions represent boosted Kerr metrics
as “seen” by an asymptotic inertial observer. The proposed
mechanism seems to be simple, making it favorable for
studying the physical effects of moving rotating black
holes. Indeed, follow-up work by other authors [3,4] using
these metrics seems to validate it.

Boosted black holes are relevant in gravitational physics.
For example, the final black hole remnant of a binary black
hole merger is in general boosted with respect to the rest frame
of the two initial black holes. This property has an important
bearing for gravitational-wave physics as it gives rise to an
additional observable in gravitational-wave astronomy, the
gravitational-wave memory [5-9], which is the permanent
displacement of test masses after the passage of a gravita-
tional wave. This memory effect can be decomposed into a
two parts: an ordinary or linear memory effect related to a
boost [10,11] and a null memory effect related to the loss of
energy of the radiating system by massless particles (see, e.g.,
Refs. [8,12—14]). In particular, the extraction of physical
observables like the gravitational-wave memory or the
“classical” observables like gravitational radiation [15,16]
and linear and angular momentum [17-19] at null infinity
needs to be done in a generalization of an inertial frame.
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Given this relevance, we analyze the metric presented in
Refs. [1,2] in greater detail and clarify some of the issues
arising from a misunderstanding of the meaning of an
asymptotic inertial observer. We further show that for the
metrics presented in Refs. [1,2] one cannot deduce that it
is the coordinate representation of a boosted Kerr metric of
an asymptotic Lorentzian observer. It turns out that the
discussed metrics contain an incomplete piece of a
Lorentz transformation in a certain sense. More precisely,
the coordinate representation of the “boosted Kerr met-
rics” in Refs. [1,2] only makes use of an angular
coordinate transformation of the original Kerr metric that
could be thought of as associated to an asymptotic
Lorentzian observer. However, the additional transforma-
tions of the timelike and radial coordinates are still
missing. Therefore, the chosen coordinates do not re-
present adapted coordinates with respect to an inertial
observer. Consequently, care must be taken in the inter-
pretation of the “boosted” Kerr metrics of Refs. [1,2],
which can give rise to misleading results with respect to
the physics related to moving black holes as measured by
such observers.

II. FAULTY POINTS IN THE
BOOSTED SOLUTION

With respect to the coordinates X* = (i, 7, 0, g?)), the
outgoing Eddington-Finkelstein form of the Kerr metric is
given by 201"

Tt was pointed out in Ref. [21] that Kerr’s original
paper [20] should be corrected by exchanging u — —u and
a— —a.
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ds? = (P + a*cos?0)(d0* + sin*0d¢?)
— 2(dit + asin®0dg) (d7 — asin®0d¢))
2m7 - Yy
(1~ g i + sy (1)

where m is the mass and a is the specific angular
momentum. In Ref. [2], the most general “boosted” version
of this metric with respect to the coordinates (u, r, 8, ¢)
was presented as [Eq. (27) in Ref. [2] ]2

2432 2 _dmr4+ 32 RE
ds? =2 (40?1 sin0dg?) + <L> {du —2Lcot (§> d¢]

KZ r2 + 22

0
-2 [du —2Lcot <§> dgb} {dr —l—% [—n8in%0 + (n, cos ¢ + ny sing) sin@cos b)dg —I—% (nysing —ny cos¢)d€}, (2)

where
K = A+ B(%'n;), A’ —-B> =1, (3)
B+ A(f'n,
_ aw, (4)
A+ B(X'n;)

1 —cos® a z
L=(—||=——- [ —=sinddob |, 5
( sin@ )(232 /Ksm ) ®)

where the general direction of the boost n; = (ny, n,, n3) is
subject to &;;n'n/ = 1, and the rapidity £ determines A =
cosh & and B = sinh ¢, and ' = (cos@,sinfcos¢,sinfsing).
In Ref. [2], it was claimed that “For n,=0=n; and B =0
the metric (27)3 is the original Kerr metric in retarded
Bondi-Sachs-type coordinates.” Therein, one also finds
“The derivation and interpretation of this solution will be
framed in the Bondi-Sachs (BS) characteristic formulation
of gravitational-wave emission in general relativity, where
we have a clear and complete derivation of physical
quantities and its conservation laws...”. Both statements
are not true. Regarding the former, an expression for the
Kerr metric in an explicit closed form in Bondi-Sachs-type
coordinates is not known. Concerning the latter, a retarded
Bondi coordinate system is characterized by a surface-
forming null coordinate # such that null hypersurfaces
il = const are generated by a null geodesic congruence
£, = (dit), reaching future null infinity J*. Conse-

quently, the necessary condition g”# = O must be satisfied
by the coordinates. It is easy to see that this is not the case
for the coordinates (2). An equivalent statement is that the
metric has to obey the conditions g,, = g,y = g, =0
[16], which are violated in Eq. (2) by the presence of the
term grt/)

*Note that some slight change in notation is required to match
the standard notation for the Kerr metric: to obtain Eq. (2) in
Ref. [2], one must make the substitutions ¢ - w, A — a, and
B — b.

*Our Eg. (2).

If the parameter a = 0, the metric (1) reduces to the
Schwarzschild solution in outgoing-null polar coordinates:

2 i o
ds? — — (1 _ ﬁ") dii? — 2dadi + 7 (d6P + sin0dg?). (6)
r

Let us concentrate first on the boosted solution of
Ref. [1]. For large values of 7 on hypersurfaces
it = const, Eq. (1) takes the form

ds® = (7 + a*cos?0)(d6” + sin*0dg?*)
—2(dit + asin®0d)(d7 — asin>0ddp)

— (dit + asin®0d¢p)? + (9(%) (7)

which is a flat metric, as can be shown by calculating
the (vanishing) components of the Riemann tensor at
leading order.

Given the standard Minkowski metric #,;, =diag(—1,1,
1,1) in Cartesian coordinates ¥ = (7, %, y,Z), its coordi-
nate representation for an inertial observer in outgoing null
coordinates {i, 7, 94}5} in a rest frame follows from the
coordinate transformation 7 = i1 + 7,

7 = 7cos @,

X = Fsinfcos ¢, ¥ = Fsinfsin ¢,

and has the form
ds? = —dii? — 2diidF + P (d0* + sin® Ddd*)  (8)

(see, e.g., Refs. [22,23] for a recent discussion regarding
boosted black holes and inertial frames). The metric (8) is
the inertial metric 7, in outgoing polar null coordinates. If
a general metric in outgoing null coordinates approaches
the particular form of Eq. (8) at large distances from the
source, the asymptotic frame is called the (inertial) Bondi
frame [15,16,24].

The leading-order term of Eq. (7) is not such a Bondi
frame for a # 0. That is, if a # 0, the coordinates used in
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Eq. (7) do not correspond to those of an inertial observer.
However, if a = 0, Eq. (7) corresponds to a Bondi frame.

We proceed with the boosted metric of Ref. [1] while
assuming @ = 0 and show that even in this case the
resulting boosted Schwarzschild metric is not properly
boosted with respect to an asymptotic observer in the
associated inertial Bondi coordinates.

The “boosted” Schwarzschild metric of Ref. [1] is

2m

— 2dudr — (1 - —) du?. (9)

r

2 P(d6 +sin*0dg?)
(A + Bcos6)?

This metric is easily obtained by a simple change of only
one of the angular coordinates in Eq. (6).

Setting a = 0 in Eq. (1) and performing the coordinate
transformation

-~ B+ Acos(0) ~
9 =~ 9 == b

o8 A+ Bcos(0) $=9

with A2—-B2=1 (10)

i=ur=r,

implies Eq. (9). According to Ref. [1], the functions A and
B are related to the boost velocity f as f = B/A. Moreover,
it was never mentioned in Ref. [1] that their “boosted” Kerr
metric in their Eq. (23) can be easily obtained by applying
the same transformation (10) to the Kerr metric (1), which
is reproduced here for completeness:

rr 4+ X2

ds? = —— =
y (A + Bcos)?

(d6? + sin0dg?)
2l au+ asin’6 i) asin’d¢
2y 4+ LY po BIvag
(A + Bcos6)? (A + Bcos)?

2mr asin’@d¢p 2
(1= ) (e 1
( r2+z2>< u+(A+Bcos9)2> - ()

where £ = a(B + Acos)(A + Bcos )7L

Despite the claim in Ref. [1] that the “boosted” Kerr
metric (11) is obtained as an exact stationary analytic
solution, we remark that it is the original Kerr metric in
different angular coordinates. We demonstrate below that
Eq. (10) is not a proper asymptotic Lorentz transformation,
because it must map one asymptotic inertial metric 7,, (X*)
to another 7, (x*). For large values of r, any asymptotically
flat metric in Bondi coordinates {u, r, 0, ¢} transforms to
another set of Bondi coordinates {i, 7, 0, g;ﬁ} like

— dii® + 2didF + 7 (d6* + sin>0dd?) + O(1/7),
= —du® = 2dvdr + r*(d6* +sin*0dg?) + O(1/r).  (12)

Consider a boost in the z direction at large distances in flat
space, where the boosted coordinates are (¢, x, y, z) and the
corresponding null coordinates x* = (u, r, 0, ¢) are defined
similar to their (tilded) unboosted counterparts. Taking

#0, = 0; as tangent to the world lines of the unboosted
observers, the corresponding boosted observers are tangent
to v*=I(1.4), with [=—v"7,=(1-5;8'p/)""/%. The
Lorentz transformations for the coordinates x* — X¢ and
r — 7 are given by [25]

r? = 7 = x%, + (v%x,)?, (13)
[“x, — (2T + 1)vx, |t
14T
[#x, + v"x, JoH
14T

Xt = X ="+

(14)

For a (inverse) boost in the z direction with ¥ = 7 = 0 and
[~ = B, we find the relations

i=T[u+r(l+ pcosh)]

u 2 u :
—r 1+F2<;+1+ﬂ0059> —<;+1>, (15)
u 2 u 2
F=r 1+F2<r+1+ﬂcos6’> —<r+1>’ (16)

cos(f) =

Nl

_ [lcos 6 + p(4 + 1)]
\/1 FT2(E+ 1+ feos0)? — (L+ 1)?

(;5 — arctan (%) = arctan (i) = (15 (18)

between the unboosted and boosted null coordinates. For
large distances (keeping u, 6, and ¢ fixed), Eqs. (15)—(18)
reduce to

, (17)

o= " 1 7= r 70
K(9)+O<r>’ K@)r+ 0, (19)

cos(d) — % + OG) b= o, (20)

with IC(0) =T'(1 + fcos ).

The first part of Eq. (20) is the relativistic aberration
formula. Equations (19) and (20) are the asymptotic
Lorentz transformation for a boost along the z axis, which
are a subset of the larger Bondi-Metzner-Sachs (BMS)
group [26].

Applying Egs. (19)—(20) to Eq. (6) maps the metric of an
asymptotic inertial observer in coordinates ¥ to the metric
of another in coordinates x*, as required by Eq. (12).* We

‘In fact, expressions for the (Q(r‘l, ro) terms in Egs. (19) and
(20) are needed from the expansions of Egs. (15)—(17).
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stress here that the main point is that to make a Lorentz
boost, a transformation in the & and 7 coordinates is needed.
This transformation is not contained in Eq. (10).
Therefore, despite the claims of Ref. [1], the presented
metric is not a properly boosted Kerr metric with respect to
the adapted coordinates of an asymptotic inertial frame, since
the transformation is not even completely carried out in the
Schwarzschild limit. More generally, discarding supertrans-
lations, BMS transformations in a neighborhood of null
infinity can be written in terms of stereographic coordinates
[related to spherical coordinates via { = e cot()] as

T— +(9<1), F=K(EOr+000),  (21)

K(.8) r
o al+b 1
C_6£+&+O<J’ 22)

where {a, b,é, c?} are four complex parameters subject to

A

the constraint 4d —b é = 1, and K¢, f) is given by [27]

Kxcg):(dc+éxéf+ﬁ{:§?:+3xﬁf+3x

The unit sphere metric in stereographic coordinates reads
ds? = %L, where Py = 1 (1 + ¢0).

Pz

Indeed, the “generally boosted” Kerr metric presented
in Ref. [2] can also be obtained from the Kerr metric (1) via
a particular angular transformation (22) associated to a
general boost. In fact, in Ref. [2], to obtain the “generally
boosted” metric a system of differential equations [given by
Egs. (5)—(7) in Ref. [2]] was solved in a hierarchical
way: first for P, then for %, and finally for L. In particular,
L was expressed in Ref. [2] in terms of a set of
involved integrals. However, all of these functions simply
follow from the leading-order behavior of the angular
transformation (22), i.e.,

(23)

ZZf(C)ZC ~s (24)

while keeping ## = u and 7 = r. As shown in Ref. [28]
(page 442), under these transformations

Pr=ffP2 (25)
T=13, (26)
L=f"L, (27)
9 = 10, (28)

where f' = O,f. -
Starting with the unboosted Kerr value of P(Z,{) =
1(14¢%) under Eq. (24), it transforms to P =

IF(O)'P(f(C). f(§)) = P which was obtained in

Ref. [2] by solving its differential equation (5). Similarly,
the expression for X [obtained in Ref. [2] by solving its
Eq. (12)] follows directly from Eq. (26) using the unboosted
Kerr expression & = a(¢Z—1)(ZZ+41)~". Finally, the dif-
ferential equation for L [given by Eq. (7) in Ref. [2]]
preserves its form; that is, if P. 3, and L satisfy Eq. (7) of
Ref. [2], the transformed L automatically satisfies the same
untilded version of this equation. Hence, instead of solving
this equation for L as in Ref. [2] (expressed in terms of
integrals or involved trigonometric functions), it is easier to

obtain L from the Kerr expression L = — ;‘;ﬁ using Eq. (27).

However, as previously mentioned, extra transforma-
tions are necessary because for a Bondi system u must be a
surface-forming null coordinate, i.e., u = const should be
surfaces generated by null vector fields reaching 7. This
is not the case for the u coordinate employed in Refs. [1,2].

Even though the u = const hypersurfaces are indeed null
surfaces reaching null infinity in the Schwarzschild case
(9), the coordinates do not realize a Bondi coordinate
system either. In fact, Eq. (9) is expressed in Newman-Unti
coordinates (NU) [29].

In terms of stereographic coordinates, it is a particular
metric of the family of Robinson-Trautman geometries
given by [30]

, dgdé

2m V,
,
(PoV)?

2= -2 —(1-=4= 2 (2
ds dudr < r+Vr>du, (29)

with V = V(u,{, ) and m = m(u). Regarding Eq. (9), we
have m , = 0 and

_ _ {E-1
V—A+Bcos6—A+B—1+CE, (30)

showing that also V, = 0. The coordinates {u,r,(, 4}
correspond to a Bondi system if and only if V = 1. Note
that we are not saying that the metric (29) could not be
interpreted as a boosted black hole; what we are saying is
that if these NU coordinates are used, they must be related
to a Bondi system to extract physical quantities. For
example, as discussed in Ref. [17], the total linear
momentum P* for the metric (29) can be computed in a
non-Bondi system from the formula

m s,
P = /Wf ds?, (31)

where dS? is the surface element of a unit sphere and

a_ (1 {+¢ ¢-¢ Cf—l)

iR+
Note that this expression was also used in Ref. [2] to
compute the four-momentum of its metrics.

(32)
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Nevertheless, some of the further analysis carried out on the
metrics [1,2] is misleading. For example, the location of the
horizon for the “boosted” metric (11) is measured to coincide
with the same coordinate values as in the Kerr metric. This was
interpreted as a consequence of the fact that a boost does not
change null surfaces. It is true that boosts do not distort null
surfaces, but its coordinate representation for an asymptotic
boosted inertial observer would be in general different. The
coordinate location of the horizon for the “boosted” Kerr
metric (11) takes the same value as in the Kerr metric because
the radial coordinate was not changed by the coordinate
transformation [cf. Eq. (10)]. Notwithstanding, it is well
known that the shapes of the boosted and unboosted horizons
are coordinate dependent [31,32]. We note that if we were to
attempt a similar procedure as in Refs. [ 1,2] for the location of a
photon sphere S, in the boosted Schwarzschild metric (9), we
would find it at the same radial coordinate » = 3m as in the
unboosted black hole, albeit the surface Sy, is not a null
hypersurface. Again, this only happens because of the
improper transformation of the radial and timelike coordinates.

Additionally, it was claimed in Ref. [1] that “The boosted
Kerr geometry also presents an ergosphere”; this is not
surprising at all because the metric in Ref. [1] is the Kerr
metric after the coordinate transformation (10). The coor-
dinate expression for the ergosphere of Refs. [1,2] exhibits
a most complex dependence on the angular coordinates.
Again, the relevant expression is analyzed by using the
unboosted (Kerr) radial coordinate and the ‘“boosted”
angular coordinates. That is, there is again no proper use
of the associated “boosted” radial coordinate. In any case,
the geometrical definition of the ergosphere of the Kerr
black hole is given by the set of points where the (global)
timelike Killing vector % becomes a null vector. This is a
geometrical (coordinate-independent) definition. However,
for the analysis of the ergosphere of a boosted Kerr black
hole by an asymptotic observer, the associated inertial
coordinates {u, r, 0, ¢} should be used instead of the mixed
set of coordinates {i, 7,8, ¢} like in Refs. [1,2]°

’It is worth emphasizing that for an asymptotic observer there
exists another notion of an (observer-dependent) ergosphere
based on the asymptotic Killing vector aligned with the asymp-
totic observer, which again should be expressed in the adapted
coordinates of this observer (see, e.g., Ref. [33] where an analysis
of these “resulting ergospheres” of a boosted Schwarzschild
black hole can be found). Let us note that for the metric (9) these
kind of ergospheres of Ref. [33] cannot be obtained from the
procedure followed in Refs. [1,2].

We also stress the well-known fact that Kerr’s original
metric did not approach the Minkowski metric of an inertial
observer for large radii [also seen in Eq. (7)]. But, the
Boyer-Lindquist form as well as the Kerr-Schild form of
the Kerr metric have this property. On top of that, a Kerr-
Schild metric has the (defining) property that it is written as
9w = M + Hk,k,, where H is a scalar function and k, is a
null vector with respect to 7,, and g,,. It had recently been
pointed out that the spacetimes of the Schwarzschild and
Kerr black holes in Kerr-Schild form have not only one
inertial frame serving as a background spacetime to define a
boost, but two such distinct frames [22,23]. These two
backgrounds are tied to the ingoing and outgoing principal
null directions of the respective Kerr-Schild metric. The
inertial coordinates of the two transform between each
other via a nonlinear coordinate transformation. Indeed, it
was shown in Refs. [11,22,23] that for the correct value of
the boost memory at future null infinity, the discussion of
the boost must be done in the Minkowski background of
the ingoing formulation.

For a Schwarzschild/Kerr black hole that is initially
at rest and then ejected with mass m and velocity
p along the z axis, the boost memory at null infinity is
[8,11,22,23]

_ A'mf?sin? 0

Ao = . 33
¢ 1—pcosé (33)

The supertranslation o relating the retarded time cuts
u = o0 and u = —oo at null infinity is [11]

a=4mI'(1 — fcos®)In(1 — fcosh). (34)

Equations (33) and (34) can by no means be reproduced
from Eq. (11).
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