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The study of network robustness focuses on the way the overall functionality of a network is affected as some
of its constituent parts fail. Failures can occur at random or be part of an intentional attack and, in general,
networks behave differently against different removal strategies. Although much effort has been put on this
topic, there is no unified framework to study the problem. While random failures have been mostly studied under
percolation theory, targeted attacks have been recently restated in terms of network dismantling. In this work,
we link these two approaches by performing a finite-size scaling analysis to four dismantling strategies over
Erdös-Rényi networks: initial and recalculated high degree removal and initial and recalculated high betweenness
removal. We find that the critical exponents associated with the initial attacks are consistent with the ones
corresponding to random percolation. For recalculated high degree, the exponents seem to deviate from mean
field, but the evidence is not conclusive. Finally, recalculated betweenness produces a very abrupt transition with
a hump in the cluster size distribution near the critical point, resembling some explosive percolation processes.
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I. INTRODUCTION

The study of percolation in complex networks is a current
research topic that has both theoretical inquires [1,2] and
practical applications. Percolation transitions are observed in
many biological, social, and technological complex networks
[3,4] and are connected to the problem of resilience to dam-
age [5–8] and therefore to the functionality of the systems
associated with the networks. Also, theoretical tools devised
for the analysis of percolation have been used in the study
of disease spreading [9], city traffic dynamics [4], and the
structural characterization of networks [10], among others. In
particular, mathematical models for percolation processes on
interdependent graphs were developed [11] to capture salient
features of random failures of systems such as power grids.

Failures are usually modeled as random deletions of nodes
or links, while in attacks influential nodes or links are re-
moved according to a rank of specific characteristics, trying to
produce the largest damage to the network. The effectiveness
of the attack strategy depends on the topological features of
the network as well as on the type of attack. For this reason,
several network architectures were studied under different
strategies to evaluate both the robustness of networks and the
effectiveness of attacks [12–14]. In the pioneering work of
Holme, et al. [12], the effect of different centrality edge- and
node-based attacks was studied in several synthetic and real-
world networks. Later, Iyer et al. [13] extended these results
by studying new centrality measures and network models for
the case of node-based attacks. In a recent study performed by
Wandelt et al. [14], an extensive benchmark of synthetic and
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real-world networks was analyzed using different dismantling
strategies providing the most extensive comparative analysis
on network robustness up to now.

It is widely known that scale-free networks are frag-
ile against centrality targeted attacks [12,15–17] but robust
against random failures [17]. On the other hand, networks
with homogeneous degree distribution, such as Erdős-Rényi
(ER) networks, are expected to be robust under targeted
attacks. In particular, they have been proved to be robust
against degree-based attacks [18]. However, some networks
are fragile to targeted attacks despite having homogeneous
degree distributions. One such example is the US power grid,
which exhibits a significant connectivity loss when nodes with
high load are deleted [19]. Another example is the Watts-
Strogatz model of small-world homogeneous networks, which
have been proved to be particularly fragile in a cascading
failure scenario. Xia et al. [20] attributed the fragility of these
networks to their heterogeneous betweenness distribution.
Attacks based on betweenness are among the most efficient
ways to dismantling a network [7,12–14] and are particu-
larly effective in networks having a heterogeneous between-
ness distribution. However, in Erdős-Rényi networks, where
both degree and betweenness distributions are homogeneous
[20,21], a betweenness-based attack is not expected to out-
perform other targeted attacks. As we will show in this article,
this is not the case. In particular, the recalculated version of the
betweenness-based attack on nodes is particularly effective to
destroy ER networks, with a performance comparable to the
most efficient methods to dismantle networks [22,23].

In this work, we study percolation processes on ER net-
works under different attack strategies using finite-size scaling
analysis to assess the nature of the transition towards the
fragmented phase. Our results show that the choice of the
attack strategy can change the properties of the transition.
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In particular, the transition produced by the recalculated
betweenness-based attack is sharper than for the rest of the
attacks, deviating significantly from the random percolation
universality class. Given the steep variation of the order
parameter near the transition, we consider the process as a
case of “explosive percolation” [24–26]. The results of the
finite-size scaling analysis are consistent with a continuous
phase transition, but we cannot determine that this result holds
in the infinite-size limit.

A. Attack strategies

In centrality-based attacks, nodes are sorted in decreas-
ing order according to a centrality measure. Then, they are
sequentially removed according to that list (ties, if any, are
usually broken randomly). There is an extensive list of cen-
trality measures that have been tested in multiple networks
(see, for example, Ref. [13]). Some of the most popular are
degree, betweenness [27], closeness, eigenvector, and col-
lective influence [23]. In general, when a node is removed,
the centrality values of the remaining nodes change. Thus
the attack can be improved by recomputing the list after
each removal step. If the centrality measure uses only local
information, like degree or collective influence, only a fraction
of nodes will eventually change, so the original ordering of the
nodes may remain the same after several steps. On the other
hand, measures like betweenness or eigenvector centrality use
global information, so even the deletion of a single node can
potentially change the ordering in a significant way. Given
that the recalculated version of an attack uses more updated
information of the network, it is in general more efficient than
its initial counterpart [13].

In this work, we will focus on both the initial and recalcu-
lated versions of the attacks based on two centrality measures:
degree and betweenness. The degree of a node, defined as
the number of neighbors the node has, is the most intuitive
centrality measure and one of the most studied in the litera-
ture. It is easily interpreted in terms of network connectivity
and it has the advantage of being a local measure, which
makes it suitable for analytical treatment. On the other hand,
betweenness centrality is a global measure and is defined in
the following way. Let σ (s, t ) be the number of shortest paths
connecting nodes s and t and let σi(s, t ) be the number of such
paths going through node i. Then, the betweenness centrality
of node i is

bi =
∑
s �=t

σi(s, t )

σ (s, t )
, (1)

where we adopt the convention that σi(s, t )/σ (s, t ) = 0 if both
σi(s, t ) and σ (s, t ) are zero.

Betweenness can be thought of as the amount of load a
node must support when there is some kind of flux on the
network. Nodes with higher betweenness articulate different
groups of nodes and their importance is more related to the
communicability of the network. In particular, it is easy to
check that nodes with degree lower than two have between-
ness equal to zero. Being a global measure, it is hard to
compute this centrality. The most efficient algorithm so far
known was proposed by Brandes et al. in [28] and runs in
O(NM ), where N and M are the number of nodes and links

in the network, respectively. The main reason for considering
this measure is that it has been reported as the most efficient
attack strategy for many networks, including both synthetic
and real-world networks [13,14].

B. Percolation

Site percolation in complex networks can be stated by
considering that each node of the network can be either
occupied, with probability p, or unoccupied, with probability
1 − p. Only occupied nodes can be connected; thus links
connecting at least one unoccupied node are also considered
unoccupied. If p = 0, the network is empty and, if p = 1, the
original network is recovered. When the occupation probabil-
ity is small, occupied nodes belong to different small-sized
components, but above a critical value p = pc, one of the
components acquires an extensive size. At this point, it is said
that the system percolates. The extensive component is known
as the giant connected component (GCC) and the critical point
is referred to as the percolation threshold.

Let N be the size of the network and N1 the size of the
GCC. In the thermodynamic limit N → ∞, percolation theory
states that the relative size S1 = N1/N follows the critical
behavior

S1 =
{

0, p < pc,

a(p − pc)β, p � pc,
(2)

where a is a proportionality constant and β > 0 is the criti-
cal exponent associated with S1. The transition between the
percolated and nonpercolated state has been widely studied
in statistical physics, and it has been shown to exhibit a
continuous transition in many different network models. In
this framework, S1 is considered the order parameter of the
transition.

As it occurs in continuous transitions, other measures also
manifest a critical behavior near the percolation threshold.
One such measure is the average cluster size, which plays the
role of susceptibility and is computed as

〈s〉 =
∑′

s s2ns(p)∑′
s sns(p)

, (3)

where ns(p) is the number of clusters of size s per node and
the primed sum excludes the GCC. At the critical point, 〈s〉
diverges in the thermodynamic limit as 〈s〉 ∼ |p − pc|−γ , with
γ > 0. Also, ns(p) has its own critical behavior and close to
pc it becomes very heterogeneous, being well described by the
expression

ns(p) ∼ s−τ e−s/s∗
. (4)

Here s∗ represents the characteristic cluster size, which scales
as s∗ ∼ |p − pc|−1/σ . Then, at p = pc the number of clusters
of size s follows a power law ns(p) ∼ s−τ . Finally, the corre-
lation length ξ , defined as the geometrical length of a typical
cluster, scales as ξ ∼ |p − pc|−ν , where ν > 0 [29].

The theory of critical phenomena states that continuous
transitions can be fully characterized by its critical exponents.
If the same exponents are shared between two systems, they
belong to the same universality class. In percolation only two
exponents are independent, and the others can be derived
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using different scaling relations. For example, the exponent
associated with the cluster size distribution can be obtained as
[29]

τ = 2 + β

γ + β
. (5)

As β and γ are both positive, Eq. (5) shows that τ � 2.
Another useful relation is given by [30,31]

2
β

ν̄
+ γ

ν̄
= 1, (6)

where ν̄ = d ν and d is the effective dimension of the network.
Standard site percolation on Erdős-Rényi graphs reports

the mean-field exponents, with β = γ = 1, ν̄ = 3, σ = 1/2,
and τ = 5/2 [32,33]. Also, in uncorrelated networks, the
percolation threshold is given by [34]

pc = 1

κ − 1
, (7)

where κ = 〈k2〉/〈k〉 is the heterogeneity parameter of the
degree distribution.

From a theoretical point of view, standard percolation and
node removal are different processes [17]. Percolation is an
equilibrium reversible process, well described by the equi-
librium statistical physics. On the other hand, node removal
under specific attacks are irreversible processes such as the
evolving rules that turn out in explosive percolation transitions
[25]. Being aware of this, we relate the percolation probability
p with a node removal procedure in which a fraction f =
1 − p of nodes was removed. Using this relation we can
apply the tools provided by percolation theory to the attack
strategies previously described.

II. RESULTS

A. Percolation transition

Figure 1 shows the evolution of the size of the giant com-
ponent as a function of the fraction of removed nodes f on an
ER network with mean degree 〈k〉 = 5. Each curve, which is
an average taken over 103 independent networks, corresponds
to a different attack, namely recalculated betweenness (RB),
recalculated degree (RD), initial betweenness (IB), initial de-
gree (ID), and random removal (Rnd). When a small network
is considered [Fig. 1(a)], it can be seen that ID performs
slightly better than IB, in the sense that, for each fraction of
nodes removed the network is consistently more fragmented
when nodes with high degree are removed. As it has been
previously reported by Iyer et al. in [13], the situation reverts
when the list of nodes is recalculated after each node removal,
with RB outperforming RD. When a bigger network with the
same characteristics is attacked [Fig. 1(b)], all the transitions
become sharper. Except perhaps for RB, all the curves seem
to be consistent with a continuous percolation transition. The
curve for recalculated betweenness, on the other side, exhibits
a very abrupt collapse at f ≈ 0.3, with a very steep slope.
Interestingly, for lower values of f this attack performs poorly
(see inset), barely outperforming random removal. In fact, at
the beginning both attacks (RB and Rnd) do not produce a
network fragmentation as can be seen when compared to the
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FIG. 1. Relative size of the giant component as a function of the
fraction of removed nodes, averaged over 103 realizations, for two
ER networks with 〈k〉 = 5 and size N . As a reference, the dot-dashed
line corresponds to node removal of a fully connected graph. The
inset zooms the behavior right before the collapse produced by RB.
(a) N = 250; (b) N = 16000.

attack of a fully connected graph in which the network is
reduced one node at a time.

B. Finite-size scaling analysis

Finite-size scaling analysis is one of the most important
tools in the study of continuous phase transitions and in par-
ticular to obtain the associated critical exponents [31,35,36].
According to this theory, the divergence of the correlation
length at the critical point implies that every variable of the
system becomes scale-independent at this point. For a finite-
size system of size N , this produces a scaling of the form

X ∼ N−ω/ν̄F [( f − fc)N1/ν̄], (8)

where ω is an exponent related to the variable X . For f =
fc, the variable behaves as X ∼ N−ω/ν̄ . This relation holds
asymptotically, i.e., in the limit N → ∞ and f → fc, and it
can be used to obtain the ratio ω/ν̄ by computing X ( fc, N )
for different system sizes. In addition, the plot of Nω/ν̄X as
a function of ( fc − f )N1/ν̄ yields to the universal function
F , which does not depend on N , so curves corresponding to
different sizes collapse.

In this work, we make use of two scaling relations. The
first one is the scaling of the cluster relative sizes, which can
be stated as [36]

Si( f , N ) ∼ N−β/ν̄ S̄i[( f − fc)N1/ν̄]. (9)

Here, the subscript i = 1, 2, . . . indicates the rank of each
component, sorted by size in decreasing order. In particular,
we will be interested in the order parameter S1 and in the
size of the second cluster S2N . The second scaling relation
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FIG. 2. Determination of the critical point fc through the
crossing-point method for the four attack strategies considered. Each
curve represents an average over Ns independent realizations. The
vertical line corresponds to the mean of the intersections and the
shadowed region to the standard deviation. The values obtained are
shown in Table I. (a) ID, Ns = 2 × 104; (b) RD, Ns = 2 × 104; (c) IB,
Ns = 2 × 104; (d) RB, Ns = 5 × 103.

involves the average cluster size and can be stated as

〈s〉( f , N ) ∼ Nγ /ν̄ S̃[( f − fc)N1/ν̄]. (10)

The percolation threshold fc can be determined in several
ways (for some of them, see [37]). The alternative we used
in our work, which we call the crossing-point method, is the
following. We first define Sic(N ) ≡ Si( fc, N ). According to
Eq. (9), we have

Sic(N ) ∼ N−β/ν̄ S̃i(0). (11)

Now we take the relative size of the first two components for
a given size N and compute the quotient between them. The
resulting expression becomes S1c(N )/S2c(N ) ∼ S̃1(0)/S̃2(0),
which is independent of N . This result implies that, at the
critical point f = fc, the curves of S1( f , N )/S2( f , N ) for
different sizes should take the same value. The crossing-point
method consists of numerically estimating the intersection
of these curves. Using averages over 2 × 104 independent
networks for the attacks ID, RD, and IB and over 5 × 103

independent networks for RB, we computed the quotients
S1( f , N )/S2( f , N ) for different sizes and then calculated the
values of the intersections for each pair of sizes. The value of
fc that we report is the mean of these intersections, with the
standard deviation as the associated uncertainty. The method,
applied to the four attack strategies previously described, is
shown in Fig. 2. As it can be seen in the figure, the perfor-
mance of the method depends on the nature of the attack.
For the two degree-based attacks, the intersections occur with
a very low variance, so the percolation threshold can be
estimated with a very high precision as f (ID)

c = 0.4652(7) and
f (RD)
c = 0.3401(2). The initial betweenness-based attack, on

the other hand, has a lower precision, and the value obtained
was f (IB)

c = 0.558(1). The method also performs very well
for the recalculated betweenness-based attack, even when the
sizes and number of simulations that were used are lower,
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FIG. 3. Order parameter S1 as a function of the fraction of nodes
removed f in the neighborhood of the critical point. Each panel
corresponds to one of the four attack strategies studied. Data is
averaged over Ns independent realizations. The dashed vertical lines
correspond to the value of the percolation threshold computed using
the crossing method (see main text). The insets show the collapse of
the curves using the scaling ansatz given by Eq. (9). The values for
the percolation thresholds and critical exponents used to perform the
scaling are the ones summarized in Table I. (a) ID, Ns = 2 × 104;
(b) RD, Ns = 2 × 104; (c) IB, Ns = 2 × 104; (d) RB, Ns = 5 × 103.

due to its high computational complexity, giving an estimated
percolation threshold of f (RB)

c = 0.2984(2). From a disman-
tling point of view, the recalculated versions of the attacks are
more effective than their initial counterparts, since they have
lower percolation thresholds. In particular, the initial version
of the betweenness-based attack is a rather poor dismantling
strategy, being closer to random node removal than the rest
of the attacks. On the other hand, the recalculated version
of this attack is the most efficient one, performing better or
comparable with other state-of-the-art dismantling strategies
[22,23].

Once the percolation threshold has been estimated, we
proceed to study the order parameter, susceptibility, and sec-
ond cluster size in the vicinity of the transition. The four
panels of Fig. 3 show the order parameter S1 as a function
of the fraction of nodes removed. Each panel corresponds to a
different attack and each curve in the main panels corresponds
to a different system size. It can be seen that the transitions

TABLE I. Numerical estimation of the percolation thresholds
and critical exponents for the different attacks in ER networks with
〈k〉 = 5 using finite-size scaling. The values of τ between brackets
were computed using Eq. (5).

fc β/ν̄ γ /ν̄ ν̄ τ

Rnd 0.8 1/3 1/3 3 2.5
ID 0.4652(7) 0.320(4) 0.354(5) 2.72(5) 2.50(2) [2.48(2)]
RD 0.3401(2) 0.307(3) 0.377(7) 2.59(7) 2.43(3) [2.45(2)]
IB 0.558(1) 0.340(3) 0.334(5) 2.8(2) 2.52(2) [2.50(2)]
RB 0.2984(2) 0.10(1) 0.89(2) 1.50(5) – [2.1(2)]
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FIG. 4. Size of the second cluster S2N as a function of the
fraction of nodes removed f for the four attack strategies studied.
As it can be seen, this quantity peaks in the neighborhood of the
percolation threshold (dashed vertical line). The color code and
number of realizations are the same as in Fig. 3. The insets show
the collapse of the curves using the scaling ansatz given by Eq. (9),
with the parameters given in Table I. (a) ID; (b) RD; (c) IB; (d) RB.

become sharper as N increases, particularly in the case of RB
attack. The curves of each panel can be collapsed on both
sides of the transition (see insets) using the scaling relation of
Eq. (9). The exponents β/ν̄ and ν̄ used to collapse the curves
corresponding to each attack, which were estimated using the
methods described below, are compiled in Table I.

For the four attacks, it can be observed that all the curves
collapse very well to a master curve in the proximity of the
percolation threshold, confirming that the scaling relations of
Eq. (9) hold.

In Figs. 4 and 5, the size of the second largest cluster S2N
and the susceptibility 〈s〉 are shown. These quantities exhibit
a peak close to the percolation threshold, which increases in
magnitude with the system size. In the same way as with the
order parameter, the curves can be scaled using Eqs. (9) and
(10). The corresponding insets show that the collapses are
good, thus confirming the validity of the scaling assumptions.

We focus now on the estimation of the critical exponents.
By evaluating Eq. (10) at f = fc, we have 〈s〉( fc, N ) ∼ Nγ /ν̄ ,
so a log-log plot of 〈s〉 vs N at the percolation threshold should
give a straight line with slope γ /ν̄. Thus the ratio between
these two exponents can be computed directly using a linear
fit. The main drawback of this method is that the percolation
threshold must be known beforehand. As we only have an
estimation for fc, this method will propagate the uncertainty
associated with that estimation. To avoid this, instead of com-
puting the average cluster size at the percolation threshold, we
compute the value at the peak of this measure performing the
scaling using these values. We recall that, for sufficiently large
system sizes, the scaling of the peaks is the same as the scaling
at the percolation threshold [38].

In Fig. 6, we show the corresponding scaling for each of
the four attack strategies implemented. In all cases, the linear
relation in the log-log scale is very clear. The estimated ratios
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FIG. 5. Susceptibility 〈s〉 as a function of the fraction of nodes
removed f for the four attack strategies studied. As it happens with
the size of the second cluster, this quantity also peaks near the
percolation threshold. The insets show the collapse of the curves
using the scaling ansatz given by Eq. (10), with the parameters given
in Table I. The color code and number of realizations are the same as
in Fig. 3. (a) ID; (b) RD; (c) IB; (d) RB.

between the critical exponents are shown in the figure and
summarized in Table I. In a similar way, we note that the size
of the second largest cluster S2N also peaks near the transition.
According to Eq. (9), this quantity scales as S2N ∼ N1−β/ν̄

near the critical point, so the ratio β/ν̄ can be inferred from
the scaling of such peaks. Figure 6 also shows the values of
the peaks and the corresponding linear fit. The estimated ratios
are summarized, as before, in Table I.

As a consistency check, we note that the estimated expo-
nents satisfy Eq. (6). The values obtained are 0.99(2) for ID,
0.99(2) for RD, 1.01(2) for IB, and 1.09(4) for RB.
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FIG. 6. Scaling of the peaks of S2N and 〈s〉 for the four attack
strategies. The markers represent the value at the peak, after averag-
ing over Ns realizations. Dashed lines correspond to a linear fit of the
points using least squares on a log-log scale. (a) ID, Ns = 2 × 104;
(b) RD, Ns = 2 × 104; (c) IB, Ns = 2 × 104; (d) RB, Ns = 5 × 103.
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To get the full characterization of each transition, it remains
to compute the exponent ν̄. In order to do this, we define
G( f , N ) = −∂ log S1( f , N )/∂ f and use Eq. (9) for i = 1,
from where we have

G( f , N ) ∼ −d log S̃1[( f − fc)N1/ν̄]

df

∼ N1/ν̄G̃[( f − fc)N1/ν̄], (12)

where G̃(x) = −S̃′
1(x)/S̃1(x). Then, the function G has a

similar scaling than the order parameter and the susceptibility.
As the order parameter has an inflexion point close to the
percolation threshold, then G has a peak at that point. In the
same way as it happens with the susceptibility and the second
cluster, it is expected that the peaks scale as a power law,
this time, with an associated exponent 1/ν̄. Then, we can
perform a similar analysis as before and plot G versus N ,
where we should see a linear relation in a log-log scale. This
approach comes with the following caveat. In general, taking
the numerical derivative of a noisy signal tends to amplify
the noise. Our case is not an exception, as it can be seen in
Fig. 7. The gray curves correspond to the numerical derivative
computed using five-point finite differences over the average
of 2 × 104 realizations (ID, RD, and IB) and 5 × 103 simu-
lations (RB). We can see that the noise is amplified and that
it increases with the system size. To overcome this problem,
we employed a regularization method, described in [39], with
which smoother curves can be obtained (colored curves). The
right panels of Fig. 7 show the scaling of the peaks, computed
from the regularized derivative. As it can be seen from the
linear regressions, the scaling hypothesis is satisfied. The
estimated values for the exponent of the correlation length are
ν̄ (ID) = 2.72(5), ν̄ (RD) = 2.59(7), ν̄ (IB) = 2.8(2), and ν̄ (RB) =
1.50(5).

C. Cluster size distribution

As it was previously explained, second-order percolation
transitions exhibit a power-law cluster size distribution at the
critical point given by Eq. (4). In Fig. 8, we show that this is
indeed the case for the two degree-based attacks and the initial
betweenness attack. The exponents of the respective power
laws—which were measured directly from n(s) using a linear
fit in logarithmic scale—are in agreement with the scaling
relation given by Eq. (5) and are consistent, considering un-
certainties, with the value τ = 2.5 correspondent to standard
percolation (see Table I). The case of recalculated between-
ness deserves special consideration since it departs from the
mean-field universality class as we point out below. Although
a power-law decaying can be seen for small cluster sizes, the
distribution shows a hump at higher values, departing from
the expected behavior. In a similar manner to what happens
with the abrupt drop in the order parameter near the transition,
this behavior could be indicating a first-order phase transition.
Nevertheless, it is worth noting that similar effects have been
observed in other continuous transitions in the context of
explosive percolation models [1,40]. Here we argue that the
hump is due to a finite-size transient effect and that it must
disappear for larger system sizes. Using a heuristic argument
similar to that of Ref. [1], we can estimate a crossover size N∗,
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FIG. 7. (a)–(d) Derivative of the logarithm of the order parameter
as a function of the fraction of nodes removed. The gray curves
correspond to a five-point numerical derivative and the colored
curves to the derivatives computed using the regularization method
described in [39]. Both methods were applied over averages using
2 × 104 simulations (ID, RD, and IB) and 5 × 103 simulations (RB).
(e)–(h) Scaling of the peaks of the curves in the left. Dashed lines
correspond to linear fits using least squares. The values obtained for
the critical exponent of the correlation length ν̄ are summarized in
Table I.

where the system becomes large enough so that realizations
converge to the asymptotic limiting behavior. Let �Smax be the
greatest jump for the order parameter after removing a node
in a single realization. The variation in the control parameter
f in this single step is � f = 1/N . Assuming that this jump
occurs at fc and using the scaling of the order parameter, we
can roughly state that �Smax ∼ � f −β = Nβ . Now, we define
N∗ as the system size for which the greatest jump in the
giant component is about 10%. Thus N∗ ∼ 101/β . For the RB
attack, β ∼ 0.15 yielding N∗ ∼ 106. As the results presented
in Fig. 8 correspond to N = 16000, we are still under the
crossover size, which might explain the deviation from the
power law.

III. DISCUSSION

Table I summarizes the main results of this work, providing
a characterization of the percolation transitions produced by
the four attack strategies studied. From the perspective of
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FIG. 8. Cluster size distribution p(s) = n(s)/
∑′

s n(s) for each
attack strategy. Dotted dashed red curves correspond to the subcrit-
ical region f < fc, dashed gray curves to the supercritical region
f > fc, and solid blue lines to the critical value f = fc. For ID, RD,
and IB, the plots are consistent with Eq. (4), showing a power-law
distribution at the critical point (with a gentle decay at the tail due
to finite-size effects) and an exponential decay for other values of
f . RB deviates from the standard behavior, showing a hump for
middle values of s. The dotted black curves are power laws fitted
from the binned data, and their slopes are summarized in Table I.
The distributions were computed averaging 103 networks. (a) ID,
N = 64000; (b) RD, N = 64000; (c) IB, N = 64000; (d) RB, N =
16000.

the network dismantling problem, the relevant magnitude is
the percolation threshold, which quantifies the strength of
each attack. Our results not only confirm that the recomputed
versions of the attacks perform better than their initial coun-
terparts, which has been previously shown in the literature
[12–14], but also allows us to quantify the amount of improve-
ment that can be achieved by recomputing node centrality
at each removal step. If we compare the two degree-based
attacks, the difference between their percolation thresholds
is around ∼ 0.12. For the betweenness-based attacks, the
improvement is ∼ 0.26. As we see, the difference is greater
in the latter case and the reason for this can be attributed to
the global nature of the betweenness centrality, in contrast to
the locality of the degree.

From the point of view of critical phenomena, the critical
exponents are the most relevant measures as they determine
the universality class of the transition. Our results show that
the two initial attacks have exponents that are consistent
or close to the ones corresponding to random percolation.
Besides, the scaling relations given by Eqs. (5) and (6) are
satisfied within uncertainty. The case of recalculated degree is
similar in the sense that it also satisfies the scaling relations,
but seems to differ in some of the exponents. The significance
of the difference is not clear, however, and in consequence, it
is unclear if the attack belongs or not to the same universality
class than the previous cases [41]. We note that in a previous
work by Norrenbrock et al. [42], the authors claim that a RD

attack over two-dimensional proximity graphs has the same
exponents as random percolation on a square lattice.

Lastly, the recalculated version of the betweenness-based
attack is qualitatively different from the rest of the attacks. The
critical exponents are different from the mean-field values and
the component size distribution does not exhibit a power-law
decay for the system sizes studied. For its characteristics, this
transition could be included in the framework of explosive
percolation transitions [26,33]. Explosive transitions can be
either continuous, with a steep derivative of the order param-
eter near the percolation threshold, or discontinuous, depend-
ing on the underlying process. Given that these transitions
are usually characterized by a large crossover size, the order
of the transition can be hard to determine. As it has been
extensively discussed in recent reviews [1,26], in some cases
the transition seems continuous for finite-size systems but
becomes discontinuous for large enough systems. In other
cases, the opposite occurs. Moreover, there are transitions
where both discontinuity and criticality coexist. Based on our
results, we can safely say that RB has critical behavior and
that it does not belong to the random percolation universality
class. On the other hand, we cannot determine the order of
the transition from our methods, unless larger systems are
studied, which seems unlikely in the short time given the
computational complexity associated with the computation of
betweenness.

IV. CONCLUSIONS

We have studied the percolation transitions induced by
four dismantling strategies based on centrality measures over
Erdős-Rényi networks. By performing a systematic finite-
size scaling analysis, we have obtained both the percolation
thresholds and the critical exponents that characterize the
universality class of the transitions. By computing the per-
colation thresholds, we were able to verify and quantify the
intuitive idea that the attack strategies become more effective
when node centrality is updated after each removal step.
In particular, we show that keeping updated information of
node centrality can even modify qualitatively the percolation
process, changing its universality class.

From a dismantling point of view, recalculated between-
ness is the most efficient attack, as it is the one exhibiting
the lowest percolation threshold. In fact, its performance
is comparable to the most effective methods to dismantle
networks [14,22,23]. Also, the critical exponents of the perco-
lation process associated with this attack are far from trivial,
and resemble the behavior observed in explosive percolation
transitions [24,31]. At variance with the degree-based attacks
where the order parameter gradually decays towards zero,
the dismantling with recalculated betweenness proceeds more
silently, giving a misleading picture of integrity even at the
edge of a catastrophic failure. If we think of infrastructures
such as power grids, road networks, or the Internet, it is
reasonable to conceive heavy loaded nodes as the most prone
to failure, so RB-like damages are possible not only as a
targeted attack but as a failure. Other authors have studied the
vulnerability of these systems in terms of cascading failures
using as a proxy for the loads the betweenness of the nodes
[11,21]. From another perspective, our work suggests a
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different direction in which networked systems can be as-
sessed in the search of critical vulnerabilities.
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