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Model for phonetic changes driven by social interactions
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We propose a stochastic model to study phonetic changes as an evolutionary process driven by social
interactions between two groups of individuals with different phonological systems. Particularly, we focus on the
changes in the place of articulation, inspired by the drift /�/ →/h/ observed in some words of Latin root in the
Castilian language. In the model, each agent is characterized by a variable of three states, representing the place
of articulation used during speech production. In this frame, we propose stochastic rules of interactions among
agents which lead to phonetic imitation and consequently to changes in the articulation place. Based on this, we
mathematically formalize the model as a problem of population dynamics, derive the equations of evolution in
the mean-field approximation, and study the emergence of three nontrivial global states, which can be linked to
the pattern of phonetic changes observed in the language of Castile and in other Romance languages.
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I. INTRODUCTION

Oral communication, as the process of transmitting con-
cepts and ideas from one individual to another by word of
mouth, has been a main feature of human kind since the first
primitive societies. Historically, research in this field has been
faced by anthropologists and linguistics. However, in recent
years the interest for the development of new technologies
related to automatic speech recognition, especially in artificial
intelligent systems [1], has made it an active multidisciplinary
area of research [2–5].

In particular, in the field of the physics of complex systems,
the topic has been faced from the point of view of compe-
tition and evolution. In Ref. [6], for instance, by performing
agent-based model simulations, Castelló et al. analyzed the
competition between two socially equivalent languages and
studied the dynamics in structured populations in the frame of
complex network theory. Similarly, in Ref. [7], Stauffer and
Schulze focused on the concepts of evolution, analyzing the
rise and fall of languages using both macroscopic differen-
tial equations and microscopic Monte Carlo simulations. In
Ref. [8], likewise, Baronchelli et al. focused on the analysis
of the emergence of grammatical constructions, reporting an
order-disorder transition where the system goes through a
sharp symmetry-breaking process to reach a shared set of
conventions. Moreover, the coevolution of symbols and mean-
ings has been studied through elementary language games by
Puglisi et al. [9], showing the emergence of a hierarchical
category structure.

In the frame of linguistic theories, on the other hand,
speech production might be thought of as the combination
of several cognitive processes: the selection of the proper
words to express an idea, the suitable choice of a grammatical
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form, and the production of sounds via the motor system
and the vocal apparatus [10]. In this work we focus on the
last; therefore, in the following we describe the most relevant
concepts regarding the production of sounds.

Formally, phonemes are the minimal units of either vocalic
or consonant sounds needed to produce words. In this regard,
the set of phonemes which encompasses all the sounds needed
to produce every word in a given language defines a phonolog-
ical system (PS). It is particularly important to emphasize that
phonemes are not sounds but formal abstractions of speech
sounds. Any phoneme in a PS might be a representation for a
family of sounds, technically called phones, which are recog-
nized by speakers and linked to a specific sound during oral
communications [11]. Physiologically, the process by which
the vocal apparatus produces sounds is called phonation [12].
Through this mechanism, humans are able to produce a wide
range of sounds, usually divided into two groups: vowels and
consonants [13]. Let us focus on consonant production. In this
case, the phonetic apparatus uses a combination of tongue,
lips, teeth, and the soft palate in order to shape the different air
obstructions needed to produce the sounds. The point inside
the vocal cavity where the obstruction occurs is called the ar-
ticulation place (AP), and the manner in which the obstruction
is shaped is called the articulation mode (AM). These two
dimensions, AP and AM, are commonly used to categorize
the main features of the consonants in a particular PS.

Since languages are in continuous evolution, it is well
known that, under certain conditions, this process might lead
to changes in the PS [14]. In particular, in this work we are
interested in studying phonetic changes in consonants related
to variations in the AP. In this regard, it has been observed
that these changes are enhanced when two or more groups of
people with different languages are forced to socially interact
[15–19]. For instance, when a group invades another group’s
territory, or when two groups establish economic relations
(trade, exchange of services, etc.). The linguistic, phonetic,
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TABLE I. Some examples of Latin root words which show the
change /�/→/h/ in Castilian (columns 1 and). In column 3, we
show the translation into Portuguese in order to show the change
in this case did not happen. In column 4, we show the translation
into English as a reference. In order to clarify, note that, in column
1, the phonetic transcription of the letter f is the bilabial phoneme
/�/, and in column 2, the phonetic transcription of the letter h is the
glottal phoneme /h/.

Latin Castilian Portuguese English translation

facere hacer fazer to do, to make
femina hembra fêmea female
ferru hierro ferro iron
filiu hijo filho son
folia hoja folha leaf
fumu humo fumaça smoke

and grammatical mutual influences produced by the interac-
tion among the groups define a linguistic stratum (LS) [20,21],
where the persistent social interaction over time, in a process
of oral communication, guides the evolution to a common PS
and to a common new language.

A notable example of phonetic change in the AP due to a
LS, and the main inspiration of this work, is the case of the
glottalization of the bilabial fricative phoneme /�/ towards
the glottal fricative /h/ (hereafter referred to as the change
/�/→/h/), and its subsequent disonorization in some Latin
root words of Castilian language (see Table I). It is thought
that the social process which led to the LS in this particular
case was related to the social interactions among the prehis-
panic tribes (Iberics, Asturians, and mainly Vascons) and the
Romans, which were forced to socially interact in the Iberian
peninsula—during the period of Rome’s domain—from the
second to the ninth century, A.D. [22–24]. In this particular
LS there were groups of people with a PS (based on Celtic
language) socially interacting with another group of people
with a total different PS (based on Latin language).

In this context, it is thought that the change /�/→/h/ is
related to prehispanic tribe speakers performing changes in
the AP during fricative production, trying to improve their
communication skills with Latin speakers [25]. Notably, these
changes are not observed in other Romance languages on the
Iberian peninsula, as in the case of Portuguese or Catalan,
which emerged from a similar LS as Castilian. This fact led
researchers to theorize about the properties of this particular
LS, and additionally to propose alternative theories [26,27].
Until now, it seems there is not a total consensus regarding
the causes which led to these different evolutions of the Ro-
mance languages; therefore, the case is currently considered
by linguistics as an open problem.

Motivated by the historical observations regarding the
changes /�/→/h/, the aim of this work is to propose a model
of language competition [28–32] which captures the internal
dynamics of a LS. The model considers two social groups
having different PSs, where the changes in the articulation
places are guided by social interactions based on rules of
phonetic imitation.

We face the problem in the frame of population dynamics,
where we study the evolution of the changes in both groups,

and the emergence of general states of pronunciation in
the LS.

This paper is divided into three main sections: in Sec. II
we mathematically formalize the model, define the main
variables, propose the rules of the interactions, and describe
the dynamics; in Sec. III we derive from first principles the
equations of evolution; and, last, in Sec. IV we analyze the
emergence of global states by performing an analysis of both
the evolution equations and agent-based model simulations.
We found that by tuning the parameters related to the social
interactions in the LS, our model shows the emergence of
three general global states which capture qualitatively the ob-
servations of the emergent Romance languages of the Iberian
peninsula, reinforcing from our mathematical approach the
stratum-based theories present in the literature.

II. THE MODEL

We aim to model a process of phonetic imitation which
leads to changes in the AP during consonant production.
Accordingly, we have made the following simplifications:
(i) we limit our analysis to the changes in the AP, neglecting
any change in the AM; (ii) we propose there are only three
possible APs in the vocal cavity, a front place (bilabial, labio-
dental), a middle place (dental, alveolar, and postalveolar),
and a back place (palatal, velar, uvular, and glottal); (iii) we
suppose there are two PSs in the LS, one which favors front
and middle production, and another which favors middle and
back; and (iv) we study the evolution of the changes in the
pronunciation of a single word.

In this frame, we define the main elements of the model as
follows:

(1) A and B are two groups of agents in a stratum LS.
(2) NA and NB are the number of agents in A and B and

N = NA + NB the total number of agents in the LS.
(3) S is the state of an agent in the LS at time t , where

S ∈ {1, 2, 3} represents the AP of agent i, such that 1 = front,
2 = middle, and 3 = back.

(4) PSA and PSB are the phonological systems of A and
B, indicating that A has S = 1, 2 as preferential states (front,
middle) and, conversely, B has S = 2, 3 (middle, back).

In the evolutionary process, at time t , we randomly take
from the set A ∪ B an active agent and a reference agent.
The state of the former will change according to the state of
the latter, guided by the following imitation rules which we
summarize by using the usual chemical reactions notation,

A2 + B3
q−→ A3 + B3, (1a)

B2 + A1
q−→ B1 + A1, (1b)

A3 + A2
p−→ 2A2, (1c)

B1 + B2
p−→ 2B2, (1d)

A1
r� A2, (1e)

B2
r
� B3, (1f)

where Ai and Bi are agents of group A and B, respectively,
in state S = i. For example, Eq. (1c) states that a member
of the population A2 can interact with a member of A3 and
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that the result of the interaction are two members of the
population A2.

The rules (1a)–(1d) are introduced in order to emulate a
process of imitation, where interactions between agents of
different groups lead to nonpreferential states of pronuncia-
tion, and interactions between agents of the same group, con-
versely, reinforce the preferential states of the group. In this
respect, probabilities q, p define the interaction strength be-
tween agents of different groups, and the interaction strength
between agents of the same group, respectively. Moreover, the
noisy component expressed by rules (1e) and (1f) captures
the variations caused by both random phonetic changes and
the production of possible allophones in both PSA and PSB,
respectively. On the other hand, note that in the frame of the
proposed imitation rules, the changes in the states occur only
when the AP distance, between the referent and the active
agents, is equal to one (i.e., |�Si j | = 1, with i, j reference
and active agents). The idea here is to model the changes in
the context of close or similar sounds [33–35] between the
different PSs, neglecting the contribution to the changes of
any other possible interactions.

In this theoretical frame, our proposal has been inspired
by the models of opinion formation dynamics [36,37], where
social interactions, in the context of a social debate, drive
the population to emergent states of consensus or polarization
[38–40].

Macroscopically, in the frame of evolutionary dynamics,
the global state of the system can be analyzed by counting
the number of agents in A, B, in the states S = 1, 2, 3. In the
following section, based on this idea we introduce the master
equation of the process and derive the evolution equations for
the first moments, or mean-field approximation.

III. THE EQUATIONS OF EVOLUTION

Let NA
i and NB

i be the numbers of agents in A and B in state
S = i, with i = 1, 2, 3 (hereafter referred to as the occupation
numbers). The master equation of the system is given by

∂P(�x; t )

∂t
=

∑
�y �=�x

T (�x|�y)P(�y; t ) −
∑
�x �=�y

T (�y|�x)P(�x; t ), (2)

where �x = (NA
1 , NA

2 , NA
3 ; NB

1 , NB
2 , NB

3 ) is the so-called occupa-
tion vector; P(�x; t ) is the probability to find the system with
an occupation vector �x at time t , and T (�x|�y) is a transition
probability from a global state given by an occupation vector
�y to another given by �x. In this approach, we consider a fixed
population in both groups; therefore, for all t we have

NA = NA
1 + NA

2 + NA
3 ,

NB = NB
1 + NB

2 + NB
3 ,

N = NA + NB. (3)

From master equation (2), we can derive the evolutionary
equations for the first moment of the occupation numbers
(mean-field approximation). For instance, for NA

2 we have

d

dt

〈
NA

2

〉 = 〈
T

(
NA

2 + 1|NA
2

)〉 − 〈
T

(
NA

2 − 1|NA
2

)〉
, (4)

and the transitions T are defined by the rules proposed in the
last section and depend on probabilities p, q, and r. For the
case by which the system increases one agent in NA

2 , T can be
written as

T
(
NA

2 + 1
∣∣NA

2

) = NA
1

N
r + NA

3

N

NA
2

N − 1
p, (5)

where the first term is the probability of finding an agent of
group A in state 1, times the probability it randomly goes to
state 2; the second term is the probability of one interaction
between an active agent of group A in state 3 and a reference
agent of the same group in state 2, leading the former to
imitate the latter with probability p.

For the case in which the occupation number NA
2 decreases

by one agent, the transition is given by

T
(
NA

2 − 1
∣∣NA

2

) = NA
2

N

NB
3

N − 1
q + NA

2

N
r, (6)

where the first term shows the loss of an active agent of group
A in state 2 due to the interaction with a reference agent of
group B in state 3, and the second term stands for the random
loss of an agent in 2 who moves to 1.

Replacing Eqs. (5) and (6) in Eq. (4), we obtain

d

dt

〈
NA

2

〉 =
〈

NA
1

N
r + NA

3

N

NA
2

N − 1
p

〉
−

〈
NA

2

N

NB
3

N − 1
q + NA

2

N
r

〉
,

= r

N

〈
NA

1

〉 + p

N (N − 1)

〈
NA

3 NA
2

〉

− q

N (N − 1)

〈
NA

2 NB
3

〉 − r

N

〈
NA

2

〉
. (7)

From now on, we consider that the evolution of the
numbers are uncorrelated; then 〈NA

2 NB
3 〉 = 〈NA

2 〉〈NB
3 〉 and

〈NA
3 NA

2 〉 = 〈NA
3 〉〈NA

2 〉.
Moreover, we rescale the time as t → t

N , use the ap-
proximation for large population (N − 1) ≈ N , and define
the occupation number as fractions of the total population:

a1 = 〈NA
1

N 〉, a2 = 〈NA
2

N 〉, a3 = 〈NA
3

N 〉, and b3 = 〈NB
3

N 〉. Using the
notation and approximations introduced above, we can write
Eq. (7) as follows:

ȧ2 = ra1 + pa2a3 − qa2b3 − ra2. (8)

Similarly, it is possible to obtain the equations for the
evolution of the other occupation numbers, which define the
following system of coupled differential equations:

ȧ1 = r(a2 − a1),

ȧ2 = −r(a2 − a1) + pa2a3 − qa2b3,

ȧ3 = −pa2a3 + qa2b3,

ḃ1 = −pb1b2 + qb2a1,

ḃ2 = pb1b2 − qb2a1 − r(b2 − b3),

ḃ3 = r(b2 − b3). (9)

It is important to highlight that, since we are now working
with the fractions of the occupation numbers, the constraints
related to the fixed population become nA = a1 + a2 + a3,
nB = b1 + b2 + b3, and nA + nB = 1, where nA = NA

N and
nB = NB

N . The constraints also show that it is possible to reduce
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the rank of the system to four; however, for the sake of clarity,
we decided to keep the six equations for a more detailed
analysis.

Finally, note that, if there are equilibrium points in system
(9), in the frame of our model, these may be related to the
population reaching consensus about a common general way
of pronunciation in both groups. In the following section we
probe the existence of four equilibrium points, and show that
the stability of these emergent states strongly depends on the
intra- and intergroup interaction rates.

IV. THE EMERGENT STATES

At time t → ∞, if an equilibrium exists, it must satisfy
ȧi = 0 and ḃi = 0. In these conditions, from Eqs. (9) and using
the population constraints, it is possible to probe the existence
of four nontrivial equilibrium points:

(I) �neq = (0, 0, nA; nB, 0, 0),
(II) �neq = (0, 0, nA; 0, nB

2 , nB
2 ),

(III) �neq = ( nA
2 , nA

2 , 0; nB, 0, 0),
(IV) �neq = (α, α, Qβ; Qα, β, β ), where α = 2nA−QnB

4−Q2 ,

β = 2nB−QnA

4−Q2 , and Q = q
p .

The first equilibrium can only be reached if the initial
conditions are set at this point; later we show this equilibrium
is unstable. Equilibria II and III are the cases where the system
loses the back and the frontal AP, respectively. Equilibrium IV,
on the other hand, shows a mixed final state, where the system
reaches a balance among the three states of pronunciation.

The stability analysis around the equilibrium can be per-
formed by analyzing the eigenvalues of system (9) (see the
Appendix).

We are particularly interested in studying the evolution of
the system as a function of Q since this parameter controls
the interaction between A and B, and also rules the population
state of the equilibrium point IV. To this purpose, we set a
constant equal population nA = nB, r = 0.5, and q = 0.5 and
vary the parameter p, in order to focus only on the study of
the effect of Q = q/p, on the equilibrium conditions of the
system. In this frame, we have calculated the eigenvalues as
a function of Q and studied the sign of the real part of the
eigenvalues to evaluate the stability conditions.

The plots in Fig. 1 show the curves for the real part of
the largest nontrivial eigenvalue, Re(λ1) vs Q for the four
equilibrium points. Figure 1(a) shows the calculation for state
I. We can see that for all Q there is an eigenvalue with
positive real part, which means this equilibrium state is always
unstable. In Figs. 1(b) and 1(c) we can observe that states
II and III behave similarly to each other. This is expected
because these two states are symmetric. States II and III are
unstable for Q < 2 since they have at least one eigenvalue
with positive real part. Finally, Fig. 1(d) shows the calculation
for equilibrium state IV; in this case, complementary to states
II and III, the equilibrium is unstable for Q > 2.

Clearly, coefficient Q, which measure the relative intra-
and intergroup imitation rates, determines the stability of the
different equilibrium states of the system. We can understand
this phenomenon by reasoning as follows: At Q = 2, the
intergroup interactions equal the sum of the interaction rates
within each group (Q = 2 → q = p + p), and equilibrium

I II

III

IV

(a) (b)

(c) (d)

FIG. 1. Stability analysis. Real part of the largest nontrivial
eigenvalue of the Jacobian matrix (λ1), as a function of the parameter
Q. (a)–(d) Numerical calculation for the equilibria I, II, III, and
IV, respectively. Note that when Re(λ1) > 0 the system is unstable;
therefore, equilibrium I will be unstable for all values of Q; equilibria
II and III will be unstable for Q < 2, and equilibrium IV for Q > 2.

IV becomes �neq = (α, α, Qβ; Qα, β, β ) = ( 1
8 , 1

8 , 1
4 ; 1

4 , 1
8 , 1

8 );
i.e., there is a balance between the number of agents in pref-
erential and nonpreferential states of pronunciation in both
groups (nA

1 + nA
2 = nA

3 and nB
1 = nB

2 + nB
3 ). For Q > 2, the sys-

tem loses the balance: the number of agents in nonpreferential
states becomes larger than the number of agents in preferen-
tial states, and hence equilibrium IV becomes unstable and,
depending on the initial conditions, the system evolves to
equilibrium II or III. Furthermore, in the stochastic version
of the model and balanced initial conditions fluctuations can
determine the final equilibrium state, which occurs with equal
probability for states II and III.

Finally, a more general stability analysis of the mean-field
model, which includes unbalanced conditions nA �= nB, is
conducted in the Appendix. The main results of this analysis
are summarized in the phase diagram shown in Fig. 2. There

FIG. 2. Projection of the phase diagram in the plane (nA, Q).
The curves nA = 2/(2 + Q) and nA = Q/(2 + Q) divide the plane
into four regions with different stability. The labels for each region
correspond to the equilibria that are stable inside the region. The two
blue markers represent the parameters that were used in the main
text.
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(a) (b)

(c) (d)

FIG. 3. The case when equilibrium IV is stable. For Q = 0.7,
first moment evolution of the numbers related to (a) group A
(a1, a2, a3) and (b) group B (b1, b2, b3), respectively. The curves
are the outcome of the evolution of Eqs. (9), which were solved
by performing a Runge Kutta eighth-order method. (c), (d) Av-
erage curves over 100 realizations, of the numbers in the ABM.
The shading indicates the standard deviation around the mean
value. In these conditions, the population evolves to equilibrium
IV, a mixed state of pronunciation where the system reaches �neq =
( 5

27 , 5
27 , 7

54 ; 7
54 , 5

27 , 5
27 ) ≈ (0.18, 0.18, 0.13; 0.13, 0.18, 0.18).

are four stability regions in the nA-Q plane: one for point IV at
low values of Q, another two for points II and III, respectively,
and one region where points II and III coexist. Our analysis
is restricted to two representative values of Q in this phase
diagram.

In order to visualize the time evolution of the occupation
number in the system, and to study the convergence to the
equilibrium points, we solved numerically the set of coupled
differential equations given in Eqs. (9), and also performed
numerical simulations of the stochastic agent-based model
(ABM)—using the rules proposed in Sec. II—in order to test
the effect of fluctuations in the dynamics of the system. In a
first approach we explore two limit cases for the singular point
Q = 2: the case of Q = 0.7 where the intergroup interaction
domain governs the dynamics, and the case of Q = 5 where,
conversely, the dynamic is governed by the intragroup inter-
actions. For this purpose, we set (i) the initial conditions on
�n(t = 0) = ( nA

2 , nA
2 , 0; 0, nB

2 , nB
2 ) (preferential states for both

groups), (ii) the fraction of agents such that nA = nB (equal
population in both groups), (iii) the parameters r = 0.5 and
q = 0.5, and (iv) for the ABM simulations, a population size
of N = 104. The results are summarized in the plots of Figs. 3
and 4, which we describe in the following. Figure 3 shows
the evolution of the occupation numbers for Q = 0.7 where
state IV is stable. Figures 3(a) and 3(b) show the evolution in
the mean-field approximation [Eqs. (9)], whereas Figs. 3(c)
and 3(d) show the outcome of the ABM; here we have aver-
aged the results over 100 performed simulations. We can see
that, as expected, the system evolves toward equilibrium IV
and the mean reaches the value �neq = (α, α, Qβ; Qα, β, β ) =
( 5

27 , 5
27 , 7

54 ; 7
54 , 5

27 , 5
27 ).

(a) (b)

(c) (d)

FIG. 4. The case where equilibrium II is stable. For Q = 5, the
first moment evolution of the numbers related to (a) group A and
(b) group B, respectively. (c), (d) The average curves over 100
realizations, of the numbers in the ABM. The shading in the plots
indicates the standard deviation, which we see increasing when
the system reaches the unstable equilibrium IV. Note how at the
beginning the system seems to evolve toward IV, but it escapes
toward equilibrium II, which is stable in these conditions [ �neq =
(0, 0, 1

2 ; 0, 1
4 , 1

4 )]. The arrows in (a) indicate the time scales obtained
from the eigenvalues analysis: t1 ≈ 1 and t2 ≈ 102.

Figure 4, by contrast, shows the evolution for Q = 5 where
equilibria II and III are stable; in this case, the realization
shown in the plots went to equilibrium II. Notably, at the
beginning of the evolution, the system seems to stabilize at
equilibrium IV, but at larger times moves toward equilibrium
II, as expected. The arrows in Fig. 4(a) indicate the relaxation
times operating at each regime, given by the inverse of the
eigenvalues (∝ 1/λi ).

In a second approach, we explore finite size effects in the
system by performing an ABM simulation for different sizes
(N) of the total population and comparing with the mean-field
approximation. For the case Q = 5, we can see from Figs. 5(a)
and 5(b) that the finite size effects become notable once the
system reaches the unstable equilibrium IV. The larger the
population the lower the fluctuations; therefore, the system
will spend more time at the unstable equilibrium IV before
fluctuations lead it to the stable state II.

In connection with that expressed above, we measured the
distribution of times (T ) needed for the system to reach the
final equilibrium at Q = 5 by performing 2000 realizations
of the stochastic model. Figure 5(c) shows the distribution
obtained. We can see a nonsymmetric distribution with a peak
around T ≈ 600, and a tail at the right of the distribution.
As we said before, in every realization the system stays in
the unstable equilibrium IV before it reaches the final stable
state; therefore, the total time T depends on the magnitude
of the fluctuations which drive the system from the unstable
equilibrium to the stable one. The latter explains the tail at
the right of the distribution and also the differences in the
final times observed among the stochastic simulations and the
mean-field approach.
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(a) (b)

(c) (d)

FIG. 5. Average curves for the evolution of the numbers (a) a3

and (b) b1, for different values of the population size N , compared
with the mean-field approximation in order to see the finite size
effect. (c) Distribution of final times T needed for the system to reach
equilibrium II at Q = 5. The dashed line in the background indicates
a Gaussian distribution with the same mean and standard deviation,
which helps to visualize the presence of a large tail in distribution
P(T ). (d) Average curves for the evolution of the numbers a3 and b1

for different values of the parameter r.

On the other hand, as we show above, the equilibrium
points are not dependent on parameter r; however, since r is
a stochastic parameter of the model, the dynamics towards
the equilibrium should depend on it. In Fig. 5(d) we show
the evolution of the numbers a3 and b1 for r = 0.5, 0.1, and
0.005. For the lowest value explored (r = 0.005), we can see a
different behavior around the unstable equilibrium IV, which
seems to indicate a link between the reduction of the stable
attractor force and the reduction of r.

Last, in order to complete a global analysis, we test the
system behavior under changes in the initial conditions. Fig-
ure 6(a) shows trajectories in the plane a1-a3 for Q = 5,
obtained from the mean-field approach simulations, where
we have tried different initial conditions for the numbers ai,
keeping r = 0.5 (the different trajectories in the plane are
indicated in the plot as li, i = 1, 2, 3, 4). We can see that

(a) (b)

FIG. 6. Trajectories in the plane a1-a3: (a) changing the initial
conditions, keeping r = 0.5, and (b) changing parameter r, for
trajectory starting from the same initial condition as l2 in (a). The
blue lines correspond to the solution of the differential equations,
while the cyan curve in (a) corresponds to a single realization
of the stochastic simulation, starting from the initial condition of
trajectory l2.

depending on the proximity to the stable attractor II the system
will explore the unstable equilibrium IV, as in the case of
trajectories l1, l2, and l4, or it will not as in the case of
trajectory l3. For the case of l1 we have additionally plotted
the trajectory obtained from a single stochastic realization.

The plot in Fig. 6(b), on the other hand, complements the
information given in Fig. 5(d), showing the effect of parameter
r on the trajectories in the plane a1-a3. In this regard, the
parameter r regulates the velocity of the transitions A1 � A2

(and also B2 � B3). When r is strong enough, these transi-
tions occur much faster than the rest and, thus, populations
A1 and A2 tend to have the same number of individuals,
independently of the initial conditions. This aspect explains
why all the trajectories in Fig. 6(a) rapidly approximate to the
line a3 = −2a1. If the system starts from an initial condition
with a low value of a3, then the trajectory will be forced to
go through equilibrium IV, as can be seen in the figure. When
we reduce the value of r, it is harder for the system to equal
the values of a1 and a2 and, thus, the trajectories in general
deviate from the line and equilibrium IV is avoided, as we
show in Fig. 6(b).

In the frame of the proposed model, state II can be related
to the change /�/→/h/ in Castilian, and state III to that ob-
served in other Romance languages like Portuguese or Cata-
lan. Therefore, for Q > 2, the model seems to capture very
well the current pronunciations that emerged—from the real
LS—in the Iberian peninsula. On the other hand, equilibrium
IV describes an emergent state of mixed pronunciation, which
means there are agents using different APs to pronounce the
same word. This is rarely observed in the real case, but can be
used to understand the existence of some regionalism or local
accents in the peninsula [41].

V. CONCLUSIONS

In this work, we have proposed a model to study phonetic
changes in the AP used to pronounce a single word as an
evolutionary process guided by the social interaction of imita-
tion between two groups of people with different phonological
systems. Inspired by the case of the change /�/→/h/ in
the Castilian language, we have studied a fixed population
made up of two groups of interacting people, A and B, such
that group A has a trend to produce frontal fricatives and
conversely group B has a trend to produce back fricatives.
The rules of the model were proposed based on empirical
observations and were thought to link the phonetic changes
with a process of social interactions inter- and intragroup. The
model was mathematically formalized in Sec. II as a stochas-
tic process where the variable S ∈ {1, 2, 3}, representing the
AP for every agent in the population, changes according to
the proposed interaction rules.

In this frame we studied the temporal evolution of the oc-
cupation numbers, and from first principles we derived the
coupled system of differential equations which defines the
dynamics in the mean-field approximation. In the equilibrium,
we found three nontrivial final states, which we have related
to the emergence of general states of consensus in the way
a word is pronounced. In this regards, we found that when
the rate of interaction among agents from different groups
becomes larger than the sum of the rates within each group
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(q > 2p), the system exhibits two emergent states (equilibria
II and III) which capture very well both the middle-back
pronunciation used in Castilian and the front-middle pronun-
ciation observed in other Romance languages, as in the case
of Portuguese. From a social point of view, we can link the
condition q > 2p to the situation where the relation among
individuals from different groups is large enough to allow a
common general consensus in spite of the cultural differences.

The model we have introduced is based on a mean-field
approach since all agents interact among them; hence it does
not consider the influence of the structure of social inter-
actions in reaching a consensus for the phonetic changes.
This is of course a simplification, as it is known that the
structure of social interactions strongly influences human
behavior and the evolution of social and cognitive processes
[42]. Even more, the human mental lexicon is supposed to be
assembled according to a multiplex network structure [43].
Hence, one can expect the network structure to play a key
role in any particular dynamics of phonetic changes. However,
Baxter et al. [32] proved that in several neutral interactor
models inspired in Trudgill’s theory for the emergence of
New Zealand English, the structure of the underlying social
network has a minor effect on the final state distribution of
the speaker’s grammar (linguemes) produced by these models.
According to Trudgill’s deterministic theory, frequency of
use and accommodation are the only factors to be taken into
account for the prevalence of a given lingueme. Our model
is deterministic in terms of its parameters. The final phonetic
state is correlated to the initial frequency of agents using a
given phonetic system for the case Q > 2 (states II and III);
in those states one phonetic system prevails over the other.
However, the proposed imitation mechanism that rules the
interaction between agents of different phonetic systems can
lead to a final state in which the two phonetic systems coexist.
This is particularly relevant in the analysis of Castilian pho-
netic when the system is considered as a whole. In this case the

LS contains fricative words that keep the Latin pronunciation
as well as other words that change to glottalization, which
means that there is a coexistence of the articulation places in
the global system.

Finally, more realistic models must consider the struc-
tures of social interactions in the dynamics. Then it would
be interesting to analyze the interplay between the network
topology and the dynamics of phonetic changes generated by
our model. In this regard, we leave as an open problem to be
faced in future works the study of the effect of the structure of
social interactions in phonetic changes.
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APPENDIX: STABILITY ANALYSIS

In this Appendix we perform a stability analysis to extend
the discussion in Sec. IV.

Equation system (9) can be reduced to a four-dimensional
system using the constraints a1 + a2 + a3 = nA and b1 + b2 +
b3 = nB. Defining the parameters ω = r/p and Q = q/p and
scaling the time as τ = pt , we have

ȧ1 = ω(nA − 2a1 − a3),

ȧ3 = (Qb3 − a3)(nA − a1 − a3),
(A1)

ḃ1 = (Qa1 − b1)(nB − b3 − b1),

ḃ3 = ω(nB − 2b3 − b1),

where we have changed the notation ẋ ≡ dx/dτ =
(1/p)dx/dt .

The Jacobian of the reduced system is

J =

⎛
⎜⎝

−2ω −ω 0 0
a3 − b3Q a1 + 2a3 − nA − b3Q 0 (nA − a1 − a3)Q

(nB − b3 − b1)Q 0 b3 + 2b1 − nB − a1Q b1 − a1Q
0 0 −ω −2ω

⎞
⎟⎠. (A2)

We proceed now to analyze the stability of each equi-
librium. Before we start, it is important to notice that, as
we have rescaled the time as τ = pt , the eigenvalues of the
original system can be expressed as λ = pμ, where μ are the
eigenvalues of the reduced system.

Evaluating (A2) at equilibrium I and computing its eigen-
values, we have

μB
± = nB − 2ω ±

√
(nB − 2ω)2 + 4nBω

2
,

μA
± = nA − 2ω ±

√
(nA − 2ω)2 + 4nAω

2
. (A3)

The four eigenvalues are always real, and two of them (the
ones with the plus sign) are always positive. This means that

equilibrium I is always unstable, and thus it lacks physical
interest.

For equilibrium II, the corresponding eigenvalues are

μ± = 2nA − QnB − 4ω ±
√

(2nA − QnB)2 + 16ω2

4
,

μ3 = −nB

2
,

μ4 = −2ω. (A4)

The eigenvalues μ−, μ3, and μ4 are always negative, but
μ+ can be either positive or negative. The region of the
parameter space where it is negative (and thus where the
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equilibrium is stable) is given by

Q >
2nA

nB
. (A5)

Considering nB = 1 − nA, the previous inequality can be
solved for nA as

nA <
Q

2 + Q
. (A6)

Equilibrium III is symmetric with respect to equilibrium II
and its eigenvalues are

μ± = 2nB − QnA − 4ω ±
√

(2nB − QnA)2 + 16ω2

4
,

μ3 = −nA

2
,

μ4 = −2ω. (A7)

Thus, the equilibrium is stable when

Q >
2nB

nA
, (A8)

which can be also expressed as

nA >
2

2 + Q
. (A9)

Equilibrium IV exists only if α and β are simultaneously
greater than zero. It can be shown that the condition for this to

happen is (
nA − 2

2 + Q

)(
nA − Q

2 + Q

)
< 0. (A10)

To analyze the stability, let us first consider the particular
case nA = nB. In this case, the corresponding eigenvalues are

μ1,± = −[nA + 2ω(2 + Q)]

2(2 + Q)

±
√

[nA + 2ω(2 + Q)]2 − 4ωnA(4 − Q2)

2(2 + Q)
,

μ2,± = −[nA + 2ω(2 + Q)]

2(2 + Q)

±
√

[nA + 2ω(2 + Q)]2 − 4ωnA(2 + Q)2

2(2 + Q)
. (A11)

From these eigenvalues, μ1,± and μ1,− are always negative
while μ1,+ is negative if and only if Q < 2. For the general
case nA �= nB, we could not get explicit expressions for the
stability analysis of this equilibrium. Instead, we performed
simulations starting from different combinations of parame-
ters and we found that, as long as condition (A10) is satisfied,
equilibrium IV is stable for Q < 2 and unstable for Q > 2.

Using Eqs. (A6), (A9), and (A10), and taking into account
the discussion in the previous paragraph, we can draw a phase
diagram for our model in the plane (nA, Q), as we show in
Fig. 2.
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