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Abstract: We built a new set of suitable measures of correlations for bipartite quantum states based
upon a recently introduced theoretical framework [Bussandri et al. in Quantum Inf. Proc. 18:57,
2019]. We applied these measures to examine the behavior of correlations in two-qubit states with
maximally mixed marginals independently interacting with non-dissipative decohering environments
in different dynamical scenarios of physical relevance. In order to get further insight about the
physical meaning of the behavior of these correlation measures we compared our results with those
obtained by means of well-known correlation measures such as quantum mutual information and
quantum discord. On one hand, we found that the behaviors of total and classical correlations, as
assessed by means of the measures introduced in this work, are qualitatively in agreement with the
behavior displayed by quantum mutual information and the measure of classical correlations typically
used to calculate quantum discord. We also found that the optimization of all the measures of classical
correlations depends upon a single parameter and the optimal value of this parameter turns out to be
the same in all cases. On the other hand, regarding the measures of quantum correlations used in
our studies, we found that in general their behavior does not follow the standard quantum discord
D. As the quantification by means of standard quantum discord and the measures of quantum
correlations introduced in this work depends upon the assumption that total correlations are additive,
our results indicate that this property needs a deeper and systematic study in order to gain a further
understanding regarding the possibility to obtain reliable quantifiers of quantum correlations within
this additive scheme.

Keywords: quantum discord; quantum correlations; non-dissipative decoherence

1. Introduction

The ever-increasing processing power of current classical computers depends upon the
corresponding increase in the capability of miniaturization of electronic components. However,
according to Moore’s law this increase is damned to cease in a few more years [1,2]. Indeed, when the
characteristic dimensions of the electronic integrated circuits reach a scale of the order of about
50 nanometers and somewhere below 10 nanometers, the individual properties of the atomic elements
are expected to become predominant.
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Quantum information processing and quantum computing involve the use of quantum resources
to perform tasks of information processing which are either not feasible to be implemented classically
or can be performed with classical devices in a way much less efficient.

Thus, a key point is to identify the actual features which make it possible for quantum algorithms
to outperform their classical counterparts. At first, entanglement was believed to be the main
responsible for this effect. However, at present we know that some separable mixed states can provide
for a computational speed-up in some quantum computation models [3,4]. In addition, a number
of theoretical and experimental results points to an increment in efficiency due to the existence of
correlations of a different nature that entanglement [3–10].

Another aspect to be considered in tasks of Quantum information processing and quantum
computing is the fact that quantum correlations are very sensitive to uncontrolled interactions between
the system and its environment. This phenomenon is known as decoherence. When decoherence
becomes significant, the system becomes less efficient to process quantum information. Thus, a central
issue in quantum information processing is to know the time scales along which quantum resources
can reliably be preserved and processed.

Quantum discord (QD) is a widely used measure of quantum correlations which is also used to
pinpoint a departure from classicality [11–13]. However, it is still not clear the origin of the sources
responsible for the quantum speed up. As a result, a number of measures of quantum correlations
have been proposed in addition to QD [14–17].

In a previous work, we introduced a generalized framework to define bona fide measures of
correlations in bipartite quantum systems [18].

The main aim of this work, is to built an explicit set of new well-behaved measures of correlations
for bipartite quantum states, based upon that theoretical framework [18], and apply them to examine
the behavior of correlations in two-qubit states with maximally mixed marginals independently
interacting with non-dissipative decohering environments for different dynamical scenarios of physical
relevance.

This work is organized as follows. In Section 2, we outline the basic theoretical background
directly related to our work. In Section 3, we develop our main results, i.e., we introduce a new set of
explicit measures of total, classical and quantum correlations. Finally, some conclusions are drawn in
Section 4.

2. Theoretical framework

2.1. Quantum Discord

Quantum mutual information I(ρ) is a widely accepted information-theoretic measure of the
total correlations contained in a bipartite quantum state ρ. This quantity is defined as follows:

I(ρ) .
= S(ρA) + S(ρB)− S(ρ), (1)

where ρ stands for a general bipartite quantum state, ρA = TrB [ρ], ρB = TrA [ρ] represent the
corresponding reduced (marginal) states and S(ρ) is the von Neumann entropy given by

S(ρ) .
= −Tr [ρ log2 ρ] , (2)

It is worth mentioning that I(ρ) describes the correlations between the whole subsystems rather than
a correlation between just two observables.

Classical correlations present in a quantum state ρ of a bipartite quantum system can be quantified
by means of the measure JS(ρ) defined as [11,12]

JS (ρ)
.
= S(ρB)−min

M ∑
j

p′j S(ρMB|j), (3)
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withM =
{

Mj
}m

j=1 (m ∈ N) being a von Neumann measurement on subsystem A (i.e., a complete set
of rank-1 orthonormal projective measurements onHA), and

ρMB|j = TrA
[
(Mj ⊗ I)ρ

]
/p′j (4)

p′j = Tr
[
(Mj ⊗ I)ρ

]
, (5)

the resulting state of the subsystem B after obtaining the result Mj whenM is measured on subsystem
A and p′j being its corresponding probability. States given by Equation (4) are commonly referred to as
conditional states.

The difference between total correlations given by I(ρ) [cf. Equation (1)] and classical correlations
as measured by JS(ρ) [cf. Equation (3)] provides the measure of quantum correlations known as
quantum discord which can be written as [11,12],

D(ρ) .
= S(ρA)− S(ρ) + min

M ∑
j

p′j S(ρMB|j). (6)

It is worth pointing out that, as the measure JS (ρ) is not symmetric under the exchange
of subsystems A and B, there exists a directionality over JS (ρ) and in consequence over the
quantity D(ρ).

Finally, for future purposes it is worth bearing in mind that the notion of quantum discord to
quantify total quantum correlations is implicitly embedded into a theoretical framework where total
correlations are additive, i.e., they are given by the addition of classical and quantum correlations.
This scheme, as pointed out by Brodutch et al. [19], belong to a class of debatable properties for total
correlation measures of quantum states.

2.2. Generalized Measures of Correlations

Following reference [18], we can quantify the total correlations showed by a bipartite quantum
state ρ by means of a suitable distance measure d(·||·) between quantum states, satisfying some specific
requirements [18], as follows:

Td (ρ) = d (ρ||ρA ⊗ ρB) (7)

As the state ρA ⊗ ρB does not contain correlations of any kind, clearly, Equation (7) measures the
amount of total correlation by means of a bonafide measure d(·||·) between an arbitrary bipartite state
ρ and the product state ρA ⊗ ρB.

In [18] also a measure of classical correlations was defined according with the following idea:
once the observableM is measured on subsystem A it is analyzed how its action conditions the state
of the subsystem B. By assuming thatM has a discrete spectrum with eigenvalues labeled with j ∈ N,
it is possible to quantify how different is ρB from the states ρMB|j which arises after performing the local

measurement on A, by means of distance d(ρMB|j || ρB).
Thus, a measure of classical correlations between the two subsystems is the maximum of the

weighted average of the above m ∈ N quantities d(ρMB|j || ρB):

Jd (ρ) := max
{M}

JMd (ρ) , (8)

JMd (ρ) :=
m

∑
j=1

p′j d
(

ρMB|j || ρB

)
. (9)

Having defined the generalized measures of total and classical correlation, a measure for quantum
correlations can be advanced, based on an additive approach (as quantum discord), in terms of the
difference between total and classical correlations,
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Qd (ρ)
.
= Td (ρ)−Jd (ρ) . (10)

The necessary properties of d(·||·) in order to generate well-behaved measures of quantum
correlations are discussed in [18].

It is important to realize that, when the distance d(·||·) is replaced by the relative entropy

S(ρ||σ) = Tr[ρ(log2 ρ− log2 σ)], (11)

the quantities TS, JS and QS do coincide with the quantum mutual information I , the classical
correlation measure given by (3) and, quantum discord, respectively.

In the next section, we will analyze the behavior of the correlation measures Td, Jd and Qd for
the following three distance measures between quantum states.

2.2.1. Squared Bures Distance

The squared Bures distance (B) is defined as follows:

d2
B(ρ||σ) = 2− 2

√
F(ρ||σ), (12)

being F the Uhlmann–Jozsa fidelity [20,21]:

F(ρ||σ) =
[

Tr
(√√

ρσ
√

ρ

)]2
. (13)

The correlation measures resulting from choosing dB(·||·) will be denoted as TB, JB and QB. See
Equations (7), (8) and (10).

2.2.2. Squared Hellinger Distance

Squared Hellinger distance (H) between two arbitrary density operators ρ and σ can be written
as follows

d2
H(ρ||σ) = 2− 2 Tr

√
ρ
√

σ. (14)

We will denote as TH , JH and QH the correlation measures resulting from choosing the distance
dH(·||·) in Equations (7), (8) and (10), respectively.

It is worth mentioning that we consider the squared versions of the Bures and Hellinger distance
because of the convexity property required to give rise to a well-behaved measure of classical
correlations [18].

2.2.3. Quantum Jensen–Shannon Divergence

The quantum Jensen–Shannon divergence (QJSD) is a symmetrized version of relative entropy
(11) and is defined as follows:

DJS(ρ||σ) =
1
2

[
S
(

ρ||ρ + σ

2

)
+ S

(
σ||ρ + σ

2

)]
. (15)

In this case, the Equations (7), (8) and (10), give rise to the measures TJS, JJS and QJS.
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2.3. Two-Qubit States with Maximally Mixed Marginals

Bell-diagonal (BD) states are two-qubit states with maximally mixed marginals which can be
written as

ρBD =
1
4

(
I2 ⊗ I2 +

3

∑
i=1

ciσ
A
i ⊗ σB

i

)
, (16)

being I2 the identity matrix of dimension 2 and σA
i (σB

i ) the Pauli operators corresponding to the
subsystem A (B).

Any two-qubit state satisfying 〈σA
j 〉 = 0 = 〈σB

j 〉, i.e., having maximally mixed marginal density
operators ρA = I2/2 = ρB, can be brought into a Bell-diagonal form by using local unitary operations
upon each qubit. It is worth mentioning that BD states are widely used in the current literature in
order to study quantum correlations and also the phenomena of freezing of QD. Since quantum and
classical correlations are both invariant under local unitary transformations, for the purpose of this
work, it will suffice to consider this kind of quantum states.

For an arbitrary BD state, the eigenvalues are given by

λ0 =
1
4
(1− c1 − c2 − c3), (17)

λ1 =
1
4
(1− c1 + c2 + c3), (18)

λ2 =
1
4
(1 + c1 − c2 + c3), (19)

λ3 =
1
4
(1 + c1 + c2 − c3), (20)

where the coefficients {cj} are such that 0 ≤ λi ≤ 1 (i = 0, . . . , 3), with ∑i λi = 1.
BD states are a three-parameter set which includes the subsets of separable and classical states [22].

They can be specified by the 3-tuple (c1, c2, c3). Two-qubit states with maximally mixed marginals also
includes Werner (|c1| = |c2| = |c3| = c) and Bell states (|ci| = 1, |cj| = 0, |ck| = 0, where the triplet
of indexes (i, j, k) represents any arbitrary permutation of (1, 2, 3)). Thus, the state represented by
Equation (16) encompasses a wide set of quantum states. Furthermore, BD states allow us to obtain
explicit analytical expressions for the different measures of correlations that will be used in this work
(cf. Section 3).

3. Results

In what follows, we shall calculate the corresponding expressions for the total, classical,
and quantum correlations measures , taking d(·||·) equal to squared Bures and Hellinger distances,
and also considering d(·||·) as the quantum Jensen–Shannon divergence. All these measures fulfill the
necessary conditions to provide suitable measures of total, classical, and quantum correlations [18].

The computation ofQd [cf. Equation (10)] involves an optimization of the classical correlations JMd
[cf. Equation (9)] over all possible von Neumann measurements. Let us introduce local measurements
for party A,

{Ej = |j〉 〈j| / j ∈ {0, 1}}, (21)

that is, {Ej} is a PVM (Projection-Valued Measure) over the subsystem A given in the computational
basis {|j〉}. Any other projective measurement will be given by a unitary transformation:

{Mj = V |j〉 〈j|V† / j ∈ {0, 1}}, (22)
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with V ∈ U(2). A useful parametrization of this unitary operators, up to a constant phase, is

V = s · (I2, iσ), (23)

with s ∈ Γ, and Γ = {s ∈ R4 / s2
0 + s2

1 + s2
2 + s2

3 = 1}.
Once the measurement is parametrized by the vector s, and considering Bell diagonal states (16),

the conditional states of the subsystem B [cf. Equation (4)] are given by [23]

ρBD
B|0(s) =

1
2

(
I2 +

3

∑
i=1

cizi(s)σB
i

)
, (24)

ρBD
B|1(s) =

1
2

(
I2 −

3

∑
i=1

cizi(s)σB
i

)
. (25)

In Equations (24) and (25) we defined

z1(s) = 2(−s0s2 + s1s3), (26)

z2(s) = 2(s0s1 + s2s3), (27)

z3(s) = s2
0 + s2

3 − s2
1 − s2

2, (28)

and the associated conditional probabilities are p0(s)= p1(s)= 1
2 for all s ∈ Γ.

By using (26)–(28) it turns out that the quantities JMd [cf. Equation (9)] for the squared Bures and
squared Hellinger distances and also for the quantum Jensen–Shannon divergence are non-decreasing
functions of the parameter θ(s) :=

√
|c1z1(s)|2 + |c2z2(s)|2 + |c3z3(s)|2. Therefore, the optimal

measurement is common for these three measures and its direction is given by the vector s such
that θ(s) is maximum.

If we set c = max{|c1|, |c2|, |c3|} it can be verified that θ(s) ≤ c. Thus, the optimal measurement
is given by the vector sM satisfying θ(sM) = c. More specifically, we have the following cases,

1. If c = |c1| ⇒ |z1(sM)| = 1, z2(sM) = z3(sM) = 0;
2. If c = |c2| ⇒ |z2(sM)| = 1, z1(sM) = z3(sM) = 0;
3. If c = |c3| ⇒ |z3(sM)| = 1, z2(sM) = z1(sM) = 0.

Thus, the measures Jd, for the squared Bures and Hellinger distances, the Jensen–Shannon
divergence and the relative entropy, are completely equivalent since they are non–decreasing functions
of the same parameter θ(sM).

On the other hand, the generalized measures of total correlations can be obtained just
diagonalizing the matrix ρ.

For Bell diagonal states, the distances d2
B and d2

H yield the same analytical expressions for total
and classical correlations measures. Thus, we will just consider the the case of squared Bures distance:

TB(ρ) = 2−
3

∑
i=0

√
λi, (29)

JB(ρ) = 2−
√

1− c−
√

1 + c. (30)

The quantum Jensen–Shannon divergence quantify the total and classical correlations according
to the expressions:

TJS(ρ) =
1
2 ∑

i
λi log2 λi −

1
8 ∑

i
(1 + 4λi) log2

(
1 + 4λi

8

)
− 1, (31)
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JJS(ρ) =
1
4

log2

[
−42(c2 − 1)
(4− c2)2

]
+

1
4

c
[

log2

(
2− c2 + c

(2 + c)(1− c)

)]
. (32)

3.1. Behavior of Correlations under Non-Dissipative Decoherence

Now, we turn to the study of a dynamical scenario where we shall consider two non-interacting
qubits A and B under the influence of local and identical non-dissipative decoherence channels. In this
case, the evolution of a two-qubit state ρ can be written by means of the Kraus operators formalism, e.g.,

Λ[ρ] =
4

∑
i,j=1

(EA
i ⊗ EB

j )ρ(EA†
i ⊗ EB†

j ), (33)

where the Kraus operators are given by:

Em
k =

√
1− exp(−γt)

2
σm

k , (34)

Em
4 =

√
1 + exp(−γt)

2
I2, (35)

Em
i,j 6=k = 0, (36)

and m = A, B states for the qubit A or B, k ∈ {1, 2, 3} is in correspondence with {bit flip, bit-phase flip,
phase flip} channels, and γ ∈ R≥0 represents the decoherence rate. A particular choice of k defines the
direction x, y, z of the noise in the Bloch sphere and establishes the decoherence process. From now on,
we will consider only the phase-flip case, k = 3.

It turns out that, whenever the system A + B is initially in a BD state, its structure remains
unchanged for all t [13,24–27]. In this scenario, the coefficients ci are functions of t and are given by

c1(t) = c1(0)e−2γt, (37)

c2(t) = c2(0)e−2γt, (38)

c3(t) = c3(0). (39)

An interesting behaviour of QD, so-called as “Freezing phenomenon of quantum discord", may occur
if certain particular initial conditions are satisfied:

c2(0) = −c1(0)c3(0), (40)

|c1(0)| > |c3(0)|, (41)

The evolution of the system from the above initial conditions gives rise to a peculiar dynamics.
In particular, some measures of quantum correlations [28], remain constant for all t ∈ [0, t∗] where
t∗ = − 1

2γ log |c3(0)|
|c1(0)|

. However, for t > t∗ they start to decay with t.
In what follows, we shall analyze the behavior of correlations under non-dissipative decoherence

by means of Td, Jd and Qd, for the squared Bures distance and the quantum Jensen–Shannon
divergence and we will compare our results with those obtained by means of I , JS and D, respectively.
In order to summarize our study, we shall explicitly describe three typical examples [24].

Example 1. We set |c1| ≥ |c2|, |c3| or |c2| ≥ |c1|, |c3|.

In this case, the typical behaviors of TB, TJS and I are represented in Figure 1 whereas the
behaviors of JB, JJS and JS are shown in Figure 2. In addition, the behaviors of QB, QJS and D are
represented in Figure 3. Clearly, on one hand, it can be seen that the behavior of total correlations,
as quantified by TB and TJS, qualitatively follows the behavior showed by von Newman mutual
information I . In addition, it can be seen that the behavior of classical correlations, as quantified by JB
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and JJS, qualitatively follows the behavior displayed by the measure JS [cf. Equation (3)]. From this
results, we can see that total correlation measures and classical correlation measures impose an
equivalent order between the quantum states as Total Mutual Information and the classical correlation
measure JS, respectively [29,30]. On the other hand, regarding the behavior of QB, QJS and D,
in Figure 3 we can see that, while D is decreasing between 0 and t∗, QJS and QB are increasing instead
in this time interval. However, later on for t > t∗, all three quantum correlation measures do decrease
monotonically. In this case, for t < t∗, the order imposed by the measures of quantum correlations QB
and QJS turns out to be different from the order imposed by standard quantum discord D.

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

Figure 1. Dynamics of the generalized total correlation measures as a function of γt for c1(0) = 0.8,
c2(0) = −c3(0), c3(0) = 0.6.

0.0 0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4

0.5

Figure 2. Dynamics of the generalized classical correlation measures as a function of γt for c1(0) = 0.8,
c2(0) = −c3(0), c3(0) = 0.6.
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0.0 0.2 0.4 0.6 0.8
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Figure 3. Dynamics of the generalized quantum correlation measures as a function of γt for c1(0) = 0.8,
c2(0) = −c3(0), c3(0) = 0.6.

In addition, within the same kind of initial conditions studied in this case, in Figures 4 and 5
we present the results corresponding to a dynamical scenario where the “freezing phenomena of
quantum discord" takes place. We can see that, while quantum discord D remains constant for t < t∗,
the quantities QJS and QB are increasing instead. Besides, in this case quantum discord turns out to be
equal to the measure of classical correlations JS for t∗ (see the inset in Figures 4 and 5), i.e., the time
interval in which the “sudden change” occurs [24]. This peculiar behavior is also not observed in the
cases of the measures QB and QJS.

Ijs

Jjs

Qjs

0.0 0.2 0.4 0.6 0.8
γt

0.05

0.10

0.15

0.20

Figure 4. Dynamics of the generalized quantum correlation measures for the quantum Jensen–Shannon
divergence, as a function of γt, considering the initial conditions of the freezing phenomenon of
quantum discord: c1(0) = 0.8, c2(0) = −c1(0)c3(0), c3(0) = 0.6. t∗ ≈ 0.144.

On the other hand, it should be noted that the initial conditions that give rise to the freezing
phenomenon of quantum discord are included in Example 1. In this particular case, as we see in
Figures 4 and 5, we have that while D remains constant, the quantities QJS and QB are increasing.
Besides, the quantum discord is equal to the measure of classical correlations JS for t∗ in which the
“sudden change” occurs [24]. This peculiar equality is also not seen in the cases of the measures QB
and QJS.
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Ib

Jb

Qb

0.0 0.2 0.4 0.6 0.8
γt

0.05

0.10

0.15

0.20

0.25

0.30

Figure 5. Dynamics of the generalized quantum correlation measures for the squared Bures distance
case, as a function of γt, considering the initial conditions of the freezing phenomenon of quantum
discord: c1(0) = 0.8, c2(0) = −c1(0)c3(0), c3(0) = 0.6. t∗ ≈ 0.144.

Example 2. In this case we set |c3| ≥ |c1|, |c2|.

In this case we find that all three quantities JB, JJS and JS remain constant. Therefore,
the correlation measures Qd and Td, for all the distance measures considered here, show the same
behavior up to an additive constant (i.e., Jd).

Example 3. Now, we set |c3| = 0.

When we consider these initial conditions, it is straightforward to see that all correlation measures
give rise to the same ordering of the states since they decay monotonically with t.

4. Concluding Remarks

In this work, we built new measures of correlations in bipartite quantum states based upon a
recently introduced theoretical framework. All measures satisfy a set of requirements, as discussed in
ref. [18], in order to be bona fide measures of correlations. In particular, we used squared Bures and
squared Hellinger distances, in addition to quantum Jensen–Shannon divergence, to define measures
of total, classical and quantum correlations. We applied these measures to analyze the behavior of
correlations under non-dissipative decoherence in two-qubit states with maximally mixed marginals
in different dynamical scenarios of physical relevance.

On one hand, we found that the behaviors of the measures of total and classical correlations
introduced in this work, are qualitatively in agreement with the behavior displayed by quantum
mutual information and the measure JS of classical correlations typically used to calculate quantum
discord [cf. Equation (3)]. On the other hand, regarding the measures of quantum correlations used in
our studies, we found that in general their behavior does not follow the standard quantum discord D.
It is worth mentioning that, quantum discord, as well as the measures of quantum correlations used in
this work, relies upon the assumption that total correlations are additive. However, this assumption,
as pointed out by Brodutch et al., is indeed a debatable property required for total correlations. In the
light of our findings, perhaps, this property needs a deeper and systematic study in order to gain
more insight regarding the possibility to obtain reliable quantifiers of quantum correlations within this
additive scheme.

Regarding the optimization of all the measures of classical correlations Jd introduced in this
work, we found that all of these quantities are non-decreasing functions of a single parameter θ. Thus,
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the optimization of each one of these measures relies on our ability to find the maximum value of the
parameter θ (i.e., the value θmax). As an interesting result, we found that the value θmax which optimize
our measures of classical correlations is the same which optimizes the quantity JS and therefore, is the
same value used to obtain the value of the quantum discord D [cf. Eqs. (3) and (6)]. Furthermore, one
can observe a sudden change in the dynamics of the classical correlations for a time t∗. In addition,
it is worth mentioning that at t∗ there is a change in the direction of the measurement that optimizes
all the measures of classical correlations.

Author Contributions: All authors equally performed the research, discussed the results and contributed in
writing the paper. All authors have read and approved the final manuscript.

Funding: This research received no external funding.

Acknowledgments: D.G.B., T.M.O., P.W.L. and A.P.M. acknowledge the Argentinian agency SeCyT-UNC and
CONICET for financial support. T.M.O., P.W.L. and A.P.M. are members of CONICET. D.G.B. has a fellowship
from CONICET.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Moore, G.E.Cramming More Components onto Integrated Circuits. Electronics 1965, 38, 114 .
2. Le Bellac, M. A Short Introduction to Quantum Information and Quantum Computation; Cambridge University

Press: Cambridge, UK, 2006.
3. Datta, A.; Shaji, A.; Caves, C.M. Quantum Discord and the Power of One Qubit. Phys. Rev. Lett. 2008, 100,

050502.
4. Lanyon, B.P.; Barbieri, M.; Almeida, M.P.; White, A.G. Experimental Quantum Computing without

Entanglement. Phys. Rev. Lett. 2008, 101, 200501.
5. Knill, E.; Laflamme, R. Power of One Bit of Quantum Information. Phys. Rev. Lett. 1998, 81, 5672.
6. Laflamme, R.; Cory, D.; Negrevergne C.; Viola L. NMR quantum information processing and entanglement.

Quantum Inf. Comp. 2002, 2, 166.
7. Braunstein, S.L.; Caves, C.M.; Jozsa, R.; Linden, N.; Popescu, S.; Schack, R. Separability of very noisy mixed

states and implications for NMR Quantum computing. Phys. Rev. Lett. 1999, 83, 1054.
8. Meyer, D.A. Sophisticated Quantum Search Without Entanglement. Phys. Rev. Lett. 2000, 85, 2014.
9. Datta, A.; Flammia, S.T.; Caves, C.M. Entanglement and the power of one qubit. Phys. Rev. A 2005, 72,

042316.
10. Datta, A.; Vidal, G. Role of entanglement and correlations in mixed-state quantum computation. Phys. Rev.

A 2007, 75, 042310.
11. Henderson, L.; Vedral, V. Classical, quantum and total correlations. J. Phys. A 2001, 34, 6899.
12. Ollivier, H.; Zurek, W.H. Quantum Discord: A Measure of the Quantumness of Correlations. Phys. Rev. Lett.

2001, 88, 017901.
13. Modi, K.; Brodutch, A.; Cable, H.; Paterek, T.; Vedral, V. The classical-quantum boundary for correlations:

Discord and related measures. Rev. Mod. Phys. 2012, 84, 1655.
14. Adesso, G.; Bromley, T.R.; Cianciaruso, M. Measures and applications of quantum correlations. J. Phys. A

Math. Theor. 2016, 49, 473001.
15. Bosyk, G.M.; Bellomo, G.; Zozor, S.; Portesi, M.; Lamberti, P.W. Unified entropic measures of quantum

correlations induced by local measurements. Phys. A Stat. Mech. Appl. 2016, 462, 930–939.
16. Rossignoli, R.; Canosa, N.; Ciliberti, L. Generalized entropic measures of quantum correlations. Phys. Rev. A

2010, 82 052342.
17. Rossignoli, R.; Canosa, N.; Ciliberti, L. Quantum correlations and least disturbing local measurements. Phys.

Rev. A 2011, 84, 052329.
18. Bussandri, D.G.; Majtey, A.P.; Lamberti, P.W.; Osán, T.M. Generalized approach to quantify correlations in

bipartite quantum systems. Quantum Inf. Proc. 2019, 18, 57.
19. Brodutch, A.; Modi, K. Criteria for measures of quantum correlations. Quantum Inf. Comp. 2012, 12, 721.
20. Uhlmann, A. The “transition probability” in the state space of a ∗-algebra Rep. Math. Phys. 1976, 9, 273.
21. Jozsa, R. Fidelity for Mixed Quantum States. J. Mod. Opt. 1994, 41, 2315.



Axioms 2020, 9, 20 12 of 12

22. Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009,
81, 865.

23. Luo, S. Quantum discord for two-qubit systems. Phys. Rev. A 2008, 77, 042303.
24. Maziero, J.; Céleri, L.C.; Serra, R.M.; Vedral, V. Classical and quantum correlations under decoherence. Phys.

Rev. A 2009, 80, 044102.
25. Céleri, L.C.; Maziero, J.; Serra, R.M. Theoretical and experimental aspects of quantum discord and related

measures. Int. J. Quantum Inf. 2011, 9, 1837.
26. Lo Franco, R.; Bellomo, B.; Maniscalco, S.; Compagno, G. Dynamics of quantum correlations in two-qubit

systems within non-Markovian environments. Int. J. Mod. Phys. B 2013, 27, 1345053.
27. Ferraro, A.; Aolita, L.; Cavalcanti, D.; Cucchietti, F.M.; Acín, A. Optimal reconstruction of the states in qutrit

systems. Phys. Rev. A 2010, 81, 044102.
28. Cianciaruso, M.; Bromley, T.R.; Roga, W.; Lo Franco, R.; Adesso, G. Universal freezing of quantum

correlations within the geometric approach. Sci. Rep. 2015, 5, 10177.
29. Girolami, D.; Adesso, G. Quantum discord for general two-qubit states: Analytical progress. Phys. Rev. A

2011, 83, 052108.
30. Modi, K.; Brodutch, A.; Cable, H.; Paterex, T.; Vedral, V. The classical-quantum boundary for correlations:

Discord and related measures. Rev. Mod. Phys. 2012, 84, 1665.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Theoretical framework
	Quantum Discord
	Generalized Measures of Correlations
	Squared Bures Distance
	Squared Hellinger Distance
	Quantum Jensen–Shannon Divergence

	Two-Qubit States with Maximally Mixed Marginals

	Results
	Behavior of Correlations under Non-Dissipative Decoherence

	Concluding Remarks
	References

