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Abstract

An algebraic Quantum Field Theory formulation of separable pairing interaction for
spherical finite systems is presented. The Lipkin formulation of the model Hamil-
tonian and model wave function is used. The Green function technique is applied
to obtain the model energy through the spectral function. Closed equation for the
many-body energy of the system is given and comparison with exact models are
performed.
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1 Introduction

The study of finite many-body systems [1] is a very hard task due to the huge
number of correlations which have to be taken into account. The dimension
of the many-body model space grows greatly with the dimension of the single
particle model space and the number of particles [2]. Even when large scale
shell model formalism is able to deal with large matrix diagonalization [3], the
study of a variety of nuclear properties of heavy nuclei is still prohibitive.

In order to keep under control the dimension one may appeal to consider a
simplified interaction, like the pairing force. It was immediately recognized
from the seminal papers of Cooper [4] and Bardeen, Cooper and Schrieffer
(BCS) [5], that the pairing concept could also be applied to nuclei [6]. Many
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nuclear properties were explained in term of a generalized Cooper’s pair con-
cept in finite nuclei [7,8]. Besides, the pairing is one of the main contribution to
the residual interaction [9,10] and it is still nowadays, an important ingredient
for the study of finite nuclei and nuclear matter [11–13].

Different approaches have been developed in the course of the last fifty years
to deal with the pairing for finite [14] and infinite systems [15]. The algebraic
field theory approach, developed by Gorkov [16–18], is one of the less exploited
in finite systems and the one to be used in this work.

An alternative to the algebraic approach [16, 19] to the Gorkov treatment of
the pairing, is the perturbative one. This approach is an extension of the self-
consistent Green’s function method [20,21] and it has been recently developed
up to second order by Soma and collaborators in a series of papers [22–24] .
At first order, the perturbative version of the Gorkov equations coincides with
the Hartree-Fock-Bogoliubov one [22,25,26].

In this work we adopt the original quantum field theory approach of Gorkov
[16] with some modifications and adapted to spherical finite system. Our ap-
proach is closely related to the one given in Ref. [19]. Previous uses of the
anomalous propagator in superfluid nuclear matter may be found in Refs.
[27, 28]. The goal of this paper is to get algebraic equations for the separable
pairing interaction [29–31] in finite system, as the first step for developing an
extension, which take into account the continuum spectrum of energy, similar
to Ref. [32] but in the complex energy representation [33]. The exactly solvable
degenerate and symmetric [34] models will be used as non trivial test systems
to illustrate our approach.

In Section 2 we get the algebraic Gorkov solution for a spherical finite system
with separable pairing interaction. In Sec. 3 we show how to calculate different
observables within this approach. The applications to the degenerate and the
two levels models are developed in Sec. 4. In the last Section (Section 5) some
conclusions are drawn, and we sketch some perspectives for the future. A few
appendices are included to show how to obtain some expressions given in the
main body of the paper.

2 Formalism

The natural line of action in a particle conserving many-body system, de-
scribed by the Hamiltonian H, would be to seek a many-body wave function
∣ΨN⟩ which satisfies the associate conservation law, i.e. N̂ ∣ΨN⟩ = N ∣ΨN⟩. But,
in the BCS we have an example where a wave function which violate the con-
servation law does a good job, even in finite systems. This paradox can be
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understood in the framework of Lipkin approach to the study of collective
motion in many-body systems [35].

2.1 Ground state energy

Within the Lipkin approach [35], a model wave function ∣Ψ⟩, which violates
the conserving particle number, is defined; together with a model Hamiltonian
H. The modified wave function and the modified Hamiltonian allow the cal-
culation of the properties of the original system described by the Hamiltonian
H. Then, magnitudes calculated with ∣Ψ⟩, like for example, ⟨Ψ∣N̂ ∣Ψ⟩ = N , are
interpreted as averages over a set of neighboring nuclei.

Let us define our model Hamiltonian as H = H − f(N̂), with f(N̂)∣ΨN⟩ =

f(N)∣ΨN⟩, and let us expand ∣Ψ⟩ = ∑N cN ∣ΨN⟩, with ∑N ∣cN ∣2 = 1. Then, the
following identity is verified

⟨Ψ∣H∣Ψ⟩ = ⟨ΨN ∣H − f(N̂)∣ΨN⟩ (1)

Under the assumption that E = ⟨Ψ∣H∣Ψ⟩ is easier to calculate than E =

⟨ΨN ∣H ∣ΨN⟩, we will get the magnitude of interest as

E = E + f(N) (2)

The drawback of this approach is that the function f(N̂) in not known and
then we have to appeal to Taylor expansion [35]. For the linear approximation
we get, H =H−λN̂ , with λ be fixed by the constraint ⟨Ψ∣N̂ ∣Ψ⟩ = N . To second
order expansion of f(N̂) we get the Lipkin-Nogami (LN) formulation [36] of
the pairing. In Ref. [37] it is shown, for the Lipkin model [34], that the LN
approximation is very similar to the exact Richardson solution [38].

For the development of the present formulation we will assume H =H−λN̂ for
the model Hamiltonian, and for the model wave function ∣Ψ⟩ we will consider
a non-conserving particle number ground state in the Fock space.

A benefit of the Gorkov formulation of the pairing is that there is no need
to give and explicit ansatz for ∣Ψ⟩ as in BCS [39], neither it is necessary to
define explicitly a quasiparticle for which ∣Ψ⟩ is the vacuum, like in the Bogoli-
ubov [40] framework. Instead, two Green functions will be defined, in terms of
which the equation of motion is written. By usual Fourier transformation we
will change to an algebraic system of equations in order to obtain explicitly
the Green function and λ. Finally, using Green function technique [21], we will
calculate the modified energy E = ⟨Ψ∣H∣Ψ⟩ and from it, and the above calcu-
lated λ, we will get the ground state energy of the system with N particles
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as,
E = E + λN (3)

2.2 Interaction

The many-body Hamiltonian model for a spherical system with only two-body
interaction, in second quantification notation, reads

H =H0 + V − λN̂ = H0 + V (4)

= ∑
α

eac
†
αcα +

1

4
∑
αβγδ

V̄αβγδc
†
αc

†
βcδcγ (5)

with H0 = H0 − λN̂ , ea = εa − λ, α = {a,mα} = {na, la, ja,mα}, and V̄αβγδ =
⟨αβ∣V ∣γδ⟩ the antisymmetric matrix elements of the two-body interaction
and ∣αβ⟩ = c†αc

†
β ∣0⟩. The single particle operator c†α creates a particle with

wave function ϕα(r) =
ua(r)
r [Yla(r̂)χ1/2]jamα which is eigenfunction of the

single-particle mean-field Hamiltonian h(r) of H0 = ∑i h(ri), i.e. h(r)ϕα(r) =
εaϕα(r).

By writing the generalized antisymmetric pairing interaction matrix elements
[8], ⟨ab, J ∣V ∣cd, J⟩ = gac

2 δJ0ĵaĵc in terms of the uncoupled antisymmetric matrix
elements [41], we get

V̄αβγδ = gacδαβ̄δγδ̄ (6)

with mα > 0, and mγ > 0, since V̄ is asymmetric, i.e. V̄αβγδ = −V̄βαγδ = −V̄αβδγ.
The functional δαβ̄ is a short hand notation for

δαβ̄ = (−)ja−mαδabδmα,−mβ (7)

For the separable pairing interaction the state dependent strength reads [29–
31],

gac = −gfafc (8)

with g > 0 and fa = ∫ dr u
2
a(r)f(r) > 0, where the radial form factor function

f(r) is taken, for simplicity, to be positive defined. Different shapes of f(r)
can accommodate volume or surface pairing [32].

Using Eqs. (6)-(8), we recover the usual pairing Hamiltonian,

H =∑
α

eac
†
αcα − g P

†P (9)

with P = (P †)† and

P † = ∑
a,mα>0

fa c
†
αc

†
ᾱ (10)
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where c†ᾱ is the time reverse state of c†α, i.e. c†ᾱ = (−)ja−mαc†a,−mα .

Equation (9) gives support to the matrix elements of the separable interaction
(6) to be used in the next subsection to build the equation of motion.

2.3 Green functions

The formalism is based on the many-body Green function technique. For this
aim, we start by defining the usual one-particle Green function Gαα′(t, t′) and
the two-particle correlation function or anomalous Green function G̃†

αα′(t, t
′),

ih̵Gαα′(t, t
′) = ⟨Ψ∣Tcα(t)c

†
α′(t

′)∣Ψ⟩ (11)

ih̵ G̃†
αα′(t, t

′) = ⟨Ψ∣Tc†α(t)c
†
α′(t

′)∣Ψ⟩ (12)

The anomalous Green function is defined with the same phase as for the Green
function just to keep the definition symmetric. In Refs. [19] and [32], for exam-
ple, the phase is taken real. Another difference, is that the correlated ground
state is not eigenfunction of the particle number operator, N̂ ∣Ψ⟩ ≠ N ∣Ψ⟩. Be-
sides, the anomalous Green function is not defined between time reversed
states, as for example in Ref. [22] but, we will find that its antisymmetric
character will appear as a consequence of the pairing interaction, as in the
original work of Gorkov [16].

The time ordering operator T in Eqs. (11) and (12) is defined as usual,

Tcα(t)c
†
α′(t

′) = θ(t − t′)cα(t)c
†
α′(t

′) − θ(t′ − t)c†α′(t
′)cα(t) (13)

with c†α(t) the Heisenberg representation of the creation operator evolved with
the model Hamiltonian H,

c†α(t) = e
i
h̵
Htc†αe

− i
h̵
Ht (14)

2.4 Equation of motion

In this subsection we will derive the equations of motion for Gαα′(t, t′) and
G̃†
αα′(t, t

′) for the separable pairing interaction (6)-(8)

V̄αβγδ = −gfafc(−)
ja−mα(−)jc−mγδabδcdδmα,−mβδmγ ,−mδ mα > 0 mγ > 0 (15)

By using explicitly the time ordering (13) and taking the time derivative of
Eqs. (11) and (12) with respect to t, and the identities shown in Appendix A,
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we get the following two coupled-equation for G and G̃,

ih̵
∂

∂t
Gαα′(t, t

′) = δ(t − t′) δαα′ + eaGαα′(t, t
′)

+ ∑
βγδ

V̄αβγδ
2ih̵

⟨Ψ∣T [c†β(t)cδ(t)cγ(t)c
†
α′(t

′)]∣Ψ⟩ (16)

ih̵
∂

∂t
G̃†
αα′(t, t

′) = −ea G̃
†
αα′(t, t

′)

− ∑
βγδ

V̄αβγδ
2ih̵

⟨Ψ∣T [c†γ(t)c
†
δ(t)cβ(t)c

†
α′(t

′)]∣Ψ⟩ (17)

Next, we evaluate these equations for the separable pairing interaction V̄αβγδ
as given by Eq. (15),

ih̵
∂

∂t
Gαα′(t, t

′) = δ(t − t′) δαα′ + eaGαα′(t, t
′)

−
g fa
ih̵
∑
γ>0

fc ⟨Ψ∣T [c†ᾱ(t)cγ̄(t)cγ(t)c
†
α′(t

′)]∣Ψ⟩ (18)

ih̵
∂

∂t
G̃†
αα′(t, t

′) = −eaG̃
†
αα′(t, t

′)

+
g fa
ih̵
∑
γ>0

fc ⟨Ψ∣T [c†γ(t)c
†
γ̄(t)cᾱ(t)c

†
α′(t

′)]∣Ψ⟩ (19)

In the mean-field approximation [16, 17], the above equations of motion can
be written fully in terms of G and G̃ (see appendix B.)

(ih̵
∂

∂τ
− ẽa)Gαα′(τ) −

h̵gfa
i
∑
γ>0

fc G̃γ̄γ(0)G̃
†
ᾱα′(τ) = δ(τ)δαα′ (20)

(ih̵
∂

∂τ
+ ẽa) G̃

†
αα′(τ) +

h̵gfa
i
∑
γ>0

fc G̃
†
γγ̄(0)Gᾱα′(τ) = 0 (21)

with mα > 0, τ = t − t′ and ẽa = ea − gf 2
a na, the modified single particle

energy, with na = −ih̵Gαα(0−) the occupation probability of the state α. The
magnitude G̃†

γγ̄(0) has to be understood as the following limit,

G̃†
γγ̄(0) = limτ→0G̃

†
γγ̄(τ) , (22)

later we will show that G̃†
γγ̄(0) does not depend on how we approach zero,

.i.e., G̃†
γγ̄(0

+) = G̃†
γγ̄(0

−).

The above equations (20) and (21) constitute the final version of the Gorkov
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equations of motion in time dependent representation. Next we will solve them
by performing the Fourier transform.

2.5 Algebraic solution of the equation of motion

Let us introduce the state dependent gap parameters ∆a,

∆a =
fa g h̵

i
∑
γ>0

fc G̃γ̄γ(0) (23)

Using the relations (G̃γ̄γ(0))
∗
= G̃†

γ̄γ(0) = −G̃
†
γγ̄(0) we can write its complex

conjugate

∆∗
a =

fa g h̵

i
∑
γ>0

fc G̃
†
γγ̄(0) (24)

With the above definitions, the equations of motion (20) and (21) read,

(ih̵
∂

∂τ
− ẽa)Gαα′(τ) −∆a G̃

†
ᾱα′(τ) = δ(τ) δαα′ (25)

(ih̵
∂

∂τ
+ ẽa) G̃

†
αα′(τ) +∆∗

aGᾱα′(τ) = 0 (26)

Next, we make the Fourier transform to energy

Gαα′(τ) = ∫
∞

−∞
Gαα′(E) e−i

E
h̵
τ dE

2πh̵
(27)

of the equations of motion (25) and (26) and get,

(E − ẽa)Gαα′(E) −∆aG̃
†
ᾱα′(E) = δαα′ (28)

(E + ẽa)G̃
†
αα′(E) +∆∗

aGᾱα′(E) = 0 (29)

where we have used δ(τ) = ∫ exp(−iEh̵ τ)
dE
2πh̵ .

Since Gᾱα′(E) = δᾱα′Gᾱᾱ(E), Eq. (29) gives for ᾱ ≠ α′ ⇒ G̃†
αα′(E) = 0, which

shows that the only non-zero matrix elements of G̃† are time reversed com-
panion states, then

G̃†
αα′(E) = δᾱα′G̃

†
αᾱ(E) (30)

Equation (28), for α ≠ α′ gives G̃†
ᾱα′(E) = 0, showing that the only non-zero

matrix elements of G̃† are time reversed companion states. Then G̃†
ᾱα′(E) =

δαα′G̃
†
ᾱα(E), which is like Eq. (30) by the substitution ᾱ↔ α.
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Using the above identity we get for the equations of motion,

(E − ẽa)Gαα(E) +∆aG̃
†
αᾱ(E) = 1 (31)

(E + ẽa)G̃
†
αᾱ(E) +∆∗

aGαα(E) = 0 (32)

where we have used G̃†
ᾱα(E) = −G̃†

αᾱ(E) and Gᾱᾱ(E) = Gαα(E).

These are two algebraic coupled equations for Gαα(E) and G̃†
αᾱ(E) for mα > 0,

which written in matrix form, resembles very much that of Ref. [32] but in
energy representation. The solution of the above system gives,

Gαα(E) =
E + ẽa
E2 −E2

a

(33)

G̃†
αᾱ(E) = −

∆∗
a

E2 −E2
a

(34)

where we have introduced the shifted (quasiparticle) energy E2
a = ẽ

2
a + ∣∆a∣

2.

By making a partial fraction decomposition of Eq. (33),

Gαα(E) =
Aa

E −Ea
+

Ba

E +Ea
(35)

we get

Aa =
Ea + ẽa

2Ea
(36)

Ba =
Ea − ẽa

2Ea
(37)

with Aa +Ba = 1.

At this stage we can recognize the BCS occupation probability

Ba =
Ea − ẽa

2Ea
=

1

2
(1 −

ẽa
Ea

) = v2
a , (38)

and from Aa +Ba = 1⇒ u2
a = Aa, then

Gαα(E) =
u2
a

E −Ea
+

v2
a

E +Ea
(39)

The above expression shows that the Green function has a pole at E = Ea
and at E = −Ea, where we have adopted the convention Ea > 0. In order to
perform the inverse Fourier transformation, we have to know how to avoid
these singularities on the real E axis where the two poles lie. For this purpose
we extend the real variable E to the complex plane, i.e.

E + i∣η∣ sgn(η) , (40)
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where η is an infinitesimal. Its sign is determined by the Landau [42] prescrip-
tion

I[G(E)]

E
< 0 . (41)

Using the identity (x − x0 + i0)−1 = P 1
x−x0
− iπδ(x − x0) we get,

I[G(E)]

E
= −π

sgn(η)

E
[u2

aδ(E −Ea) +v
2
aδ(E +Ea)]

⇒ sgn(η) = sgn(E) . (42)

Then, the Green function reads,

Gαα(E) =
u2
a

E + i∣η∣ sgn(E) −Ea
+

v2
a

E + i∣η∣ sgn(E) +Ea
(43)

Due to the fact that Ea > 0, the Green function has a pole at E = Ea −
i∣η∣ sgn(E) = Ea − i∣η∣ with residues u2

a and a second pole at E = −Ea −
i∣η∣ sgn(E) = −Ea + i∣η∣ with residues v2

a. This result allow us to write the
Green function in a more amenable and practical way,

Gαα(E) =
u2
a

E − (Ea − iη)
+

v2
a

E − (−Ea + iη)
(44)

where now, η is a positive infinitesimal.

The anomalous propagator reads,

G̃†
ᾱα(E) = −

∆∗
a

[E − (Ea − iη)][E − (−Ea + iη)]
(45)

which shows that G̃†
ᾱα(E) has a pole at E = Ea − iη with residues − ∆∗

a

2Ea
and

another pole at E = −Ea + iη, with residues ∆∗
a

2Ea
(we have taken the limη→0).

Equations (44) and (45) fully solved the algebraic equations of motion (31)
and (32).

3 Observables

In this section we will build up the explicit equations which allow to solve
the many-body problem for a given number of particles and interaction gab =
−gfafb. The ground state energy will be written as a close equation in terms
of the quasiparticle energies Ea, Fermi level λ and particle number N .
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3.1 Particle number equation

The non-conserving particle number ground-state ∣Ψ⟩ must gives, in average
the right particle number N , i.e. ⟨Ψ∣N̂ ∣Ψ⟩ = N , then

N = ∑
α

nα = −i h̵∑
α

Gαα(τ = 0−) (46)

By integrating Gαα(τ) in a closed contour in the upper complex E plane,

because it is the region for which the exponential e−i
E
h̵
τ = ei

E
h̵
∣τ ∣ converges, we

get

Gαα(0
−) = lim

τ→0−
Gαα(τ)

= lim
τ→0−∫

[
u2
a

E − (Ea − i∣η∣)
+

v2
a

E − (−Ea + i∣η∣)
] e−i

E
h̵
τ dE

2πh̵

=
i

h̵
v2
a (47)

then, nα = v2
a.

By replacing (47) in Eq. (46), we get for the particle number average,

N = ∑
α

v2
a (48)

This equation fixes the Fermi level λ for the given number of particles of the
system in terms of the known parameters ∆a (which are implicit in v2

a). The
next step is to find out a set of equations for the parameters ∆a.

3.2 Gap equation

We will proceed as Gorkov did in Ref. [16] in order to get another independent
equation to solve the many-body problem, which consist into using the state
dependent gap equation (24),

∆∗
a =

fa g h̵

i
∑
γ>0

fc G̃
†
γγ̄(τ = 0) (49)

In the Appendix C we show that G̃†
γγ̄(0) is independent of how the limit is

performed, and we found the value

G̃†
γγ̄(0) =

i

h̵

∆∗
c

2Ec
(50)
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then

∆∗
a = fa g ∑

γ>0

fc
∆∗
c

2Ec
(51)

If we write,
∆a = faD (52)

with D unknown, we get the gap equation

2

g
= ∑
γ>0

f 2
c

Ec
(53)

which gives (for D ≠ 0) an equation for ∣D∣2, since this parameter D is implicit

in Ec =
√
ẽ2
c + f

2
c ∣D∣2.

At the end, we have found that there is not as many equations as degree of
freedom but only two. Equations (48) and (53) are the only two equations
which are needed for the calculation of the two unknown parameters λ and
D. Then, with the parameter D we can calculate each state dependent gap
through Eq. (52) and then v2

a, ẽa and Ea.

The following set of equations solve the finite many-body problem for the sep-
arable pairing interaction (let us take D ∈R):

N = ∑
α

v2
a (54)

2

g
= ∑
α>0

f 2
a

Ea
(55)

v2
a =

1

2
(1 −

ẽa
Ea

) (56)

Ea =
√
ẽ2
a + f

2
a D

2 (57)

ẽa = εa − λ − gfav
2
a (58)

∆a = faD (59)

where N , g and fa are given.

Next, we calculate the ground state energy from the Green function formalism
and write it in terms of the above calculated parameters.

3.3 Ground state energy

The correlated ground state energy E is obtained from the average model
energy E and the Fermi level λ,

E = E + λN (60)
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In Appendix D we show that E can be calculated from the model wave function
∣Ψ⟩ and the model Hamiltonian H using Green function technique,

E =
1

2
⟨Ψ∣H0∣Ψ⟩ +

1

2
∑
α

Iα (61)

with

⟨Ψ∣H0∣Ψ⟩ = ∑
α

v2
aea (62)

∑
α

Iα =
1

π
∑
α
∫

λ

−∞
dE′E′ IGαα(E

′) = −∑
α

Ea v
2
a (63)

Then, the correlated ground state energy in the non-conserving particle num-
ber ground state reads,

E = E + λN (64)

=
1

2
∑
α

v2
a(εa − λ) −

1

2
∑
α

Ea v
2
a + λN (65)

E =
1

2
∑
α

v2
a(εa −Ea) +

1

2
λN (66)

where v2
a, Ea and λ are determined from the pairing gap and particle number

equations and N is the number of particles of the system.

4 Applications

In this section we will apply the above method to the degenerate and two level
models, both of them are standard models usually used to illustrate many-
body methods [41,43–45]. We will show the difference with the BCS solution.

4.1 Degenerate model

As the first example of the above formulation we solve the degenerate model
and we will compare it with its exact solution. Let as design εα = ε and

∑α 1 = 2Ω, where Ω is the pair degeneracy. In this model the only effect of the
separable interaction amplitudes fa = f is to rescale the strength g to g′ = gf 2,
then we will take fa = 1.

From the particle number constraint N = ∑α v
2
a we get the particle occupation

12



amplitude

va =

√
N

2Ω
(67)

While, from the gap equation 2
g = ∑α>0

f2a
Ea

we get the quasiparticle energy

Ea =
gΩ

2
(68)

With the above results and the relation 2v2
a = 1 − ẽa/Ea we get the modified

single particle energy ẽa =
gΩ
2 (1 −N/Ω) and with ẽa = ε − λ − gv2

a we get the
Fermi level

λ = ε −
gΩ

2
(1 −

N

Ω
+
N

Ω2
) (69)

Now, we are in condition to calculate the ground state energy for any value of
N ,

E =
1

2
∑
α

v2
a(εa −Ea) +

1

2
λN (70)

=
N

2
ε −

N

4
gΩ +

N

2
λ (71)

= Nε − g
N

4
(2Ω −N +

N

Ω
) (72)

This is like the usual BCS result. The comparison with the exact result [41],
Eexact = −

gN
4 (2Ω −N + 2) (for ε = 0), shows that the relative error goes as the

reciprocal of the pair degeneracy

Eexact −E

Eexact
= (Ω +

1

1 − N
2Ω

)

−1

≈
1

Ω
(73)

Finally, from the quasiparticle relation E2
a = ẽ

2
a +D

2 and ∆ = fD = D we get
the following value for the gap,

∆ =
gN

2

√
2Ω

N
− 1 (74)

which coincides with the one calculated in the usual BCS framework.
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4.2 The two level at half filling model

The second application is a system with two levels εu/d = ±
ε
2 (with ε > 0), each

one with the same degeneracy 2Ω. We will give the solution for the special
situation when the number of particles is N = 2Ω which holds an algebraic
solution and we will compare it with the BCS solution for constant pairing
case.

From the particle number equation constraint N = ∑α v
2
a we get 1 = v2

u + v
2
d,

which implies v2
u = u2

d and v2
d = u2

u. By using any of these relations we get
ẽu
Eu

= −
ẽd
Ed

. By taking the reciprocal and squaring, using E2
u/d

= ẽ2
u/d
+ f 2

u/d
D2,

we get ẽu = −
fu
fd
ẽd, which also implies Eu =

fu
fd
Ed.

Then, from the gap equation, 2
g = ∑αu>0

f2u
Eu
+∑αd>0

f2d
Ed

, we get the quasiparticle
energies

Eu/d =
gΩ

2
fu/d(fu + fd) (75)

The modified single particle energies read,

ẽu/d = ±
fu/dΩ

2
[

2ε − g(fu − fd)

(fu + fd)Ω − 1
] (76)

The Fermi level can be obtained from the expression ẽu/d = εu/d −λ−gfu/dv
2
u/d

,

λ = −
ε

2

fu − fd
fu + fd

− g
fufd
fu + fd

(77)

The occupation probability read,

v2
u/d =

1

2
(1 ∓

ẽu
Eu

) (78)

with
ẽu
Eu

=
2ε − g(fu − fd)

g(fu + fd)[Ω(fu + fd) − 1]
(79)

Using the above result we get for the ground state energy E = E + λN (with
N = 2Ω),

E = −
Ω

2
ε(

ẽu
Eu
+
fu − fd
fu + fd

) −
Ω

2
Eu

fu + fd
fu

− gΩ
fufd
fu + fd

+
Ω

2
ẽu
fu − fd
fu

(80)
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From E2
d = ẽ

2
d + f

2
dD

2, we get for the constant D,

D2 =
E2
d

f 2
d

(1 −
ẽ2
d

E2
d

) = 4
E2
d

f 2
d

v2
du

2
d (81)

which can be written as,

D = gΩ(fu + fd)vdud (82)

SinceD is positive defined, it is required ud > 0, which implies that the strength
has to be greater than gc, with

gc =
2ε

Ω(fu + fd)2 − 2fd
(83)

4.2.1 Constant pairing

In this section we are going to compare the solution for the constant pairing
interaction with that from the BCS approach [41].

For the particular case of constant pairing we have gab = −gfafb = −g, i.e. fa =
fb = 1, with a and b any of the two possible configurations up or down. Then,
using Eq. (75) we found that both quasiparticle energies are the same,Eu =

Ed = gΩ, which is the same that one gets from the BCS approach.

A straightforward substitution of the constant pairing in Eq. (76) give for the
modified single particle energies

ẽu = −ẽd =
Ωε

2Ω − 1
(84)

This result differs from the BCS approach

ẽBCSu =
2Ωε

4Ω − 1
(85)

Even when both results coincides for Ω ≫ 1, the discrepancy between the two
approaches deserve a thoroughly analysis, because it will have an impact on
the many-body correlated energy below.

By comparing Eq. (58) for the modified single particle energy from our for-
mulation, with the equivalent of Ref. [41], i.e. Eqs. (13.45) and Eqs. (13.105),

15



we have

ẽu =
ε

2
− λ − g v2

u (86)

ẽBCSu =
ε

2
− λ − g (v2

u +
v2
d

2
) (87)

The extra term in Eq. (87) has it origin in the off diagonal term of Eq. (13.45)
in Ref. [41]. Then using the Eqs. v2

u + v
2
d = 1 and v2

u = (1 − ẽu/E)/2, which are
common to both formulations, we get Eqs. (84) and (85).

Similarly, the pairing gap coincides at the limit Ω ≫ 1 (∆2 = g2Ω2 − ε2/4), but
they differ in form according to,

∆2 = g2Ω2 − (
Ωε

2Ω − 1
)

2

(88)

∆2
BCS = g

2Ω2 − (
2Ωε

4Ω − 1
)

2

(89)

By direct substitution of fu = fd = 1 in Eqs. (80) and (83) we get for the
many-body ground state energy,

EGorkov = −
Ωε2

2g(2Ω − 1)
− gΩ(Ω +

1

2
) , (90)

provided that g > gc = ε/(2Ω − 1), Eq. (83).

From Ref. [41], the homologous magnitude in the BCS approach is given by
Eq. (13.119),

EBCS = −
3

4
Ωg −

1

2g
ε ẽBCSu

8Ω − 1

4Ω − 1
−Ω2g +

1

g
(

2Ωε

4Ω − 1
)

2

(91)

by replacing ẽBCSu from Eq. (85) we get,

EBCS = −
Ωε2

g(4Ω − 1)
− gΩ(Ω +

3

4
) , (92)

as long as g > 2ε/(4Ω − 1).

In the limit Ω ≫ 1, both many-body correlated energies (90) and (92) coincide
and give (for g > ε/(2Ω)),

E = −
ε2

4g
− gΩ2 (93)

In Fig. 1 we compare the energy from the Gorkov and BCS approaches for two
different value of degeneracy. We found that the relative energy differ in less
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than 7% for low degeneracy, Ω = 3, quickly approaching to a constant value.
A similar result is found when we increase the degeneracy to Ω = 12, but now
the difference is less than two percent and one approaches to the other for
much smaller values of the strength.
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Fig. 1. (Color online) Relative difference between Gorkov and BCS ground state
energies for Ω = 3 and Ω = 12 as a function of the pairing strength g.

As a last analysis let us compare the Gorkov energy with the exact solution
from the Richardson approach [37, 38]. From Fig. 2 we learn that the differ-
ence with respect to exact solution quickly drops from around 30 % to 5%
as the degeneracy increases. A similar comparison with the BCS solution is
also shown in Fig. 2. While the overall feature of the improvement with the
degeneracy is the same, we found that the BCS approach does a better job
than Gorkov.

From the sign of the relative energy shown in Fig. 1 we know that ∣EBCS∣ >

∣EGorkov∣, i.e. the BCS approach provides extra correlations which are miss-
ing in the Gorkov one. Tracing back the origin of the difference between
the BCS and Gorkov solutions, we found that it is due to the fact that
the constant pairing approach, as developed in Ref. [41], uses the interaction
⟨aa,0∣V ∣cc,0⟩ = −gΩ, where a, c are any of the upp or down levels, while in
our Gorkov formulation we keep only the diagonal part of the interaction, i.e.
⟨aa,0∣V ∣cc,0⟩ = −gΩ δac. Then, the modified single particle energy (86) in our
formulation is corrected only for a single diagonal term gf 2

ana (see Eq. (B.3)),
while in the BCS approximation, let us insist, as worked out in Ref. [41], also
contains an off diagonal terms (87). Most likely, in order to get this off diagonal
term in our formulation, we would have to resort to a perturbative treatment
of the Gorkov equations.
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Fig. 2. (Color online) Relative Gorkov and BCS ground state energies with respect
to the exact one, for Ω = 3 and Ω = 12 as a function of the pairing strength g.

5 Conclusions and discussions

In this work we have developed, in an alternative way, the solution for the
pairing Hamiltonian in the Gorkov framework. Our solution is applied to the
separable pairing interaction, which allow to consider volume or surface pair-
ing, through the coefficient of the interaction. We have got a close form for
the ground state energy. It could be of major interest, to compare this result
with that of the exact one, given by Pan and collaborators. The comparison
with exact soluble models shows that the solution improves with the degen-
eracy of the system and with the inclusion of the off diagonal correlations.
It is our plan to develop a perturbative solution of the Gorkov equations, to
incorporate more correlations. The next step will be to include the continuum
spectrum of energy in the algebraic Gorkov formulation to deal with finite
open quantum systems.
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A Appendix: Time derivative of the creation operator

These are a few equations which complement the calculation of the Eqs. (16)
and (17) in subsection 2.4. These equations are obtained by using the relation
for the time evolution of cα(t),

ih̵
∂

∂t
cα(t) = [cα(t),H] = e

i
h̵
Ht [cα,H] e−

i
h̵
Ht (A.1)

in terms of the commutators [cα,H0] and [cα, V ],

[cα,H0] = eacα (A.2)

[cα, V ] =
1

2
∑
βγδ

V̄αβγδc
†
β cδ cγ (A.3)

which gives

ih̵
∂

∂t
cα(t) = eacα(t) +

1

2
∑
βγδ

V̄αβγδc
†
β(t) cδ(t) cγ(t) (A.4)

B Appendix: Deduction of the equations (20) and (21) of section
2.4.

Let us start from Eq. (18),

ih̵
∂

∂t
Gαα′(t, t

′) = δ(t − t′) δαα′ + eaGαα′(t, t
′)

−
g fa
ih̵
∑
γ>0

fc ⟨Ψ∣T [c†ᾱ(t)cγ̄(t)cγ(t)c
†
α′(t

′)]∣Ψ⟩ (B.1)

The average of the product of the above four operators is treated in the fac-
torized mean-field approximation [16,17],

ih̵
∂

∂t
Gαα′(t, t

′) = δ(t − t′)δαα′ + eaGαα′(t, t
′)

−
g fa
ih̵
∑
γ>0

fc [⟨Ψ∣Tc†ᾱ(t)cγ̄(t)∣Ψ⟩⟨Ψ∣Tcγ(t)c
†
α′(t

′)]∣Ψ⟩

− ⟨Ψ∣Tc†ᾱ(t)cγ(t)∣Ψ⟩⟨Ψ∣Tcγ̄(t)c
†
α′(t

′)∣Ψ⟩

+ ⟨Ψ∣Tc†ᾱ(t)c
†
α′(t

′)∣Ψ⟩⟨Ψ∣Tcγ̄(t)cγ(t)∣Ψ⟩]

Next we write the above equation in term of G and G̃ given in Eqs. (11) and
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(12),

ih̵
∂

∂t
Gαα′(t, t

′) = δ(t − t′) δαα′ + eaGαα′(t, t
′) −

gfah̵

i
∑
γ>0

fc [Gγ̄ᾱ(t, t)Gγα′(t, t
′)

−Gγᾱ(t, t)Gγ̄α′(t, t
′) − G̃†

ᾱα′(t, t
′)G̃γ̄γ(t, t)] (B.2)

The first and second terms in the square bracket can be work out to give,

gfah̵

i
∑
γ>0

fc [Gγ̄ᾱ(t, t)Gγα′(t, t
′) −Gγᾱ(t, t)Gγ̄α′(t, t

′)] =

gfah̵

i
∑
γ>0

fc [δγ̄ᾱGᾱᾱ(t, t)δγα′Gα′α′(t, t
′) − δγᾱGᾱᾱ(t, t)δγ̄α′Gα′α′(t, t

′)]mα>0 =

gfah̵

i
∑
γ>0

fcδγαGαα(t, t)δγα′Gα′α′(t, t
′) =

gf 2
a h̵

i
δαα′Gαα(t, t)Gαα(t, t

′) = gf 2
a na δαα′Gαα(t, t

′) = gf 2
a naGαα′(t, t

′) (B.3)

where we have used: (i) Gαβ = δαβGαα in the first and last equality, (ii) δγ̄ᾱ =
δγα, Gᾱᾱ = Gαα, δγᾱ = 0, in the second equality, and (iii) Gαα(t, t) =

i
h̵na in the

last one.

Using this result we obtain the correction −gf 2
a na to the single-particle energy

εa, which is beyond the Hartree-Fock contribution [19]. Then, in terms of the
self-energy ẽa = ea − gf 2

a na, the Eq. (B.2) reads,

ih̵
∂

∂t
Gαα′(t, t

′) = δ(t − t′)δαα′ + ẽaGαα′(t, t
′) +

gfah̵

i
∑
γ>0

fc G̃
†
ᾱα′(t, t

′)G̃γ̄γ(t, t)

Finally, using the fact that the Green functions depend on the difference τ =
t − t′, Eq. (B.1) reads,

[ih̵
∂

∂τ
− ẽa]Gαα′(τ) −

h̵gfa
i
∑
γ>0

fc G̃γ̄γ(0)G̃
†
ᾱα′(τ) = δ(τ) δαα′

which is Eq. (20) of section 2.4.

Similarly, starting from Eq. (19),

ih̵
∂

∂t
G̃†
αα′(t, t

′) = −eaG̃
†
αα′(t, t

′) +
g fa
ih̵
∑
γ>0

fc ⟨Ψ∣T [c†γ(t)c
†
γ̄(t)cᾱ(t)c

†
α′(t

′)]∣Ψ⟩

the last term is factorized as

ih̵
∂

∂t
G̃†
αα′(t, t

′) = −eaG̃
†
αα′(t, t

′) +
g fa
ih̵
∑
γ>0

fc [⟨Ψ∣Tc†γ(t)c
†
γ̄(t)∣Ψ⟩⟨Ψ∣Tcᾱ(t)c

†
α′(t

′)∣Ψ⟩

− ⟨Ψ∣Tc†γ(t)cᾱ(t)∣Ψ⟩⟨Ψ∣Tc†γ̄(t)c
†
α′(t

′)∣Ψ⟩ + ⟨Ψ∣Tc†γ(t)c
†
α′(t

′)∣Ψ⟩⟨Ψ∣Tc†γ̄(t)cᾱ(t)∣Ψ⟩]
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which, in terms of G and G̃ reads,

ih̵
∂

∂t
G̃†
αα′(t, t

′) = −eaG̃
†
αα′(t, t

′) +
gfah̵

i
∑
γ>0

fc [−G̃
†
γγ̄(t, t)Gᾱα′(t, t

′)

−Gᾱγ(t, t)G̃
†
γ̄α′(t, t

′) + G̃†
γα′(t, t

′)Gᾱγ̄(t, t)]

The sum of the second and third terms of the square bracket gives,

gfah̵

i
∑
γ>0

fc [−Gᾱγ(t, t)G̃
†
γ̄α′(t, t

′) + G̃†
γα′(t, t

′)Gᾱγ̄(t, t)] = g f
2
a na G̃

†
αα′(t, t

′)

(B.4)
which gives the same correction, now for the term G̃†

αα′(t, t
′).

Finally, in terms of τ , the equation of motion reads,

[ih̵
∂

∂τ
+ ẽa] G̃

†
αα′(τ) +

h̵gfa
i
∑
γ>0

fc G̃
†
γγ̄(0)Gᾱα′(τ) = 0 (B.5)

which is Eq. (21) of section 2.4.

C Appendix: Evaluation of the anomalous Gorkov equation to
equal time

In this subsection we show that both limits τ → 0± of G̃†
γγ̄(τ) give the same

result. Let us start from the Fourier transform

G̃†
γγ̄(τ) = ∫

∞

−∞
G̃†
γγ̄(E)e−i

E
h̵
τ dE

2πh̵
(C.1)

One of the limits reads,

G̃†
γγ̄(0

+) = lim
τ→0+∫

∞

−∞
G̃†
γγ̄(E)e−i

E
h̵
τ dE

2πh̵
(C.2)

in order the integral to converge we have to close the contour in the lower
complex energy plane. In this way the pole is at E = Ec − i∣η∣, then

G̃†
γγ̄(0

+) = lim
τ→0+

(−2πi)

2πh̵
(−

∆∗
c

2Ec
) =

i

h̵

∆∗
c

2Ec
(C.3)

where we used Res[G̃†
γγ̄(E = Ec − i∣η∣)] = −

∆∗
c

2Ec
.

Alternatively, we may calculate

G̃†
γγ̄(0

−) = lim
τ→0−∫

∞

−∞
G̃†
γγ̄(E)e−i

E
h̵
τ dE

2πh̵
(C.4)
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in this case the contour has to be closed in the upper part of the complex E
plane to give

G̃†
γγ̄(0

−) = lim
τ→0−

(2πi)

2πh̵

∆∗
c

2Ec
=
i

h̵

∆∗
c

2Ec
(C.5)

Equations (C.3) and (C.5) shows that

G̃†
γγ̄(0) =

i

h̵

∆∗
c

2Ec

D Appendix: Spectral representation of the model energy

The modified energy E is calculated using the hole part of the spectral function
calculated from the Green function. In the process, a closure relation in the
Fock space is used as an intermediate step. We followed closely Ref. [21].

Let us start from the following integral

Iα =
1

π ∫
λ

−∞
E I(Gαα(E))dE (D.1)

where I(Gαα(E)) is the imaginary part of Gαα(E).
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The Fourier transform of Gαα′(E) reads

Gαα′(E) = ∫

∞

−∞

d(t − t′)

ih̵
e
i
h̵
E(t−t′) [θ(t − t′)∑

n

⟨Ψ∣cα(t)∣Ψn⟩⟨Ψn∣c
†
α′(t

′)∣Ψ⟩

−θ(t′ − t)∑
m

⟨Ψ∣c†α′(t
′)∣Ψm⟩⟨Ψm∣cα(t)∣Ψ⟩] (D.2)

= ∫

∞

−∞

dτ

ih̵
[θ(τ)∑

n

e
i
h̵
τ(E+E−En)∣⟨Ψn∣c

†
α∣Ψ⟩∣2

−θ(−τ)∑
m

e
i
h̵
τ(E+E−Em)∣⟨Ψm∣cα′ ∣Ψ⟩∣2] (D.3)

= ∫

∞

−∞

dτ

ih̵
[−∑

n
∫

∞

−∞

dE′

2πi

e
i
h̵
τ(−E′+E+E−En)

E′ + iη
∣⟨Ψn∣c

†
α∣Ψ⟩∣2

+∑
m
∫

∞

−∞

dE′

2πi

e
i
h̵
τ(E′+E+E−Em)

E′ + iη
∣⟨Ψm∣cα′ ∣Ψ⟩∣2]

= ∫

∞

−∞

dE′

2πh̵
[∑
n

2πh̵ δ(−E′ +E + E − En)

E′ + iη
∣⟨Ψn∣c

†
α∣Ψ⟩∣2

−∑
m

2πh̵ δ(E′ +E + E − Em)

E′ + iη
∣⟨Ψm∣cα′ ∣Ψ⟩∣2]

= ∑
n

∣⟨Ψn∣c
†
α∣Ψ⟩∣2

E + E − En + iη
−∑

m

∣⟨Ψm∣cα′ ∣Ψ⟩∣2

−E − E + Em + iη
(D.4)

in the first equality we used ∫ d(t − t
′)Gαα′(t − t′)e

i
h̵
E(t−t′) = Gαα′(E) and we

introduced the closure relation in the Fock space ∑n(m) ∣Ψn(m)⟩⟨Ψn(m)∣, with
⟨Ψn(m)∣H∣Ψn′(m′)⟩ = En(m)δn(m),n′(m′). In the second equality we introduced

τ = t − t′. In the third equality we used the identity θ(τ) = −∫
dE′
2πi

e
− i
h̵
τE′

E′+iη with
η a positive infinitesimal.

The imaginary part is obtained using ∫ dτe
i
h̵
Eτ = 2πh̵δ(E), and limη→0

η
E2−η2 =

πδ(E),

IGαα′(E) = −π∑
n

δ(E + E − En)∣⟨Ψn∣c
†
α∣Ψ⟩∣2

+ π∑
m

δ(E − E + Em)∣⟨Ψm∣cα′ ∣Ψ⟩∣2 (D.5)

The difference with the usual particle or hole [46] spectral function, is that
here, they represent the probability for adding or removing a single nucleon
from a Fock ground state with and average number A of particles, while ending
up in another Fock excited (or ground) state with average A ± 1 particles.

Then, the magnitude Iα takes only the hole part of G,

Iα =
1

π ∫
λ

−∞
dE E IGαα(E) = ∑

m

(E − Em)∣⟨Ψm∣cα∣Ψ⟩∣2 (D.6)
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The, next step is to make the r.h.s. independent of the many-body basis ∣Ψm⟩,
and this is achieved by taking out the closure relationship

Iα = ∑
m

(E − Em)⟨Ψ∣c†α∣Ψm⟩⟨Ψm∣cα∣Ψ⟩ (D.7)

= ∑
m

⟨Ψ∣c†α∣Ψm⟩⟨Ψm∣cαH∣Ψ⟩ −∑
m

⟨Ψ∣c†αH∣Ψm⟩⟨Ψm∣cα∣Ψ⟩

= ⟨Ψ∣c†αcαH∣Ψ⟩ − ⟨Ψ∣c†αHcα∣Ψ⟩

= ⟨Ψ∣c†α[cα,H]∣Ψ⟩ (D.8)

One more step is needed to make appear the ground state energy. Using equa-
tions (A.2) and (A.3), and summing on α, we get

∑
α

Iα = ⟨Ψ∣H0∣Ψ⟩ + 2⟨Ψ∣V ∣Ψ⟩ (D.9)

Then, we can write the ground state energy in terms of the Green function
and the diagonal part of ⟨Ψ∣H∣Ψ⟩ = ⟨Ψ∣H0∣Ψ⟩ + ⟨Ψ∣V ∣Ψ⟩,

E =
1

2
⟨Ψ∣H0∣Ψ⟩ +

1

2
∑
α

Iα (D.10)

with

⟨Ψ∣H0∣Ψ⟩ = ∑
α

v2
aea (D.11)

∑
α

Iα =
1

π
∑
α
∫

λ

−∞
dE E IGαα(E) (D.12)

where we have used ⟨Ψ∣eac
†
αcα∣Ψ⟩ = eanα = eav2

a.

The imaginary part of the Green function can be calculated explicitly

IGαα(E) = I
u2
a

E −Ea + i∣η∣
+ I

v2
a

E +Ea − i∣η∣
(D.13)

= −u2
a

∣η∣

(E −Ea)2 + η2
+ v2

a

∣η∣

(E +Ea) + η2
(D.14)

= −u2
aπδ(E −Ea) + v

2
aπδ(E +Ea) (D.15)

in the last term the limit lim∣η∣→0 was taken.

Then,

∑
α

Iα = ∑
α
∫

λ

−∞
dE E [−u2

aδ(E −Ea) + v
2
aδ(E +Ea)]

= −∑
α

Ea v
2
a (D.16)
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