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ABSTRACT

This review provides an original overview of glial cells functions on the central nervous system and their relationship with 
neuroinflammation. We decided to correlate astrocytes, microglia and oligodendrocytes functions with neurons interplay, and refer it to 
Tango genre and dance. Furthermore, this revision summarizes studies that support the roles of glial cells in neuroinflammation under 
different conditions, such as aging and main neurodegenerative diseases in particular, Parkinson’s Disease and Alzheimer’s Disease.
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INTRODUCTION

Tango is a music genre and a dance, characteristic of Río de la 
Plata region and is indebted to multi-ethnic contributions, thanks 
to rioplatense colonial past (indigenous, African and creole) and 
the subsequent immigration contribution. Its etymology has 
been and continues being subject of multiple theories and strong 
controversies. In 1957, the historian Ricardo Rodríguez Molas 
investigated the languages of the slaves brought to Argentina and 
discovered that the word “tango” refer to “meeting places” or 
to “danceable meetings of the slaves”, used both in Africa and in 
colonial America [1]. In this sense, tango went through great stylistic 
stages in the evolution of the genre, from a primitive, anonymous, 
and popular stage, through the acquisition of its own identity, to 
the stage where it reached maturity, refinement, and international 
diffusion. Furthermore, this genre revolutionized the popular 
dance by introducing a sensual dance with an embraced couple that 
proposes a deep emotional relationship of each person with their 
own body, and the bodies of the dancers with one another. Tango 
is one of the rhythms which presence has become one of the most 
popular and familiar in the world.

This exquisite dance in the field of neurosciences, more 
precisely to the interaction of different neural populations where 
different types of neurons are surrounded by glia cells. Normal 
Central Nervous System (CNS) function requires proper assembly 
of numerous components, including both neurons and glia [2]. 
For years, neurobiology research specifically focused on the study 
of neuronal populations, while glia was considered only as a 
passive supplier of trophic support. In reference to the etymology 
of the word, the term “glia” means glue and it was first described 
by Virchow (1856) as “this connective substance forms in the 
brain, in the spinal cord, and in the higher sensory nerves a sort 
of putty’ (Neurokitten = neuroglia), in which the It is possible to 
make an analogy of nervous elements are embedded” [3,4]. Since 
then, glial cells have been considered as the most abundant neural 
non-excitable cells, essential in the architecture of the brain. 
Nevertheless, interest in glial cells and, therefore, the research grew 
exponentially when it was observed that these cells play an active 
role in regulating many aspects of neural function.

In this review, we summarize the emerging data regarding the 
importance of glial cells and how the interactions of astrocytes, 
microglia and oligodendrocytes, not only with neurons but also 
among themselves, mimics choreography that reflects the essential 
steps of tango. This novel approach outlines observations that 
strongly suggest the importance of glial cells in physiological and 
pathological conditions and how their inflammatory state could be 
the driven force of aging and multiple neurodegenerative diseases.

Neural Tango

The origin

Neurons, astrocytes and oligodendrocytes have a common 
progenitor derived from the neuroepithelium [5]. Neural stem 
cells (NSCs) are multipotent cells with self-renewing capacity 
that generate neurons and glial cells of the CNS during embryonic 
development. Stem cells are characterized by their capacity to 
differentiate into multiple cell types such as neurons, astrocytes 
and oligodendrocytes [4]. They undergo symmetric or asymmetric 
cell division into two daughter cells. In symmetric cell division, 
both daughter cells are also stem cells. In asymmetric division, a 
stem cell produces one stem cell and one specialized cell [6]. On 
the other hand, microglia are resident, tissue-specific macrophages 

that perform several critical roles in development and maintenance 
of the CNS [7]. These immune cells arise from primitive c-kit (+) 
erythromyeloid precursors in the very early stages of development. 
These precursors developed into CD45+CX3CR1− myeloid 
progenitors that differentiate to CD45+CX3CR1+ microglial 
progenitors and invade the developing brain before the emergence 
of definitive hematopoiesis [8,9]. In healthy conditions of intact 
blood-brain barrier in the adult mammalian brain, microglia persist 
as a self-sustained population that is not replenished by circulating 
bone marrow-derived cells [10].

The Protagonists 

Neurons: the “male” partner

Tango is more than a dance, is a life experience between two 
partners. It is a very personal and passionate dance based on 
rhythm, as opposed to music which is based on melody. Another 
unique feature of tango is that, when dancing tango, while 
the legs draw figures on the floor, the torso moves in another 
direction. We can observe a similar interaction between neurons 
and oligodendrocytes in close contact dancing to the rhythm of 
the music, played by microglia cells and singed by the greatest 
exponents of the genre, the astrocytes.

The main role of neurons is their capacity to transmit the 
electrical impulse throughout its axon. In 1888, Santiago Ramón y 
Cajal postulated the neuron doctrine, where he described that the 
nervous system is constituted of independent cells and that the 
basis of neurological function lies in neurons as discrete entities, 
whose interaction, mediated by synapses, leads to the appearance 
of complex responses [11]. These cells are specialized in receiving 
stimuli and driving the nerve impulse (action potential) among them 
or with other types of cells. Neurons have typical morphological 
characteristics that support their functions: a cell body, called 
soma; one or several short extensions that generally transmit 
impulses towards the cellular soma, called dendrites; and a long 
prolongation, called axon, that drives the impulses from the soma 
to another neuron or target organ. Consequently, neurons can be 
classified according to: i) shape and size: polyhedral, fusiform, starry, 
spherical, and pyramidal; ii) polarity: unipolar, bipolar, multipolar, 
monopolar, and anaxonic; iii) dendrites’ and axon’s characteristics: 
Golgi type I, Golgi type II, without defined axon, isodendritics, 
idiodendritics, alodendritics; iv) neurotransmitter: cholinergic, 
noradrenergic, dopaminergic, serotoninergic, and GABAergic and 
v) function: motor, sensory, and interneurons, leading to a wide 
distribution of heterogeneous neuronal populations. The two last 
classifications are physically interconnected by three components 
of the nervous system: sensory, motor, and integrator. On the 
whole, a stimulus is captured in some sensory region, delivers 
information that is conducted through neurons, and is analyzed by 
the integrating component, which can elaborate a response, whose 
signal is conducted through the neurons. As a result, neurons form 
neural networks or circuits with glial components. 

Oligodendrocytes: the “female” partner

When Virchow observed the fine structure of the brain tissue, he 
recognized that there were more entities within the “Nervenkitt” 
than astrocytes but they remained obscure and were only named 
the “third element” due to the imperfect staining methods. It was 
decades later that Pio del Río-Hortega (1921) applied a staining 
method shedding new light on the rest of the interstitial cells. 
These cells were found to contain numerous short processes and 
were named oligodendroglia and microglia [12]. In addition to 
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the function of support and union, oligodendrocytes play another 
essential role for the proper functioning of the neural network: they 
produce the myelin sheath in CNS. Regarding their morphology, they 
have small cell bodies filled with nuclei containing large amounts 
of chromatin, and their cellular extensions, that lacked fibres, are 
filled with cytoplasmic granules. By that time, Río-Hortega was 
able to distinguish four types of oligodendrocytes: i) type I cells 
generate many different myelin segments on small diameter axons 
in diverse orientations; ii) type II cells are similar to type I in size 
and number, but myelin segments run in parallel to each other; iii) 
type III oligodendrocytes unsheathe fewer axons of larger diameter; 
and iv) type IV oligodendrocytes have a cell body closely opposed 
to a single very large axon similar to Schwann Cells. Nevertheless, 
nowadays oligodendrocytes are classified into two large groups: 
interfascicular -responsible for the production of the myelin sheath 
and isolation of the axon- and perineuronal satellite-whose function 
is not yet specified- Furthermore, in order to achieve their key 
function, the plasma membrane of oligodendrocytes is wrapped 
around the axon, like the woman to the man in a tango couple, 
shaping the myelin sheath. Myelinated axons are bundled together 
into white matter tracts that interconnect grey matter areas and 
are essential for rapid, integrated neuronal communication and 
cognitive functions.

Astrocytes: the stars of the brain

The phenomenon of tango could not have been possible if had 
it not been for its maximum referents such as Carlos Gardel, Astor 
Piazzolla, Anibal Troilo and Enrique Discépolo, among others. In 
the brain, the stars are the astrocytes, not only because of its shape 
and its etymology, but also for their multiple vital functions in the 
maintenance of the CNS.

Astrocytes were first described in 1891 by Lenhossek and 
later by Santiago Ramón y Cajal [13,14]. These cells constitute the 
most abundant glial cell type in CNS (20-50% of brain volume) 
with a specific distribution among different brain structures. This 
distribution led to the use of astrocyte/neuron ratio which is 
region and sex-dependent, e.g. in the cerebral cortex, astrocytes 
outnumber neurons, while in the cerebellum neurons are the 
dominant population [15]. Regarding their morphology, astrocytes 
have small bodies with processes that branch and extend in all 
directions making contact with neuronal synapses and other brain 
components. Historically, astrocytes have been classified into 2 
subtypes: i) protoplasmic astrocytes, located mainly in the gray 
matter with complex arborization that are in contact with blood 
vessels and surrounding synapses, and ii) fibrous astrocytes, 
located mainly in the white matter, with longer and less complex 
processes oriented in such a way that they form bundles of fibrils 
[16-18]. However, thanks to new technologies, such as single-cell 
RNA sequencing and fluorescence-activated cell sorting–based 
strategy, several astrocyte subtypes could be identified resulting in 
a large heterogeneous population [19,20].

During the development of CNS, these cells contribute to 
neuronal survival, guide axonal growth, stimulate angiogenesis 
and contribute to the refinement of synapses by eliminating weak 
synapses and axons via MEGF10 and MERKT receptors [21]. In 
the adult CNS, astrocytes fulfill important functions of support, 
maintenance and protection of neurons. Thus, they form the 
“tripartite synapsis”. Moreover, thanks to their close contact with 
blood vessels, astrocytes provide metabolic support to neurons 
[22] and are able to increase blood flow in brain regions with 
higher neuronal activity [23]. Furthermore, astrocytes are also 
responsible for regulating glutamate and glucose metabolism in 

the synaptic cleft and may have neuroprotective functions against 
oxidative stress releasing glutathione precursors [24,25], removing 
potassium excess in the synaptic cleft [26] and capturing the excess 
of free iron [27].

Microglia: the immune orchestra

Classically, tango is performed by a typical orchestra or sextet 
and recognizes the bandoneon as one of the essential instruments. 
Bandoneon gave tango its complex characteristic, integrating the 
melody on a simultaneously rhythmic and harmonic basis. This 
melodic-rhythmic-harmonic complexity was further deepened with 
the incorporation of the piano and the development of a technique 
of execution especially tango, based on rhythmic percussion. This 
complexity may resemble to the functions of immune cells in the 
brain.

Microglia cells are well-known from their immune role 
in the CNS. They were first described in 1919 by Pio del Río-
Hortega [28] and, as we mentioned before, they have an origin 
in the blood monocytes that invade the brain during the early 
development, constituting 20% of the population of glial cells. 
Among their key functions, microglia cells are in charge of 
assuring the immune defense of the brain and the maintenance of 
homeostasis through a balance between their degenerative and 
protective roles. An interesting characteristic of microglia cells is 
that they alter their morphology according to their reactivity: i) 
resting (quiescent) microglia present a small cellular body with 
ramified long branches that survey the environment looking for 
harmful stimuli; ii) activated non-phagocytic microglia have an 
hypertrophied cellular body with shorter numerous branches; iii) 
activated phagocytic microglia present an amoeboid morphology. 
Furthermore, these cells also change their secretory phenotype 
depending on the sum of stimuli they sense and polarized into a 
pro-inflammatory or an anti-inflammatory phenotype, known as 
M1 and M2 activation states, respectively [29]. Pro-inflammatory 
M1 state is characterized by increased expression of induced 
nitric oxide synthase (iNOS) and secretion of pro-inflammatory 
cytokines such as TNF-α, IL-6 and IL-1β, promoting degeneration 
[29,30]. On the contrary, anti-inflammatory M2 state present an 
increased expression of Arginase 1 enzyme and production of the 
anti-inflammatory cytokines IL-4, IL-10, TGFβ, IGF1, VEGF, and play 
an important role in tissue repairing and wound healing [29-33]. 
Taking into the aforementioned, microglia activity and reactivity 
must be under tight regulation in order to assure the elimination of 
harmful elements without threatening healthy components.

In addition to their surveillance role, microglia can influence 
synaptogenesis and synaptic plasticity. It has been demonstrated 
that microglia are key regulators of synaptic formation, remodelling 
and elimination during development and in the adult brain, in 
order to have an appropriate brain connectivity [34-36]. During 
development, neurons form excessive synaptic connections. Many 
of these connections will soon be removed during synaptic pruning, 
a process by which microglia eliminate immature and incorrect 
neural circuits in order to have an appropriate brain connectivity 
[37,38]. 

Moreover, when deciding which synapse must be eliminated, 
microglia are able to detect and selectively eliminate low activity 
synapses rather than highly active ones [39]. Furthermore, in the 
adult brain, neuronal circuits are also highly dynamic and undergo 
synaptic remodelling, a process known as synaptic plasticity, 
in charge of microglia [36]. Changes in neuronal activity can 
strengthen or weaken synapses, which is sensed by microglia thus 
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inhibiting or promoting synapse removal, respectively. Thus, once 
again, synapse’s activity conditions its own survival [34-40].

Let´s Dance 

Tango is built on four basic components: hug “el abrazo”, walk 
“la caminata”, cut “el corte” and break “la quebrada”, being these last 
two classic terms the axis of improvisation and the choreographic 
figures that decorate the dance and that are known under the 
generic name of “firulete”. Above all, tango must be danced with 
body language through which personal emotions of the couple 
are transmitted. In this section, we are going to describe the 
mechanisms by which the four neural components mentioned 
above interact and perform specific choreographic figures.

Neurons & Oligodendrocytes: the perfect couple

To start the dance, the man and the woman meet; the man 
extends his hand and she places hers on his. The man surrounds 
the woman’s body with the other arm. The woman lays her arm 
on his shoulder or around his neck. As a greeting, they tune their 
movements, turning with their bodies in a semicircle or also making 
a swing, passing the weight of the body from one leg to another.

Oligodendrocytes produce and maintain the myelin sheath 
that isolates and supports neuronal axons. These cells undergo 
a morphological differentiation characterized by elaborated 
branched processes to enwrap neuronal axons, where dynein 
cofactor NDE1 could be a possible mediator [41]. Axon myelination 
is essential for the efficient and rapid conduction of action potentials 
in the CNS [42] but also is important for neuronal survival, which is 
attributed to metabolic transfer from oligodendrocytes to neuronal 
axons through myelin [43]. Nevertheless, oligodendrocytes can also 
respond to axonal signals [44]. For example, one of the neuronal 
signals for myelination is electrical activity, which can regulate 
oligodendrocyte proliferation and differentiation [45]. Axons are 
necessary for the maintenance of normal myelin protein gene 
expression within oligodendrocytes [41]. As a result, myelination 
is highly regulated, in a dependent manner, by oligodendrocyte-
neuron signaling that regulates oligodendrocyte proliferation, 
differentiation and myelin formation by the Notch signaling pathway 
[46]. Some neuronal factors involved in this regulation have been 
identified as ligands express by axons, e.g. neuregulin-1 [47], 
jagged1[46], PSA-NCAM [48] and LINGO-1 [49,50]. This activity-
dependent selection of axons by oligodendrocyte is essential for 
higher brain function through modification of neural information 
processing. Communication in this “tango couple” is vital due 
to glial support of axonal integrity where oligodendrocytes are 
metabolically active and functionally connected to the subjacent 
axon via cytoplasmic-rich myelinic channels for movement of 
macromolecules to and from the internodal periaxonal space under 
the myelin sheath [12].

Let the music sound

Communication between the immune system and CNS is 
exemplified by cross talk between glia and neurons, which is 
essential for maintaining homeostasis [51]. The interaction between 
neurons and microglia occurs in a ligand-dependent way, involving 
many ligand and receptors. Three main signaling pathways (CD200/
CD200R, CX3CL1/CX3CR1 and Cq1-C3/C3R pathways) have been 
well described [52]. In all cases, neurons express specific ligands 
that, by binding to their receptors localized on the microglia, act as 
a pro-survival stimulus and modulate microglia activation, keeping 
them in a quiescent state [53]. On the other hand, any insult that 

affects neuronal integrity and interrupts these signals, or even the 
lack of expression of these ligands in neurons is recognized by the 
microglia as a “eat me” signal and, therefore, triggers the activation 
of the microglia and promoting phagocytosis of neurons [54-56]. 
Thus, depending on the balance of signals in the cross talk between 
neurons and microglia, these last ones can receive a “help me” or 
“eat me” signal from neurons.

Oligodendrocytes express a wide variety of innate immune 
receptors and produce and respond to chemokines and cytokines 
that modulate immune responses in the CNS. Crosstalk between 
oligodendrocytes and microglia shows a delicate balance between 
activated microglia being harmful to the myelin-producing cells 
and being necessary for their repair and regeneration. On the 
other hand, oligodendrocytes can regulate microglial activity 
through the production of chemokines, cytokines and chaperokines 
[51]. Emerging data suggests that extracellular nucleotides 
play important roles in glial activation in the CNS via purinergic 
receptors. Likewise, oligodendrocytes also use purinergic receptor 
signaling for their development and for myelination [57]. 

Activated microglia may also have important roles in glutamate 
release by increasing glutamate-cystine exchange transporter 
expression. Although this neurotransmitter is essential for synaptic 
transmission, high levels of glutamate results in Ca2+ mediated 
excitotoxicity leading to pathological conditions [58,59]. Related to 
this, oligodendrocytes express AMPA and NMDA receptor subtypes 
and, consequently, glutamate excitotoxicity could trigger apoptosis, 
or cell death through the release of TNF-α and IL-1b by microglia, 
which might lead to myelin damage [59]. These pro-inflammatory 
cytokines can also contribute to oligodendrocyte damage via iNOS 
gene activation, making oligodendrocytes extremely susceptible 
to oxidative damage [51]. To sum up, neuron and oligodendrocyte 
couple dances to the rhythm of microglia music, due to their 
influence on synaptogenesis and synaptic plasticity, and taking 
into account that many products of activated microglia cells may be 
potentially detrimental to oligodendrocytes.

Let the stars shine  

Until now, we have presented the couple and the music, but to 
talk about the arrabal, we need the presence of famous tango stars. 
What would Tango be without its singer? Somehow, astrocytes have 
a similar vital importance in the interaction of neural components.

In the last decades, emerging data suggest an important 
modulatory role of astrocytes in brain homeostasis [20]. Among 
the many functions of astrocytes, we can name: control of CNS 
blood circulation and extracellular ion homeostasis, release of 
energy substrates, production of growth factors, and recycling of 
neurotransmitters. All these functions allow astrocytes to actively 
modulate the dynamic of neurons by regulating and organizing 
local or distant (extrasynaptic) synaptic activity, excitability, 
transmission, and plasticity at the cellular and system levels [60]. 
Astrocytes are commonly referred as housekeeping cells due to their 
role in energy metabolism homeostasis [61], their continuous flow 
of molecules through their gap junctions [62], and by transporting 
neurotransmitters (D-serine, ATP, GABA and glutamate) [63]. A 
constant feedback is observed between neurons and astrocytes: 
both types of cells response to each other’s signals [64]. For 
example, during tripartite synaptic neurotransmission, astrocytes 
have the capacity to regulate both the neuronal presynaptic bottom 
and postsynaptic neuron through the Ca2+ dependent release 
of gliotransmitters [65]. Among these neurotransmitters, the 
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excitation of neurons caused by glutamate can be modulated by 
inhibition through release of GABA induced by glutamate uptake 
from astrocytes [65,66]. These modulatory mechanisms are vital 
for neural network activity and dynamics.

Apart from the complexity of astrocyte-neuron cross talk, glial 
interactions are becoming a potential target of study in order to 
understand many demyelinating CNS diseases [60]. Ishibashi et 
al. reported a connection between myelination, astrocytes, and 
electrical impulse activity in axons, mediated by the cytokine 
leukemia inhibitory factor (LIF). LIF, which promotes myelination, 
is secreted from astrocytes in response to ATP released from 
active axons [67]. Furthermore, it was observed that astrocytes 
produce ciliary neurotrophic factor (CNTF) to stimulate cytokines, 
neurotrophic factors and growth factors release, including 
fibroblast growth factor 2 (FGF-2), a stimulator of oligodendrocyte 
precursor cells (OPCs) proliferation, that favors remyelination 
[68,69]. Moreover, IL-1β can promote astrocytic LIF release [70], 
which has been shown to promote oligodendrocytes’ survival and 
differentiation [71]. In vitro studies demonstrated that conditioned 
medium collected from primary cell culture of astrocytes and then 
incubated with cultures of OPCs, promotes the proliferation of OPCs 
and protects them against stress [72, 73].

Regarding astrocytes-microglia interaction, it was observed 
that during CNS development, both cell types influence each other 
in order to promote their own development and maturation. As a 
matter of fact, proliferation and differentiation of microglia occur in 
parallel to that of astrocytes within the same regions [74]. It has been 
demonstrated that microglia can stimulate astrocytes proliferation 
and differentiation through release of interleukins (such as IL-1 and 
IL-6); [75,76] and nitric oxide (NO) [77]. Furthermore, astrocytes 
can stimulate microglial proliferation and maturation by release of 
soluble factors such as interleukin 3 (IL-3) [78] and granulocyte and 
macrophage colony stimulating factor (GM-CFS) [79]. In the adult 
brain, astrocytes and microglia cross talk through soluble factors 
and cytokines to modulate each other [80]. One of these factors is 
S100B, a protein that is constitutively secreted by astrocytes under 
normal conditions, acting as a neurotrophic factor. Nevertheless, in 
response to damage, an overproduction of S100B occurs, fact that 
could mediate microglial activation, leading to the exacerbation 
of neuroinflammation [81]. Furthermore, in a rat model of 
hippocampal excitotoxic injury with NMDA, S100B was found to be 
key for the modulation of microglia phenotype [82]. On the other 
hand, when microglia sense a damage, they release IL-1β which can 
cause astrocytic activation [83]. In summary, neuron-glia crosstalk 
is essential for normal brain homeostasis, while miscommunication 
between them could lead to pathological conditions. Thus, a better 
understanding of neuron-glia interactions will allow us to deepen 
our knowledge about the inflammatory mechanisms of the most 
prevalent neurodegenerative diseases of CNS.

TANGO TOPICS

Tango ‘songs and melodies cover certain emotional and 
social topics such as the feeling of belonging to the arrabal, love 
disappointment, death, sexual desire and sadness, gender issues, 
and passage of time. 

Aging

Reflection on time is a very special feature of tango lyrics. 
Generally, all tangos contain a torn look about the destructive effect 
of time on relationships, things, and life itself. Aging is a biological 
process that leads to a progressive loss of brain functional integrity 

due to i) increased oxidative stress with damage in nuclear DNA 
[84] and in cellular proteins [85]; ii) protein misfolding and 
aggregation [86]; iii) disturbances in calcium homeostasis [87], and 
iv) mitochondrial dysfunction and energy deficiency [88]. Aging is 
associated with structural and cellular damage that has a direct 
consequence on cognitive, motor and behavioral impairment, and 
increase susceptibility to neurodegenerative disorders [89].

Age-related neuronal dysfunction is often associated with 
ultrastructural changes in neurons and glia. For example, it has been 
observed that neurons may develop intracellular and extracellular 
plaques and tangles [90], which could promote neuronal cell 
death aging. Moreover, neurons may also present decreased 
synaptic density, synaptic plasticity, and reduced neurotransmitter 
production [91,92]. Regarding glial cells, it is well known that the 
aged brain is characterized by a chronic inflammation established 
by both microglia and astroglia [93-95]. As for oligodendrocytes, 
studies in human brain demonstrated that their number decrease 
about 27% from 18 to 93 years old [96]. Moreover, oligodendrocyte 
morphology changes toward a swelled one, with inclusion 
bodies inside. These alterations correlate with a progressive 
demyelination of neurons [97]. Studies in rodents have shown that 
the number of OPCs maintains stable during life, but it has been 
observed a decrease in remyelination efficiency due to a decreased 
in OPCs migration and the consequent impaired differentiation to 
oligodendrocytes [98,99] and at a diminished self-renewal rate 
[100].

Regarding astrocytes, it has been shown that they present 
senescence-associated secretory phenotype (SASP): i) increased 
GFAP and vimentin levels, and hypertrophy; ii) increased cytokines 
expression; and iii) increased toxic protein aggregates. Moreover, 
isolated astrocytes from aged brain display a pro-inflammatory 
phenotype, thus suggesting a role of astrocytes in age-related 
neuroinflammation and neural degeneration. Taking into account 
the many functions of astrocytes, it is evident that age-related 
senescence of astrocytes enhances the decline in functional 
capacity of the brain [101-104]. Reactive astrogliosis and astrocytic 
loss of function contribute to loss of homeostasis in the brain 
and represent a risk factor for neurodegenerative diseases. It has 
been demonstrated in animal models of Alzheimer’s disease that 
astrocytes go through a degeneration process and atrophy during 
early stages of the disease, while in later stages reactive astrocytes 
are found directly associated to neurite plaques [105].

Numerous studies described the alterations that make microglia 
become during aging and disease [106, 107] polarized towards a 
pro-inflammatory phenotype [108], expressing increased levels 
of pro-inflammatory cytokines such as IL 1β, IL 6 and TNFα, 
and reduced levels of anti-inflammatory cytokines such as IL 10 
and IL 4 [107]. Moreover, senescent microglia undergo an age-
dependent degeneration and loss of their neuroprotective function 
thus contributing to age-related diseases onset [108,109]. These 
microglia carry out the process known as “microglia priming”, an 
exaggerated or exacerbated microglial response to inflammatory 
stimuli. Such excessive and prolonged response causes 
neuroinflammation, resulting in synaptic damage, neuronal death 
during aging and several age-associated diseases [110]. In fact, the 
progression of many neurodegenerative diseases is dependent on 
microglial activation [111-114].

Aged brain integrity is also affected by the decrease in the 
production of neuroprotective molecules. Among these, IGF1 and 
its signaling pathway have been widely investigated [115-117]. This 
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growth factor is essential for the correct development of the CNS 
as it influences proliferation and survival of all the components of 
the CNS. Moreover, IGF1 participates of neurogenesis, myelination, 
and synaptic plasticity in the adult brain [118,119], demonstrating 
the importance of this growth factor. Notwithstanding, IGF1 level 
declines during aging, correlating with learning and memory 
abilities, motor performance, and synaptic plasticity impairments 
[120,121]. Indeed, all major disorders commonly found in the aged 
brain, including cell dysfunction, metabolic impairment, and altered 
brain functions can be attributed to reduced brain IGF1 input, 
a condition that is inherently linked to the aging process [122]. 
Therapeutic approaches administrating IGF1 have corroborated 
these observations: Intracerebroventricular (ICV) infusion of IGF1 
increased in the number of BrdU-labeled cells in the proliferative 
sub-granular zone, the granular cell layer and hilus in old rats [123]; 
intrahypothalamic injection of recombinant adenovirus carrying the 
IGF1 gene (RAd-IGF1) reserved hyperprolactinemia and increased 
the number of dopaminergic neurons in the hypothalamus of aged 
rats [124]; transgenic overexpression of IGF1 increased neural 
stem cells proliferation as well as differentiation of neuronal stem 
cells into neurons in the sub-granular and subventricular zones 
of adult mice brains [125]. Moreover, ICV gene therapy with RAd-
IGF1 improved both motor and cognitive performance in senile rats 
[126,127].

Sexual Dimorphism

In the traditional male-female couple, gender roles are sexually 
defined. This means that the man creates and directs the dance 
and the woman follows him, although with an autonomous 
choreography. However, at the beginning of 19th century, the tango 
was danced between men. Moreover, tango choreography also 
admits that occasionally, is the woman who leads. Finally, by the 
end of 2000, a movement emerged in Germany, called tango queer, 
which proposes dancing tango without the roles being fixed to 
biological sex.

Regarding biology, it is also possible to find sex differences in 
the brain. Sexual dimorphism is controlled, mainly, by androgen 
and estrogen, the steroid hormones from the gonads. In the classic 
perspective on sexual differentiation of the brain (Organizational 
hypothesis) [128], these gonadal hormones act on the brain 
during a sensitive perinatal period to organize the male or female 
phenotype. In fact, it has been observed in rodents that the early 
appearance of estrogen in the brain, as a result of testosterone 
aromatization, generates a masculinized/male brain. During 
this period, the brain presents sexual differences in apoptosis, 
synaptogenesis, and neurogenesis. Following this differentiation, 
androgen and estrogen act on the female or male brain throughout 
life, to produce sex-specific behaviors [129]. However, not all sexual 
differences are a result of hormonal action. A great contribution is 
given by sex chromosomes due to differential expression of several 
genes during development. Among these genes is the SRY gene of 
the Y chromosome, which is not only known for its participation in 
testicular development but also in the regulation of the synthesis 
of some neurotransmitters [130]. During early stages of brain 
development, males have a greater number of microglia in several 
regions of the brain, such as the hippocampus, amygdala and 
paraventricular nucleus [131]. In addition, male rats present not 
only a higher number in the preoptic area, where the dimorphic 
nucleus is found, but also a greater activation of microglia, 
promoting thus a formation of a synaptic pattern that results in a 
typical masculine sexual behavior [132]. This difference is reversed 
in adulthood, where females have more activated microglia and 

higher levels of pro-inflammatory cytokines in the brain [131-133]. 
In the posterodorsal medial amygdala, hemispheric-dependent 
sex differences were observed in the number and complexity of 
the astrocytes and it is believed that androgen receptors could be 
critical in establishing these differences [134]. In vitro cultures 
of astrocytes showed sexual differences in the response to pro-
inflammatory stimulus, which could be determined by perinatal 
exposure to testosterone [135]. It has been demonstrated that 
the number of oligodendrocyte progenitors and myelination 
are regulated by sex hormones, probably contributing to sexual 
differences in the repair of nerve damage [136].

NEURODEGENERATIVE DISEASES 

The term ‘neuroinflammation’ refers to any inflammatory 
process, whether acute or chronic, involving the nervous system. 
It remains unknown if neuroinflammation is a simply reaction 
to tissue damage or if it has an active role promoting neuronal 
and synaptic damage, and its importance in pathogenesis. In the 
following section, we will summarize the importance of glia cells 
in the modulation of neuroinflammation in the pathogenesis of 
neurodegenerative diseases such as Alzheimer’s disease (AD) and 
Parkinson´s disease (PD).

Alzheimer´s Disease

Alzheimers’s disease (AD), firstly described by Dr. Alzheimer 
in 1906 as a “pre-senile dementia”, has two major pathological 
processes: amyloid beta (Aβ) and Tau protein deposition [137]. 
Nowadays, AD is the most common neurodegenerative disease 
worldwide, where aging constitutes the major risk factor and 
constitutes the most common cause of dementia in the elderly 
[138].

In the last decades, it became evident that glia cells interaction 
plays a key role in the pathophysiology of AD, where both Aβ 
plaques and neurofibrillary tangles (NFTs) may be cause and 
consequence of neuroinflammation. In general terms, Aβ regulates 
synaptic and neuronal activities, and its accumulation in the brain 
leads to synaptic depression and aberrant network activity [139]. 
This aggregation is frequently associated with the activation 
of microglia and astrocytes, since Aβ induces the expression of 
inflammatory enzymes such as COX-2 and iNOS, and inflammatory 
cytokines (e.g. TNFα and IL-1β), which enhance APP production 
and stimulate NF-κB and MAPK signaling pathways [50]. Aβ 
can also disrupt gliotransmitter release and astrocytic calcium 
signaling, interfering with synaptic plasticity in the astrocyte-
neuron communication [140]. In addition, Tau protein aggregates 
play an important role in the stabilization and assembly of 
microtubules, which are crucial for normal cellular morphology 
and trafficking. Oligomeric Tau release synaptotoxic species that 
may contribute to synapse degeneration closely correlated with 
cognitive decline in AD [141] and to oligodendrocyte dysfunctions 
through inflammation and oxidative stress. An impairment in the 
OPCs repair might possibly enhance the progression of the disease 
under decreased self-healing ability from aging process and 
pathological factors including Aβ pathology and/or NFTs [142]. As 
we mentioned before, neurodegeneration is concomitant not only 
with microgliosis and oligodendrocytes dysfunction but also with 
microvascular remodeling and astrogliosis. Astrocytes mediates 
CNS inflammation of AD by releasing cytokines and chemokines 
to influence effector cells [138], modulating the BBB and forming 
glial scars [143]. Understanding the heterogeneity of inflammatory 
mechanisms involved in the pathology of AD will prompt the 
research of a personalized treatment for this dementia.
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Parkinson´s Disease

In 1817, James Parkinson published An Essay on the Shaking 
Palsy where he first described the neurological disorder that today 
bears his name [144]. Parkinson´s disease (PD) has become the 
second most common neurodegenerative disorder after AD. It is 
characterized by the progressive loss of dopaminergic neurons 
in the susbtantia nigra pars compacta (SNpc) projecting to the 
putamen and caudate nucleus brain areas [145].

Neuroinflammatory processes in PD are rather involved in 
self-perpetuating deleterious events that lead to protracted 
neuronal degeneration. These processes occur alongside the 
loss of dopaminergic neurons and is associated with alterations 
to many cell types, most notably microglia [146]. Thus, T-cell 
infiltration accompanies activated microglial and astrocytic 
accumulation in and surrounding the SNpc [147], contributing to 
neurodegeneration. Neuronal death further activates inflammatory 
mechanisms, resulting in a vicious cycle of inflammation and 
neuronal loss. An increased microglial activation was observed in 
the SNpc of patients indicated by increased expression of CR3/43 
and EBM11, markers for activated microglia [148]. Dopaminergic 
neurons of the nigrostriatal pathway are particularly vulnerable to 
microglial mediated neurotoxicity and neurodegeneration [149]. 
Moreover, post-mortem studies demonstrated that α-synuclein 
is present in different brain regions where microglial activation 
is also known to be present, shifting microglial morphology to an 
amoeboid shape thus causing dopaminergic neurotoxicity [150].

On the other hand, astrocytes play direct, important, active, and 
critical roles in mediating neuronal survival and function in PD. 
These cells are more susceptible and recognize multiple soluble 
signals from activated microglia such as chemokines and cytokines, 
and function differentially in response to oxidative stress. It is 
important to know that astroglial-mediated inflammatory and 
oxidative stress mechanism may be more important than the 
microglial or neuron, since they are the most abundant cell type 
in the brain and are extensively involved in the nourishment of 
the neurons [151]. A small change in the surrounding astroglial 
cells may effectively cause neuronal cell death compared to any 
other cell type in the brain [152]. The mechanisms underlying the 
progressive neurodegenerative inflammation in PD are still elusive, 
and the discovery of the active or main driving force is of paramount 
importance in the search of effective therapeutic strategies.

CONCLUSION

This review shows that glial cells are key regulators of 
neuroinflammation and in the natural process of aging. They 
act together and with neurons forming an interneural matrix 
for a proper maintenance of physiological conditions. Immune 
system and its reactions have been always characterized using a 
battlefield analogy. This study provides a new approach, a dance 
to refer homeostatic conditions. Glial cells roles, and their dual 
effects, could be detrimental or beneficial depending on the age, 
gender or pathological conditions. Given the important regulatory 
roles of these cells, they are appealing targets for treatment of 
neurodegenerative diseases. However, due to the complex scenario, 
it is clear that more research is needed to identify individual 
pathways or genes that modulate glial phenotype to develop 
targeting specific therapies.
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