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Abstract In a recent publication the pseudoanechoic1

mixing model for closely spaced microphones was pro-2

posed and a blind audio sources separation algorithm3

based on this model was developed. This method uses4

frequency-domain independent component analysis to5

identify the mixing parameters. These parameters are6

used to synthesize the separation matrices, and then a7

time-frequency Wiener postfilter to improve the sep-8

aration is applied. In this contribution, key aspects of9

the separation algorithm are optimized with two novel10

methods. A deeper analysis of the working principles11

of the Wiener postfilter is presented, which gives an12

insight in its reverberation reduction capabilities. Also13

a variation of this postfilter to improve the performance14

using the information of previous frames is introduced.15

The basic method uses a fixed central frequency bin for16

the estimation of the mixture parameters. In this contri-17
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bution an automatic selection of the central bin, based 18

in the information of the separability of the sources, is 19

introduced. The improvements obtained through these 20

methods are evaluated in an automatic speech recogni- 21

tion task and with the PESQ objective quality measure. 22

The results show an increased robustness and stabil- 23

ity of the proposed method, enhancing the separation 24

quality and improving the speech recognition rate of an 25

automatic speech recognition system. 26

Keywords Pseudoanechoic model · Blind source 27

separation · Automatic speech recognition · 28

Mutual information · Wiener postfilter 29

1 Introduction 30

One of the fundamental problems for the widespread 31

of applications of automatic speech recognition is the 32

degrading effect of noise [14]. The speech recognition 33

systems trained under laboratory conditions, suffer a 34

strong degradation in their performance when used 35

in real environments [20]. Several aspects contribute 36

to this degrading effect. One of them is the presence 37

of multiple sound sources other than the desired one, 38

which alter the information of the desired source and 39

produce a deterioration of the recognition rate. An- 40

other problem is related to the use of distant micro- 41

phones [18]. In an ideal close talking environment the 42

microphones used to capture the sound field are located 43

near to the speaker mouth. In this way, the direct sound 44

from the target speech is picked with a large signal to 45

noise ratio. But in several applications, like teleconfer- 46

ence systems or remote controlling of home appliances, 47
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the microphones are located far away from the speaker.48

In this way the sound field that the microphones pick up49

is affected by several sound sources in a stronger way,50

producing a lower SNR. Moreover, the target speech51

is modified by the room impulse response, producing52

a smearing in its contents and a coloring of the spectra53

[12]. This effect is known as reverberation, and it affects54

the performance of ASR systems even if there are no55

other sound sources and if the system was trained with56

speech recorded in the same conditions [2].57

There are several approaches that try to mitigate the58

competing noise effect. Basically the alternatives are59

applied at three different levels of the speech recog-60

nition system [10]. At the level of the audio signal,61

the enhancement approach tries to produce a speech62

signal as similar to the original source as possible.63

At the level of the features used by the recognizer,64

the robustness is introduced either by using a set of65

intrinsically robust features, or by projecting the noisy66

features on the space of clean features. Finally, at the67

level of the acoustic models, the effect of noise can be68

introduced either by using multiple acoustic models for69

different noise conditions, or by an adaptation of the70

basic model to the noise conditions during the use of71

the system. This work is focused in the first kind of72

techniques, the task is to preprocess the audio signal73

to produce a desired speech signal as clean as possible.74

In particular, this is done using multiple input signals75

captured through a microphone array.76

In particular this work is focused in a recently77

proposed frequency-domain independent component78

analysis (fd-ICA) algorithm, which uses a pseudo-79

anechoic mixing model, under the assumption of80

closely spaced microphones. This separation method,81

named pseudoanechoic model blind source separation82

(PMBSS) was shown to be very effective in produce83

separation in environments where other approaches84

fail, and with a very high processing speed [8]. For85

example, it can produce an improvement of more than86

a 45% in recognition rate, with a processing speed87

more than 16 times higher than the standard method88

proposed by Parra et al. [19].89

This contribution will be focused in producing rele-90

vant improvements to the PMBSS method. First, a revi-91

sion of the PMBSS method will be presented, including92

a new analysis of the working principles of the Wiener93

postfilter, that show its capabilities to not only enhance94

the separation, but also of reducing the reverberation.95

Next, two alternative methods will be presented, one96

for automatic selection of the optimal central frequency97

to use in the estimation of the mixing parameters, and98

the other in the Wiener postfilter, to exploit the tem-99

poral information in the noise estimation. This section100

will be followed by a series of experiments to show 101

improvements introduced by the proposed methods. A 102

discussion and conclusion section ends the article. 103

2 Pseudoanechoic Model for BSS 104

In this work the speech enhancement approach is used. 105

In this way the objective will be to obtain a speech as 106

clean as possible. Among the many techniques used 107

for this purpose, the microphone array processing has 108

recently received strong attention from the scientific 109

community. The task of blind source separation in the 110

microphone array context, consist in the extraction of 111

the sources that originated the sound field, given a set 112

of measurements obtained through an array of micro- 113

phones [12]. 114

The problem is known in the literature as “cocktail 115

party”, because of the analogy with such a party in 116

which there are several speakers and sound sources, 117

and yet human beings have the ability to segregate 118

the source of interest and concentrate in the desired 119

conversation [11]. This ability is related to the fact that 120

humans have two ears, and thus a multi-microphone 121

setup is naturally introduced as an alternative for the 122

solution. A brief mathematical description of the prob- 123

lem will be presented in the following. 124

2.1 Convolutive BSS Problem 125

Consider the case in which there are M active sound 126

sources, and the sound field generated by them is cap- 127

tured by N microphones, as shown in Fig. 1. From 128

source j to microphone i, an impulse response hij char- 129

acterizes the room. Using the notation sj for the sources 130

and xi for the microphone signals, with i = 1, . . . , N and 131

Figure 1 A case of cocktail party with M sources and N
microphones.
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j = 1, . . . , M, the mixture can be represented at each132

instant t as [4]:133

xi(t) =
∑

j

hij(t) ∗ sj(t) , (1)

where ∗ stands for convolution. Let us form a vector of134

sources,135

s(t) = [
s1(t), · · · , sM(t)

]T

and the same for the vector of mixtures136

x(t) = [
x1(t), · · · , xN(t)

]T

measured by the microphones, where [·]T stands for137

transposition. Then the previous equation can be writ-138

ten (with a little abuse of notation) as:139

x(t) = H ∗ s(t) (2)

where the “matrix” H has as each element a filter140

given by the impulse response from one source loca-141

tion to one microphone location. The equation must142

be understood as a simple matrix-vector product, but143

replacing the multiplications by a filtering operation via144

convolution.145

In this context, there are several approaches for the146

solution of the BSS problem. From the basic ones based147

on beamforming [3], to the more advanced separation148

methods based the sparcity of the sources in the time-149

frequency domain [25] and the separation based on150

the search of statistical independence of the obtained151

sources [9]. The last approach assumes that the origi-152

nal sources are statistically independent, and thus the153

separation can be achieved searching for a transfor-154

mation that produces statistically independent results.155

This approach uses independent component analysis156

(ICA) and there are several methods that exploit the157

independence to yield the estimated sources.158

One of the more successful methods is the frequency-159

domain independent component analysis method160

(fd-ICA) [23]. If a short time Fourier transform (STFT)161

is applied to Eq. 2, the mixture can be written as162

[2, Chapter 13]163

x (ω, τ) = H (ω) s (ω, τ) , (3)

where the variable τ represents the time localization164

given by the sliding window in the STFT, and ω is165

the frequency. It should be noted that, as the mixing166

system was assumed to be LTI, the matrix H(ω) is not167

a function of the time. Also note that the convolution168

operations have been replaced by ordinary multiplica-169

tion, which makes the problem simpler in this domain.170

The classical solution alternative is to apply an ICA171

algorithm to each frequency bin, producing separation172

on each of them. After separation, the separated 173

sources in each bin need to be reordered due to the 174

permutation ambiguity inherent to ICA methods, and 175

then an inverse STFT is used for the time-domain 176

reconstruction. The permutation problem is one of the 177

main drawbacks of this method, because its correction 178

is not trivial, and although many solution alternatives 179

have been proposed, none of them is completely ef- 180

fective [17]. Another problem of the standard method 181

is the different convergence of the ICA method for 182

each frequency bin, which yields different separation 183

qualities for different bins, including some bins where 184

the method failed to converge to a proper solution. 185

2.2 The Pseudoanechoic Model 186

In a previous development [8], the pseudoanechoic 187

model was proposed as an alternative to solve this 188

problem. If the microphones are closely spaced, it can 189

be assumed that the impulse response from a source to 190

all the microphones will be delayed and scaled versions 191

of it. Using the notation of Fig. 1, with M = N = 2, the 192

mixture can be expressed as 193

x1 (t) = s1 (t) ∗ h11 (t) + s2 (t) ∗ h12 (t)

x2 (t) = s1 (t) ∗ h21 (t) + s2 (t) ∗ h22 (t) . (4)

Under the assumption of closely spaced micro- 194

phones, the crossing impulse response can be expressed 195

as delayed and scaled version of the direct impulse 196

responses, approximating h21(t) � αh11 (t − d1) and 197

h12(t) � βh22 (t − d2). This simplification is important 198

because it allows to write the mixing matrix of Eq. 3 199

in a simpler way 200

x (ω, τ) =
[

1 βe− jd2ω

αe− jd1ω 1

] [
H11(ω) 0

0 H22(ω)

]
s (ω, τ)

(5)

In this equation, the rightmost matrix, which does not 201

produces any mixing, represent the room effect on each 202

source signal. The leftmost matrix in turn, represents 203

the mixing effect. In this way the very complex filtering 204

and mixing effect of the room can be decomposed in 205

two simpler parts, one of mixing and the other of filter- 206

ing. Applying the filtering part to the source signals, the 207

following is obtained 208

x (ω, τ) =
[

1 βe− jd2ω

αe− jd1ω 1

]
z (ω, τ) (6)

where now the z(ω, τ) contains the reverberated 209

sources. In simple words, the pseudoanechoic model 210
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concentrate the effect of the room in a general impulse211

response for each channel which introduces distortion212

to that signal, and a simpler mixing which is similar to213

the anechoic model which is applied on these reverber-214

ant signals. It was shown that this model is plausible215

for microphones separated even by 5 cm, in moderate216

reverberant conditions.217

Based on this mixing model, the PMBSS algorithm218

was introduced. Simply speaking, this method aims to219

produce the z sources mentioned before. It is inter-220

esting to note that in Eq. 6, the mixing matrix has221

a dependency on ω which is easy to synthesize. For222

all frequencies, the parameters α, β, d1 and d2 have223

constant values, this means that if one is capable of224

identifying these parameters in a robust way for one225

specific frequency, they can be used to synthesize the226

mixing matrix (and by inversion, the separation matrix)227

for all the frequencies. Basically, the PMBSS method228

has three stages: 1) Estimation of the Mixing parame-229

ters for a given frequency bin, using ICA; 2) Synthesis230

of the separation matrixes for all frequencies using the231

estimated parameters, and separation; 3) Application232

of a time-frequency Wiener postfilter. The main ad-233

vantage of this method is that instead of performing234

one ICA separation for each frequency bin, only one235

ICA problem is solved over the data from a given236

central bin and a small number of lateral bins. From237

the estimated mixing matrix, the mixing parameters of238

the pseudoanechoic model are estimated, and used to239

synthesize the separation matrices for all the bins. In240

this way the resulting algorithm is extremely fast, and241

yet it produces a high quality of separation.242

The key aspect of this method is how to identify the243

mixing parameters accurately. The proposed method244

consisted in using ICA in a previously selected (fixed)245

frequency bin. Moreover, to produce robustness, in-246

stead of the data of only that bin, the data from a247

group of bins, taken symmetrically around the selected248

frequency, was used. In this way the ICA algorithm249

has a lot of data for the learning of the parameters,250

which can speed up the convergence, and moreover,251

the estimation produced is more robust, as shown in252

the previous work. Nevertheless, the selection of the253

optimal central bin to use was not explored. There must254

exist an specific frequency bin for which the parameters255

can be estimated more accurately. If this bin can be256

identified by an easy method, it can improve the sep-257

aration results258

Another interesting aspect of this method was the in-259

troduction of a time-frequency Wiener filter estimated260

using the information obtained after the separation261

stage. At this point, an estimation of the reverberant262

sources z(ω, τ) = [z1(ω, τ) z2(ω, τ)] was obtained. As263

the separation method is not perfect and the main 264

hypothesis may be only partially fulfilled, the separated 265

sources will have some residual components of the 266

competing source. This is because the separation matrix 267

can only reject the source coming from one direction, 268

as shown in [1]. Nevertheless, as the estimations for the 269

two sources are available, this means that to improve 270

the separation of one of the sources, the other can be 271

used as an estimation of the noise. In this way, the time- 272

frequency Wiener filter to improve the source z1 using 273

z2 as an estimation of the noise is given by 274

FW ,1(ω, τ) = |z1(ω, τ)|2
|z1(ω, τ)|2 + |z2(ω, τ)|2 , (7)

with an equivalent definition for the filter to enhance 275

the other source. 276

This postfilter was shown to produce an important 277

increase in the separation quality, and also it was shown 278

to be a better alternative than other approaches like 279

binary masks. Nevertheless, the wiener postfilter is a 280

very simple case, and more interesting approaches can 281

be used. 282

2.3 Reverberation Reduction by Wiener Postfilter 283

In this section a deeper analysis of the Wiener postfilter 284

in a 2 by 2 case is performed, to show how this filtering 285

provides additional reduction, not only of the compet- 286

ing source, but of the echoes coming both from the 287

competing source and the echoes of the desired source. 288

To this end, it is necessary to study the beampatterns 289

generated by the separation matrix. As was shown in 290

[1], the separation matrix generated by ICA works as 291

an adaptive null beamformer, that is, a beamformer 292

which is designed to reject the signal arriving to the 293

microphone array from certain direction. In the two 294

by two case, the separation matrix works as a pair of 295

null beamformers, where each beamformer reject the 296

signals arriving from the estimated direction of arrival 297

of each source. 298

In an environment with no reverberation, if one 299

of the main signals is eliminated, the resulting signal 300

will have information only of the other signal, and 301

thus producing a good separation. But in reverberant 302

environments, there are echoes arriving to the array 303

from other directions than the main propagation path. 304

As the separation can only eliminate the signal from 305

the main direction, the echoes from both, the desired 306

source and the competing source, will remain in the 307

separated signal. 308

An uniform linear array of N microphones in the far 309

field is characterized by its array response vector, which 310
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is a function of the frequency f and the angle of arrival311

φ, given by312

v( f, φ) =
[
1, e

− j2π f d sin(φ)

c , e
− j2π f 2d sin(φ)

c , · · · , e
− j2π f (N−1)d sin(φ)

c

]T
,

(8)

where d is the microphone spacing and c the sound313

speed. This array response vector characterises the314

microphone array as it explain the relation among315

the outputs of each of the microphones. If the out-316

puts of the array are linearly combined (as in a delay317

and sum beamformer), weighted with coefficients a =318

[a1, a2, . . . , aN]T , then the beamformer response r( f, φ)319

will be given by320

r( f, φ) = aHv( f, φ) (9)

where [·]H is the conjugate transposed operation. The321

magnitude of the beamformer response is the array322

gain or beampattern, which shows for each frequency,323

how the magnitude of the output signal change with324

the angle of arrival of the input signals. In the case325

of the separation matrix, each row of it works as a326

null beamformer, and thus in a 2 by 2 case a pair327

of null beamformers is generated. Figure 2 shows the328

beampatterns generated by the PMBSS method for the329

case of two speech sources at ±26 degrees, sampled330

at 8000 Hz, captured with two microphones spaced by331

5 cm. For each beampattern the null is located in the332

direction of one of the sources.333

To analyze the capabilities of this Wiener filter, as-334

sume that there is a sound field produced by white and335

stationary signals, with equal power from all directions.336
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Figure 2 Beampatterns generated by PMBSS for sources at ±26
degrees.

That is, suppose that the microphone array receives 337

equal power from all angles and for all frequencies 338

and times. In this case, the behaviour of the combined 339

separation and Wiener filter process can be analyzed 340

using the beampatterns, as the beampattern output will 341

be the actual magnitude at the output of the separation, 342

as a function of the arrival angle. 343

Figure 3 shows the beampatterns obtained from the 344

separation matrix in the bin corresponding to 2000 Hz 345

in the same example of Fig. 2 (for other frequencies 346

the analysis is equivalent). The top row shows the 347

beampatterns obtained from the separation matrix. For 348

each beampattern, it can be seen that in the direction of 349

each source, the gain is unitary (which is a consequence 350

of the minimal distortion principle), and in the direction 351

of the other source the gain tends to zero. In the bottom 352

row, we have applied the equation of the Wiener filter 353

to these patterns. That is, if the beamformer gains 354

for the separation matrix at the given frequency are 355

called G1(θ) and G2(θ), and as they are also the output 356

amplitudes as a function of the angle, the first Wiener 357

filter will be G1(θ)2/(G1(θ)2 + G2(θ)2), and the same 358

for the other filter. 359

This is a way to visualize the approximate global 360

effect of the whole processing. As it can be seen, the 361

Wiener filter maintains unitary gain in the desired di- 362

rections and nulls in the interference directions, but 363

also produces attenuation in all other directions, which 364

mitigates the effect of all echoes including both, those 365

from the undesired noise (which improves separation) 366

and these from the desired source (which reduces the 367

reverberation). This is very important, because it means 368
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Figure 3 Effect of the Wiener postfilter on the beampatterns. a)
the beampatterns generated from the separation matrix. b) the
beampatterns after application of the Wiener filter.
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that it helps in improving the fundamental limitation369

of the fd-ICA approach as analyzed in [1], that is, the370

impossibility of rejecting or reducing the echoes. It371

must be noted that this kind of postfilter is general and372

can be incorporated in any fd-ICA approach to improve373

its performance.374

Clearly, in real situations the input signals will be375

neither of the same power for all directions as assumed,376

nor white and stationary. Nevertheless, the signal with377

stronger component will in general come from the378

detected directions, with the echoes of lower power379

arriving from different directions, and thus the resulting380

effect would be even better than the depicted one.381

That is, Fig. 3 represents the worst case of possible382

inputs, and thus for more realistic cases an even better383

behaviour can be expected.384

3 Proposed Methods385

As already explained, two improvements for the stan-386

dard PMBSS method will be introduced. First a method387

for automatic selection of the central frequency bin to388

use in the ICA based mixing parameter estimation is389

introduced. The mutual information provides an esti-390

mation of the amount of mixing in each bin. In this way,391

the selection of a bin which has little overlapping of in-392

formation will be optimal to find the proper separation.393

In second place, the basic time-frequency Wiener394

postfilter uses an instantaneous time-frequency estima-395

tion of the source and noise. But it is know that, due396

to the reverberation effect, the information in some397

instant depends also on previous information. To take398

this effect into account, the noise estimation is com-399

posed not only by the present instant but by a number400

of delayed versions of the previous information. These401

methods will be introduced in what follows.402

3.1 Automatic Selection of the Central Bin403

As already mentioned, the first stage of PMBSS (es-404

timation of the mixing parameters) is performed by405

means of a robust ICA method on data collected from406

a set of frequency centered in a previously chosen bin.407

In [8], this central bin was set at a fixed value in an408

arbitrary way. However, for each particular mixture409

of signals it must be a frequency bin which yields the410

best possible estimation of the mixing parameters. This411

optimal bin will depend in the particular sources and412

mixing characteristics, and thus it would be desirable to413

have some automatic selection method for it.414

The best central bin would be that in which the415

ICA algorithm can produce the best mixing matrix416

estimation. Intuitively, it would be one in which, given 417

the characteristics of the mixture, the sources are “less 418

mixed”, or more statistically independent. What is nec- 419

essary is a measure of how mixed are the signals in each 420

bin. One measure that can be used for this purpose is 421

the mutual information. Mutual information measures 422

the amount of information that is shared among ran- 423

dom variables. It is calculated as [5] 424

I(X, Y) =
∫∫

p(x, y) log
(

p(x, y)

p(x)p(y)

)
dxdy , (10)

where I(X, Y) is the mutual information of the two 425

random variables X and Y, p(x, y) is the joint prob- 426

ability density function (pdf) of the variables, and 427

p(x) and p(y) are the marginal pdf of the variables. 428

Using the definition of differential entropy H(X) = 429

− ∫
p(x) log(p(x))dx and joint differential entropy 430

H(X, Y)=− ∫∫
p(x, y) log(p(x, y))dxdy, the mutual in- 431

formation can be written as [15] 432

I(X, Y) = H(X) + H(Y) − H(X, Y) . (11)

The mutual information is always positive. If the en- 433

tropy of a random variable is interpreted as a measure 434

of the amount of information carried by the variable, 435

a nonzero value of the mutual information indicates 436

that the amount of information carried by the joint 437

random process is less than the addition of information 438

carried by each random variable by itself. Or in other 439

words, that the random variables had some common 440

information in such a way that when measured as a joint 441

process, the total amount of information is less that the 442

addition of the information of each one. In fact, this 443

measure has been used in several approaches of ICA as 444

measure of the independence of the sources [13]. This 445

is because if the obtained signals share no information 446

(the mutual information is zero), the sources must be 447

independent. 448

Applying this concept for the case of a mixture of 449

signals, if the mutual information of the signals in a 450

frequency bin is small, it will be indicative that there is 451

little information sharing among the random variables 452

involved. But if there is little information sharing is 453

equivalent to express that the degree of mixing is small. 454

In this way, mutual information can be used as an index 455

of separability for the pair of signals in each frequency 456

bin. The central bin selection will be done according to 457

the bin that shows the lowest mutual information. 458

At this point we use the following assumption as in 459

[21, 22]: For a complex valued random variable X, p(x) 460

is independent of the phase angle, or in other words, 461

p(x) = p(|x|). This assumption is plausible for the time 462
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evolution of a specific frequency bin, given that the463

STFT was calculated using arbitrary shifted windows,464

and the arbitrary shift affects the phase information465

but should not affect the pdf. In this way the mutual466

information between the magnitude of the signals in467

each bin can be estimated. To produce an estimation468

of the mutual information a non-parametric histogram469

based estimator was used [15].470

There are also two other aspects to consider. On471

is the variation of signal levels among different bins.472

To make the measurement independent of these vari-473

ations, we normalize the mutual information by the474

average magnitude of the signals of each bin. The other475

aspect is the effect of frequency in the parameter es-476

timation. The parameters to estimate, particularly the477

delays, are obtained from the angle of the crossing478

terms in the mixing matrix, divided by the frequency479

of the bin. In this way, for the same level of accuracy480

in the angle estimation, a bin at higher frequencies will481

produce a better estimation. If the angle estimation has482

an error of ζ , the delays have an error proportional483

to ζ/k where k is the bin index. This means that a484

higher frequency bin will have less effect of the noise485

in the parameter estimation, thus we divide the mutual486

information by the frequency bin index k, producing487

lower values for higher frequencies. In this way, the488

optimal bin is selected as the one that minimizes the489

following quantity490

J(k) = I(|z1(ωk, τ )| , |z2(ωk, τ )|
k
T

2∑

i=1

T∑

τ=1

|zi(ωk, τ )|
(12)

where T is maximum frame index used in the STFT.491

3.2 Correlated Wiener Postfilter492

The Wiener postfilter used in [8] has shown to be very493

usefull, but in its simple form of Eq. 7 a lot of infor-494

mation available in the source and noise estimation495

is disregarded. One of the most important effects of496

reverberation is to propagate the information along the497

time. This means that some event happening at a given498

time will continue to have influence in future instants.499

In other words, the reverberation effect increases the500

correlation in time.501

This information is not exploited in the ICA method502

used in this work, because the signals are assumed to503

be generated by random iid process. The Wiener filter504

proposed in [8] also does not take into account this505

information as the estimation of the noise is based on506

the current time only. But for a batch method, there is507

information available on the noise characteristics from 508

both, past and future values, thus a more sophisticated 509

alternative can be implemented. In addition, the ob- 510

tained signals after separation can have an arbitrary 511

delay. That is, there is nothing that guarantees synchro- 512

nization of the extracted sources, thus the information 513

used as estimation of noise in the original Wiener filter 514

could be related to a different instant than that for 515

which was used. 516

These two aspects motivate us to explore some way 517

to introduce the time correlation information in the 518

noise estimation. To achieve this, the Wiener time fre- 519

quency postfilter is modified in the following way 520

FW ,1(ω, τ)= |z1(ω, τ)|2

|z1(ω, τ)|2+
p∑

k=−p

ck |z2(ω, τ −k)|2
, (13)

where k represents the index of lag, p is the maximum 521

lag to consider, and ck are properly chosen weights 522

that must take into account amount of contribution 523

of the noise in that lag to the noise present in the 524

source. The second term in the denominator represent 525

an estimation of the noise in the present time, given 526

past and future information of the corresponding bin. 527

This produces a more accurate estimation of the noise, 528

and although it considers a noncausal estimation, it 529

must be noted that even the basic Wiener postfilter is 530

noncausal, and this is feasible for batch algorithms. 531

The important aspect here is how to fix the weighting 532

constants ck. These weights should be large if the de- 533

layed version of the noise has an important effect in the 534

current time, otherwise it should be small. The effect of 535

delayed versions of the noise can be evaluated by some 536

measure of similitude with respect to the noisy signal. 537

To calculate such a similitude we use the correlation 538

among the accumulated squared magnitude over all 539

frequencies. These accumulated squared magnitudes 540

are given by 541

εzi(τ ) =
L∑

j=1

∣∣zi(ω j, τ )
∣∣2 (14)

where j is the frequency bin index and L the in- 542

dex of the maximum frequency. With this definition, 543

the weight coefficients are defined as the normalized 544

correlation 545

ck =
∑

τ εz1(τ )εz2(τ + k)

‖εz1‖‖εz2‖
, ∀ − p ≤ k ≤ p . (15)

with an equivalent definition for the filter to enhance 546

the other source, interchanging the roles of z1 and z2. 547
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The value of p is related to two factors. One is548

the already mentioned reverberation. The longer the549

reverberation time of the room, the larger the number550

of successive windows that will be important in the551

estimation. Also, the amount of overlapping between552

windows in the STFT increases the redundancy. In553

PMBSS an overlapping factor of 50% is used, and thus554

this aspect will have a minimal effect in the optimal555

value of p.556

4 Results and Discussion557

The performance of the proposed methods was evalu-558

ated using two different quality measures. One is the559

Perceptual Evaluation of Speech Quality (PESQ) mea-560

sure, an objective method defined in the standard ITU561

P.862 for evaluation of communication channels and562

speech codecs. In a series of studies, this measure was563

found to be highly correlated with the output of speech564

recognition systems, when the input was preprocessed565

by fd-ICA methods [6, 7].566

The other evaluation was performed using an au-567

tomatic speech recognition system. This is a state-of-568

the-art continuous speech recognition system based on569

semi-continuous hidden Markov models, with context570

independent phonemes in the acoustic models, using571

Gaussian mixtures and bigram language model esti-572

mated from the transcriptions. The front-end was Mel573

Frequency Cepstral Coefficients (MFCC), including574

energy and the first derivative of the feature vector. The575

system was built using the HTK toolkit [26].576

The audio material for the experiments was taken577

from a subset of the Spanish speech Albayzin database578

[16], and we also used white noise from Noisex-92 data-579

base [24]. All the material uses a sampling frequency580

of 8 kHz. The acoustic model was trained using 585581

sentences from a subset related to Spanish geography582

questions. A set of 5 sentences uttered by two male583

and two female, for a total of 20 utterances, was used584

to evaluate the speech recognition rate.585

The mixtures were recorded in a real room as in586

Fig. 4. This room has 4 × 4.9 m with a ceiling height587

of 2.9 m. The room has a reverberation time of588

τ60 = 120 ms, but plywood reverberation boards were589

added in two of the room walls to increase this time590

to τ60 = 200 ms. Two loudspeakers were used to re-591

play the sound sources and the resulting sound field592

was captured with two measurement omnidirectional593

microphones spaced by 5 cm. The 20 sentences were594

mixed with the two kind of noises, at two different595

power ratios: 0 dB and 6 dB. In this way there are four596

sets of mixtures of the 20 test sentences.597

Source Noise

100

200
100

100

Height: 100

Height: 125

Figure 4 Room setup used in the mixtures generation. All di-
mensions are in cm.

The recognition performance was evaluated using 598

the word recognition rate, calculated after forced align- 599

ment of the system transcription with respect to the 600

reference transcription. This measure was calculated in 601

the standard way as 602

W RR% = N − S − D
N

100% , (16)

where N is the total number of words in the reference 603

transcriptions, S is the number of substitution errors, 604

and D is the number of deletion errors [26]. 605

For the standard PMBSS we used the same config- 606

uration as proposed in the previous work, with central 607

bin fixed at 3/8 of the maximum frequency for white 608

noise, and 5/8 of the maximum frequency for speech 609

noise. In all experiments we fixed the number of lateral 610

bins to use in 10. 611

4.1 Optimal Lag for the Wiener Postfilter 612

The proposed Wiener postfilter depends on one pa- 613

rameter that needs to be determined: the maximum 614

number of lags p to consider in the noise estimation. 615

There is a compromise in the selection of this para- 616

meter. On one side, if the reverberation time is long, 617

the information of the noise in one instant will have 618

importance at a wider ranges of time instants, and thus 619

a larger p should be used. On the other side, if too 620

much lags are combined, there is an increasing prob- 621

ability of having time-frequency tiles for which both, 622

the estimated source and the estimated noise, have 623

significant energy, and this will produce a degradation 624

on the source estimation. To verify the influence of this 625
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t1.1 Table 1 Average separation quality as function of the number of
lags used to estimate the Wiener filter.Q3

t1.2 Power Noise STD p = 0 p = 1 p = 2 p = 3

t1.3 6 dB Speech 2.74 2.74 2.80 2.78 2.73
t1.4 White 2.84 2.83 2.88 2.86 2.83
t1.5 0 dB Speech 2.50 2.48 2.52 2.45 2.41
t1.6 White 2.59 2.54 2.67 2.66 2.65
t1.7 Average 2.67 2.65 2.71 2.69 2.65

parameter, the set of 20 test mixtures, under the two626

kind of noises and the two noise powers, were separated627

using values of 0, 1, 2 and 3 for p, and the PESQ quality628

evaluated on each separated source. For comparison we629

used also the standard method (STD) as proposed in630

[8]. Table 1 presents the results.631

As it can be seen, the best results are obtained for632

a maximum lag of 1. The use of p = 0 imply using as633

noise estimation only the present time instant, which634

would be the same as in the standard PMBSS method.635

The difference is in the use of weights, that being lower636

than one will reduce the noise estimation with respect637

to the standard method where this weight is always638

equal to one. When the number of lags considered639

is increased, the quality is lowered. This is due to640

the increasing distortions introduced by the Wiener641

postfilter when it eliminates more and more frequency642

components. Nevertheless, it must be noted that when643

the sources are heard, the competing source is almost644

completely eliminated, but the resulting spectrogram645

show an increased number of gaps due to the excessive646

elimination of frequency components, which produce647

the reduction on PESQ.648
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Figure 5 Effect of the number of lags p in the Wiener filter. For
reference, the desired source spectrogram is also shown.

This effect in the spectrogram can also be seen in 649

Fig. 5. To generate this figure, the magnitude of the 650

Wiener postfilter was draw in colorscale, for p = 0, 1, 2, 651

for one example of speech-speech mixture at 0 dB. 652

Also the spectrogram of the original (desired) source 653

is shown. The effect of adding lags is a sharpening in 654

the spectral characteristic of the desired source. As 655

the number of lags is increased, the Wiener filter ap- 656

proaches a binary mask with sharp transitions, which 657

provides better rejection of the undesired source, but 658

also introducing distortions in the desired source. On 659

the contrary, for small p the shape is smoother, with 660

better preservation of the desired source, but a greater 661

leakage of the undesired one. 662

4.2 Evaluation of the Bin Selection Method 663

To show that the proposed method can properly se- 664

lect the optimum bin, we have chosen four examples 665

of mixtures, two with speech and the other two with 666

white noise as competing sources, all at 0 dB of power 667

ratios. The separation method was applied using a fixed 668

number of 10 lateral bins at each side of the selected 669

central bin to estimate the mixing parameters. A win- 670

dow length of 256 samples with window shift of 128 671

samples was used. This produces a transform with 129 672

bins. The central bin was varied from 11 to 118, and 673

for each value of the central bin, the basic separation 674

method was applied and the PESQ score over the 675

whole reconstructed signal was calculated. In this way, a 676

graphic of the achieved quality in function of the central 677
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Figure 6 Automatic central bin selection examples. The PESQ
as a function of the central bin is drawn. The maximum PESQ is
marked with a cross, and the quality of the automatic selected bin
with a circle.
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t2.1 Table 2 Average separation quality (PESQ) for the different
methods evaluated in this work and the mixtures.Q3

t2.2 Power Noise Mix STD BIN WIENER FULL

t2.3 6 dB Speech 2.11 2.74 2.83 2.80 2.89
t2.4 White 1.98 2.84 2.83 2.88 2.87
t2.5 0 dB Speech 1.73 2.50 2.60 2.52 2.65
t2.6 White 1.64 2.59 2.56 2.67 2.63
t2.7 Average 1.86 2.67 2.70 2.71 2.76

bin can be done. Then, the proposed method is applied,678

and the automatically selected bin reported. This allows679

to verify if the method can identify the optimum bin680

properly.681

Figure 6 show the results. The first row has two682

examples of the PESQ for the case of white noise, and683

the second row the same measure for the case of speech684

noise. In each case, a cross marks the best PESQ value685

possible, and a circle mark the obtained PESQ with the686

automatically selected bin. It can be seen that usually687

the method is able to find the bin which produces the688

optimum PESQ, and when it cannot, it detects a bin689

that produces a local maximum in quality.690

4.3 Comparative Evaluation691

Finally we present the results of PESQ score and692

word recognition rate for the different alternatives of693

the method: the standard PMBSS method (STD), the694

method with only the central bin selection changed695

(BIN), the method with central bin fixed but with the696

improved Wiener postfilter (WIENER), and the full697

proposed method (FULL). Tables 2 and 3 present the698

results for PESQ and WRR% respectively, for the699

evaluated methods and also for the mixtures without700

any processing (that is, as they are captured by the701

microphones).702

The results show that both proposed methods pro-703

vide for an improvement in the quality of the sepa-704

rated signals, which is reflected in both, improvements705

in PESQ and in WRR. Moreover, when the two meth-706

ods are applied together the improvement is even707

larger than the improvements obtained by the sepa-708

t3.1 Table 3 Word recognition rates (WRR%) for the different meth-
ods evaluated in this work and the mixtures.Q3

t3.2 Power Noise Mix STD BIN WIENER FULL

t3.3 6 dB Speech 44.50 84.66 86.00 84.13 85.19
t3.4 White 19.54 84.00 84.50 82.50 80.50
t3.5 0 dB Speech 30.00 82.50 83.00 84.66 86.00
t3.6 White 7.20 67.50 70.00 73.50 73.50
t3.7 Average 25.31 79.66 80.87 81.20 81.30

rated methods. This is clearly seen the PESQ average 709

results, where the individual improvements are of 0.03 710

and 0.04, but combined contribute to a global 0.09 711

improvement. The complete method provides for a 6% 712

relative improvement in quality measured as PESQ 713

score, and an increase of 1.64% in the average recog- 714

nition rate. It must be noted that the processing time 715

is almost not changed by these new alternatives (only 716

about 5% increase in processing time), and thus the 717

method maintains its very high processing speed. 718

5 Conclusions 719

In this work, the PMBSS method was analyzed with 720

increased detail, providing insights in the reason why 721

it is very successful in achieving separation and some 722

reverberation reduction. In particular it was shown why 723

this reverberation reduction is produced even when the 724

separation model is supposed to produce separation but 725

not reverberation reduction. 726

This paper also addresses an aspect that was left for 727

future work in [8], which is the selection of the optimal 728

central bin to be used in the estimation of the mixing 729

parameters stage. This selection is automatically done 730

by means of an estimation of mutual information, which 731

is used as a measure of the amount of mixing in each 732

bin, using then the bin which shows less mixed signals. 733

Finally the Wiener postfilter was improved, taking 734

into account the temporal correlation introduced by 735

the reverberation. The noise estimation was done by a 736

weighted average of lagged spectra, where the proper 737

weights are selected by a cross correlation. 738

The proposed methods were evaluated by means 739

of an objective quality measure and a speech recog- 740

nition system. The method for central bin selection is 741

capable of detecting the optimal central bin. The two 742

proposed methods produced better objective quality of 743

the obtained signals, and improvements in the recogni- 744

tion rate. 745
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