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Quantum toric degeneration of quantum flag and

Schubert varieties

L. Rigal, P. Zadunaisky

Abstract

We show that certain homological regularity properties of graded connected
algebras, such as being AS-Gorenstein or AS-Cohen-Macaulay, can be tested by
passing to associated graded rings. In the spirit of noncommutative algebraic
geometry, this can be seen as an analogue of the classical result that, in a flat
family of varieties over the affine line, regularity properties of the exceptional
fiber extend to all fibers. We then show that quantized coordinate rings of flag
varieties and Schubert varieties can be filtered so that the associated graded rings
are twisted semigroup rings in the sense of [RZ12]. This is a noncommutative
version of the result due to Caldero [Cal02] stating that flag and Schubert varieties
degenerate into toric varieties, and implies that quantized coordinate rings of flag
and Schubert varieties are AS-Cohen-Macaulay.

1 Introduction

Let k be a field, and let A be a noetherian commutative algebra over k. If we put an as-
cending filtration on A then we can build the Rees ring of the filtration, which is a free
k[t]-algebra R such that A ∼= R/(t − λ)R for all λ ∈ k×, while R/tR is isomorphic
to the associated graded ring. In geometric terms, if k is algebraically closed then the
variety associated to R is a flat family over the affine line, whose generic fiber is iso-
morphic to Spec A and whose fiber over 0 is isomorphic to Spec gr A; in this context
the fiber over 0 is called a degeneration of Spec A. A standard result from algebraic
geometry states that if the fiber over 0 is regular (resp. Gorenstein, Cohen-Macaulay,
or any other of a long list of properties) then all fibers are regular (resp. Gorenstein,
Cohen-Macaulay, etc.)

Of course, the idea of studying a ring by imposing a filtration and passing to
the associated graded ring is a basic tool in an algebraist’s toolbox, and can be ap-
plied outside of a geometric context. In particular the hypothesis of commutativity is
not necessary for filtered-to-graded methods to work. However, in the spirit of non-
commutative algebraic geometry, we should look at the case where A is noetherian,
N-graded and connected (i.e. A0 = k) with an eye on the geometric case. Although
in this case there are no varieties associated to our algebras as in the commutative
setting, we have suitable analogues of the notions of being regular, or Gorenstein, or
Cohen-Macaulay, defined in purely homological terms (see paragraph 2.6). Hence it
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makes sense to ask whether these properties are “stable by flat deformation”, i.e. if
the fact that gr A has any of these properties implies that A also has that property.
The objective of this paper is to develop these ideas in order to study natural classes
of noncommutative algebraic varieties, and its first main result 2.8 shows that indeed,
good geometric properties are stable by degeneration in this context.

In the commutative setting, the usual flag variety and its Schubert subvarieties
are examples where the degeneration method is successful. The same holds for the
more general flag and Schubert varieties that one may associate to a semisimple Lie
group. On the other hand, the theory of quantum groups provides natural quantum
analogues of flag and Schubert varieties, whose classical counterparts can be recovered
as semiclassical limits when the deformation parameter tends to 1. This is the class of
noncommutative varieties we intend to study.

The degeneration approach to the study of flag and Schubert varieties was pio-
neered by de Concini, Eisenbud and Procesi [DCEP82], and followed by Gonciulea
and Lakshmibai [GL96], and others. Caldero was the first to prove that any Schubert
variety of an arbitrary flag variety degenerates to an affine toric variety in [Cal02]. A de-
generation to a toric variety is particularly convenient, since the geometric properties
of toric varieties are easily tractable, being encoded in the combinatorial properties of
a semigroup naturally attached to them in the affine case. For a general survey on the
subject of toric degenerations, including recent results, we refer the reader to [FFL17a].

It is striking that even though he is interested in the classical objects, in [Cal02]
Caldero uses the theory of quantum groups (more precisely the global bases of Luzstig
and Kashiwara) to produce bases of the coordinate rings of the classical objects. His
main argument then relies on Littelmann’s string parametrization of the crystal basis
of the negative part of the quantized enveloping algebra, which allows him to show
that his bases have good multiplicative properties. It follows that one can build out of
them adequate filtrations of the coordinate rings, leading to a toric degeneration.

In contrast, we wish to produce degenerations of quantum Schubert varieties at
the noncommutative level. This led us to introduce noncommutative analogues of
affine toric varieties as a suitable target for degeneration and to study their geometric
properties in [RZ15], where we show that just as in the classical case, these properties
are encoded in the associated semigroup. Inspired by Caldero’s work, in this article
we show that quantum Schubert varieties degenerate into quantum toric varieties and
explore the consequences of this fact.

We now discuss the contents of each section.
Section 2 begins with a recollection of general material on connected Nr-graded

algebras, their homological regularity properties, and the behavior of these proper-
ties with respect to a change of grading. In the last subsection we prove our main
transfer result: if a connected Nr-graded algebra has a filtration by finite dimensional
graded subspaces, then (under a mild technical condition known as property χ) the
original algebra inherits the regularity properties of the associated graded algebra, see
Theorem 2.12. The key point is the existence of a spectral sequence relating the Ext
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spaces between an algebra and its associated graded algebra; property χ guarantees
that these spaces are finite dimensional, which is crucial for the transfer of properties.

The aim of section 3 is to introduce a general framework allowing to establish the
existence of a noncommutative toric degeneration. We first review the basic theory of
affine semigroups and the regularity properties of quantum affine toric varieties from
[RZ15]. We then introduce the notion of an algebra of (S, ϕ)-type, where S is an affine
semigroup S ⊂ Nr and ϕ : S −→ N is a semigroup morphism. Any positive affine
semigroup has a unique minimal presentation as a quotient of a finitely generated free
noncommutative monoid. An algebra of (S, ϕ)-type is an algebra with a presentation
modeled after the presentation of S, with as many generators as S and whose product
reflects that of S up to terms of smaller order with respect to the order induced on
S by ϕ. We then show that an algebra of (S, ϕ)-type degenerates to a quantum toric
variety if and only if it has a basis of monomials indexed by S. At this stage it is
useful to recall the notion of an Algebra with a Straightening Law (see [DCEP82] in
the commutative case and [RZ12] in the quantum case). It turns out that, under a mild
assumption, this structure provides a natural toric degeneration.

Schubert varieties in the grassmannian enjoy such an ASL structure, both in he
classical and quantum case. However, in more general Schubert varieties such a struc-
ture no longer exists. The notion of an algebra of (S, ϕ)-type is a generalization of the
ASL structure which does apply in this more general context, and the aforementioned
basis indexed by S plays the role of the standard monomial basis. For more details
regarding these two notions see 3.8. We finish this section by introducing the notion
of an (S,<)-basis, where S is a semigroup and < is a total order on S. It turns out
that the existence of such a structure associated to an affine semigroup S, with the
order obtained by pulling back the lexicographic order of Nt through an embedding
S →֒ Nt, is enough to obtain an (S, ϕ)-type structure and to prove the existence of a
toric degeneration.

Section 4 contains a review of the definitions of quantum flag varieties and their
Schubert subvarieties. We then introduce bases for these objects originally defined by
Caldero, who showed that they are parametrized by affine semigroups using a variant
of Littelmann’s string parametrization, and that they have the multiplicative properties
needed to produce a toric degeneration. More precisely, we show that these bases are
(S,<)-bases for an adequate semigroup S. We stress that, since Caldero was interested
only in classical varieties, he worked over the field C(q), where q is a transcendental
variable, and with an enlarged version of the quantum group Uq(g) (which Janzen
calls the adjoint type). Since we are interested in the quantum setting, we work over
the ring Z[v, v−1] and eventually specialize to an arbitrary field containing a deforma-
tion parameter q which is not a root of unity. Furthermore we use the small (simply
connected) version of Uq(g).

While technical, we felt that these differences merited a detailed exposition of the
arguments, which we present in paragraphs 4.6 to 4.12. Our proof that Caldero’s bases
have the desired multiplicative properties is different that the one found in [Cal02].
While he uses multiplicative properties of the dual global basis, we analize the co-
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product of U−
q (g) in terms of the global basis. To do this we are led to study a second

basis introduced by Littelman in [Lit98], consisting of certain monomials of divided
differences. This monomial basis seems to be better adapted for computations, and
has been used to obtain more general degeneration results in the classical case by
Fang, Fourier and Littelmann [FFL17b]. However, the global basis, or rather its string
parametrization, is crucial in order to prove that one obtains a toric degeneration.
Acknowledgements: The second author would like to thank Xin Fang for an illumi-
nating dicussion on the relation between monomial and canonical bases, and Köln
University for its hospitality.

2 Degeneration of graded connected algebras

Let r be a positive integer. Throughout this section A denotes a noetherian connected
Nr-graded k-algebra. Here connected means that the homogeneous component of A
of degree (0, . . . , 0) is isomorphic to k as a ring, so the ideal generated by all homo-
geneous elements of non-zero degree is the unique maximal graded ideal of A; we
denote this ideal by m. Clearly A/m ∼= k as vector spaces, and whenever we consider
k as A-bimodule, it will be with this structure.

Graded modules

2.1. We denote by Zr Mod A the category of Zr-graded A-modules with homogeneous
morphisms of degree 0. We review some general properties of this category; the reader
is referred to [NVO04, chapter 2] for proofs and details.

The category Zr Mod A has enough projectives and injectives, so we may speak of
the graded projective and injective dimensions of an object M, which we denote by

pdimZr

A M and injdimZr

A M, respectively. We denote by Zr mod A the subcategory of
finitely generated Zr-graded A-modules. Since A is noetherian Zr mod A is an abelian
category with enough projectives.

For every object M of Zr Mod A and every ξ ∈ Zr we denote by Mξ the ho-
mogeneous component of M of degree ξ. Also, we denote by M[ξ] the object of
Zr Mod A with the same underlying A-module as M and with homogeneous compo-
nents M[ξ]ζ = Mζ+ξ for all ζ ∈ Zr. If f : N −→ M is a morphism in Zr Mod A then
the same function defines a morphism f [ξ] : N[ξ] −→ M[ξ]. In this way we get an
endofunctor [ξ] : Zr Mod A −→ Zr Mod A, called the ξ-suspension functor; it is an
autoequivalence, with inverse [−ξ].

Given N, M objects of Zr Mod A we set

HomA(N, M) =
⊕

ξ∈Zr

HomZr Mod A(N, M[ξ]).

This is a Zr-graded vector space, with its component of degree ξ ∈ Zr equal to the
space of homogeneous A-linear maps of degree ξ from N to M. For every i ≥ 0 we
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denote by Exti
A the i-th right derived functor of HomA. We point out that

HomA(N[ξ], M) ∼= HomA(N, M[−ξ]) ∼= HomA(N, M)[−ξ],

as Zr-graded vector spaces, and that these isomorphisms induce analogous ones for
the corresponding right derived functors.

2.2. Given ξ = (ξ1, . . . , ξr) ∈ Zr we set |ξ| = ξ1 + · · · + ξr . Given a Zr-graded vec-
tor space V, we denote by |V| the Z-graded vector space whose n-th homogeneous
component is

|V|n =
⊕

|ξ|=n

Vξ .

In particular |A| is a connected N-graded algebra. Also, if M is a Zr-graded A-module
then |M| is a Z-graded |A|-module, and this assignation is functorial. Since A is
noetherian, [RZ15, Proposition 1.3.7] implies that for every i ≥ 0 and any pair of Zr-
graded modules N, M, with N finitely generated, there is an isomorphism of Z-graded
modules

|Exti
A(N, M)| ∼= Exti

|A|(|N|, |M|),

natural in both variables.

Homological regularity properties

In this subsection we discuss some homological properties a connected Nr-graded al-
gebra may posses. Most of the material found in this section is standard for connected
N-graded algebras.

2.3. Let M be a Zr-graded A-module. We say that χ(M) holds if for each i ≥ 0
the graded vector space Exti

A(k, M) is finite dimensional, and say that the algebra A
has property χ if χ(M) holds for every finitely generated Zr-graded A-module M.
Property χ was originally introduced in [AZ94, section 3] and plays a fundamental
role in noncommutative algebraic geometry.

2.4. Associated to A and m there is a torsion functor

Γm : Zr Mod A −→ Zr Mod A

M 7−→ {x ∈ M | mnx = 0 for n ≫ 0},

which acts on morphisms by restriction and correstriction. The torsion functor is left
exact, and for each i ≥ 0 its i-th right derived functor is denoted by Hi

m and called the
i-th local cohomology functor of A.

There exists a natural isomorphism

Γm
∼= lim

−→
n

HomA(A/mn,−)
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which by standard homological algebra extends to natural isomorphisms

Hi
m
∼= lim

−→
n

Exti
A(A/mn,−)

for all i ≥ 1. The proof of this fact is completely analogous to the one found in
[BS98, Theorem 1.3.8] for commutative ungraded algebras.

We denote by A◦ the opposite algebra of A, which is also a connected Nr-graded
algebra, and by m◦ its maximal graded ideal. We write Γm◦ and Hi

m◦ for the corre-
sponding torsion and local cohomology functors, respectively.

2.5. Given an object M of Zr Mod A, its depth and local dimension are defined as

depth
m

M = inf{i ∈ N | Exti
A(k, M) 6= 0},

ldimm M = sup{i ∈ N | Hi
m(M) 6= 0},

respectively. The local cohomological dimension of A, denoted by lcdm A, is the supre-
mum of the ldimm M with M finitely generated.

2.6. The following definition is taken from [RZ15, Definition 2.1.1]. It is an Nr-graded
analogue of the definition of the AS-Cohen-Macaulay, AS-Gorenstein and AS-regular
properties for connected N-graded algebras found in the literature, see for example
the introduction to [JZ00].

Definition. Let A be a connected noetherian Nr-graded algebra.

1. A is called AS-Cohen-Macaulay if there exists n ∈ N such that Hi
m(A) = 0 and

Hi
m◦(A) = 0 for all i 6= n.

2. A is called left AS-Gorenstein if it has finite graded injective dimension n and there
exists ℓ ∈ Zr, called the Gorenstein shift of A, such that

Exti
A(k, A) ∼=

{

k[ℓ] for i = n,

0 for i 6= n,

as Zr-graded A◦-modules. We say A is right AS-Gorenstein if A◦ is left AS-Gorenstein.
Finally A is AS-Gorenstein if A and A◦ are left AS-Gorenstein, with the same injective
dimensions and Gorenstein shifts.

3. A is called AS-regular if it is AS-Gorenstein, and its left and right graded global dimen-
sions are finite and equal.

2.7. The properties discussed in paragraphs 2.3 to 2.6 are defined in terms of the
category of Zr-graded A-modules. In 2.2 we defined the algebra |A|, which is equal
to A as algebra but is endowed with a connected N-grading induced by the grading
on A and the group morphism | · |. The maximal graded ideals of A and |A| coincide
as vector spaces, so we may ask whether the fact that A has property χ, or finite
local dimension, or the AS-Cohen-Macaulay property, etc., implies that |A| has the
corresponding property.
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Let us say that a property P does not depend on the grading of A if the following
holds: for every connected Nt-graded algebra B with maximal ideal n, which is iso-
morphic to A as algebra through an isomorphism that sends n to m, A has property
P if and only if B has property P. As shown in [RZ15, Corollary 1.3.9], the local di-
mension of A does not depend on the grading of A. An analogous result is proved in
[RZ15, Remark 2.1.7] for the properties defined in 2.6. However, the situation is more
delicate for property χ. The following lemma shows that property χ is independent
of the grading of A under the hypothesis that A has finite local dimension; we do not
know whether this hypothesis can be eliminated.

Lemma. Suppose lcdm A < ∞. Then the algebra A has property χ if and only if χ(A) holds.

Proof. If A has property χ then clearly χ(A) holds. To prove the opposite implication,
assume χ(A) holds. Recall from 2.2 that for every Zr-graded A-module M and for
every i ≥ 0 there exists a graded vector space isomorphism

|Exti
A(k, M)| ∼= Exti

|A|(|k|, |M|),

so χ(M) holds if and only if χ(|M|) holds; in view of this, the hypothesis implies
χ(|A|) holds.

Since ldim|m| |A| = ldimm A < ∞, we may apply [RZ15, Proposition 2.2.6] and
conclude that |A| has property χ. From this it follows that χ(|M|) holds for every
Zr-graded A-module M, and hence so does χ(M).

2.8. We finish this subsection with a technical result on the relation between property
χ and local cohomology.

Lemma. For every n ∈ N, let A≥n be the ideal generated by all homogeneous elements of
degree ξ with |ξ| ≥ n. Let M be a finitely generated Zr-graded A-module such that χ(M)
holds. Then for every i ≥ 0 and every t ∈ Z there exists n0 ∈ Z such that

Exti
A(A/A≥n, M)ξ

∼= Hi
m(M)ξ

for all n ≥ n0 and all ξ ∈ Zr such that |ξ| ≥ t.

Proof. Since m is finitely generated, say by elements x1, . . . , xr with degrees ξ1, . . . , ξr

such that |ξi| ≥ 1, clearly mn ⊂ A≥n. Setting l = max{|ξi| : 1 ≤ i ≤ r} we obtain
A≥ln ⊂ mn. Knowing this, the proof of [BS98, Proposition 3.1.1] easily adapts to show
that for every i ≥ 0 there exist natural isomorphisms

lim
−→

n

Exti
A(A/A≥n,−) ∼= lim

−→
n

Exti
A(A/mn,−) ∼= Hi

m.

The statement of the lemma will follow if we show that for all ξ as in the statement,
the homogeneous component of degree ξ of the natural map

πn : Exti
A(A/A≥n, M) −→ Hi

m(M)

is an isomorphism for n ≫ 0.
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Fixing t as in the statement, [AZ94, Proposition 3.5 (1)] implies that the natural
map πn

d : Exti
|A|(|A|/|A≥n|, |M|)d −→ Hi

|m|(|M|)d is an isomorphism for all d ≥ t if n

is large enough. Now by [RZ15, Propositions 1.3.7 and 1.3.8] there exist isomorphisms

Exti
|A|(|A|/|A≥n|, |M|)d

∼=
⊕

|ξ|=d

Exti
A(A/A≥n, M)ξ ;

Hi
|m|(|M|)d

∼=
⊕

|ξ|=d

Hi
m(M)ξ .

Since the assignation M 7→ |M| is functorial, we also get that πn
d =

⊕

|ξ|=d πn
ξ . Thus

for all ξ such that |ξ| ≥ t, the map πn
ξ is an isomorphism if n is large enough.

Transfer of regularity properties by degeneration

In this subsection we prove that if A has a filtration compatible with its grading, and
the associated graded algebra has property χ, then the regularity properties discussed
in the previous subsection transfer from gr A to A. All undefined terms regarding
filtrations can be found in [NVO79, chapter I].

2.9. Recall that A denotes a noetherian Nr-graded algebra. The general setup for the
subsection is as follows: we assume that A has a connected filtration, that is an exhaus-
tive filtration F = {Fn A}n≥0, with k = F0A ⊂ F1 A ⊂ · · · ⊂ Fn A ⊂ · · ·

⋃

n≥0 Fn A = A,
such that each layer Fn A is a finite dimensional graded vector space, and Fn A · Fm A ⊂
Fn+m A for all n, m ∈ N. For each ξ ∈ Nr the homogeneous component Aξ has an
induced filtration {Fn Aξ}n≥0, where Fn Aξ = Fn A ∩ Aξ . Since Aξ is finite dimensional
this filtration is finite, so the associated graded ring gr A is a connected and locally
finite Nr+1-graded algebra.

Given any Zr-graded A-module M with a filtration whose layers are Zr-graded
subspaces, we can construct the Zr+1-graded gr A-module gr M. If M is any Zr-graded
A-module then it can be endowed with such a filtration as follows: fix a graded sub-
space N ⊂ M that generates M over A, and for each n ≥ 0 set Fn M = (Fn A)N. Any
such filtration is called standard, and is an exhaustive and discrete filtration by graded
subspaces. If M is finitely generated and N is finite dimensional then the layers of this
filtration are also finite dimensional.

2.10. The main tool used to transfer homological information from gr A to A is a spec-
tral sequence that we associate to any pair of Zr-graded A-modules N, M, which con-
verges to Exti

A(N, M) and whose first page consists of the homogeneous components
of Exti

gr A(gr N, gr M). The proof is straightforward, but relies on several graded ana-
logues of classical constructions for filtered rings. These constructions can be found
in [NVO79, Chapter I] and [MR01, Section 7.6], and the proofs found in the references
easily adapt to the graded context, so we use them without further comment.

In order to keep track of the extra component in the grading when passing to asso-
ciated graded objects, we make a slight abuse of notation: given a Zr+1-graded vector
space V, we denote by V(ξ,p) its homogeneous component of degree (ξ1, . . . , ξr, p).
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Proposition. Let A be an Nr-graded algebra with a connected filtration, and assume gr A is
noetherian. Let M, N be filtered Zr-graded A-modules, with N finitely generated, and suppose
that the filtration on N is standard and the filtration on M is discrete. Then for every ξ ∈ Zr

there exists a convergent spectral sequence

E(N, M)ξ : E1
p,q = Ext

−p−q
gr A (gr N, gr M)(ξ,p) ⇒ Ext

−p−q
A (N, M)ξ p, q ∈ Z,

such that the filtration of the vector spaces on the right hand side is finite.

Proof. By the Zr-graded version of [MR01, Theorem 6.17], there exists a projective reso-
lution P• −→ N by filtered projective Zr-graded A-modules with filtered differentials,
such that the associated graded complex gr P• −→ gr N is a Zr+1-graded projective
resolution of the gr A-module gr N. Using the filtration for the Hom spaces defined in
[NVO79, section I.2], the complex HomA(P•, M) is a graded complex with a filtration
by graded subcomplexes, whose differentials are filtered maps.

If we fix ξ ∈ Zr, the homogeneous component HomA(P•, M)ξ is a complex of
filtered finite dimensional vector spaces. By [Wei94, 5.5.1.2] there exists a spectral
sequence with page one equal to

E1
p,q = Hp+q

(

Fp HomA(P•, M)ξ

Fp−1 HomA(P•, M)ξ

)

p, q ∈ Z,

that converges to

Hp+q(HomA(P•, M)ξ) ∼= Ext
−p−q
A (N, M)ξ .

This last space is finite dimensional, and hence the filtration on it is finite. Thus we
only need to prove that for each p, q ∈ Z there exists an isomorphism

Hp+q

(

Fp HomA(P•, M)ξ

Fp−1 HomA(P•, M)ξ

)

∼= Ext
−p−q
gr A (gr N, gr M)(ξ,p).

By [NVO79, Lemma 6.4], there exists an isomorphism of complexes

ϕ(P•, M) : gr(HomA(P•, M)) −→ Homgr A(gr P•, gr M),

which is defined explicitly in the reference. Direct inspection shows that the map
ϕ(P•, M) is homogeneous, so looking at its component of degree ξ we obtain an iso-
morphism

Fp HomA(P•, M)ξ

Fp−1 HomA(P•, M)
ξ

∼= Homgr A(gr P•, gr M)(ξ,p).

Since gr P• is a Zr+1-graded projective resolution of gr N, we obtain the desired iso-
morphism by applying Hp+q to both sides of the isomorphism.

The following Corollary is an immediate consequence of the previous Proposition.
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Corollary. Let A be an Nr-graded algebra with a connected filtration, and assume gr A is
noetherian. Let M, N be filtered Zr-graded A-modules, with N finitely generated, and suppose
that the filtration on N is standard and the filtration on M is discrete. Then the following hold.

(a) For each i ≥ 0 and each ξ ∈ Zr

dimk Ext
i
A(N, M)ξ ≤

∞

∑
p=−∞

dimk Ext
i
gr A(gr N, gr M)(ξ,p).

(b) pdimZr

A N ≤ pdimZr+1

gr A gr N and injdimZr

A M ≤ injdimZr+1

gr A gr M.

(c) If χ(gr M) holds then χ(M) holds.

2.11. We now prove a result that relates the local cohomology of a Zr-graded A-
module M with that of its associated graded module gr M. We will do this by combin-
ing Proposition 2.10 with Lemma 2.8 and the formalism of the change of grading func-
tors introduced in [RZ12, Section 1.3]. We recall the relevant details. Given a group
morphism ϕ : Zr −→ Zt, with t ∈ N, there exists a functor ϕ! : Zr Modk −→ Zt Modk

that sends a Zr-graded vector space V to the Zt-graded vector space ϕ!(V), whose
homogeneous component of degree ζ ∈ Zt is

Vζ =
⊕

ϕ(ξ)=ζ

Vξ .

Notice that ϕ! does not change the underlying vector space of its argument, only its
grading. If R is a Zr-graded algebra then ϕ!(R) is a Zt-graded algebra, and if M is a Zr-
graded R-module then ϕ!(M) is a Zt-graded ϕ!(R)-module with the same underlying
R-module structure as M.

Corollary. Let A be an Nr-graded algebra with a connected filtration, and assume gr A is
noetherian. Let M be a filtered Zr-graded A-module with a discrete filtration, and assume
χ(gr M) holds. Then for each i ≥ 0 and each ξ ∈ Zr

dimk Hi
m(M)ξ ≤

∞

∑
p=−∞

dimk Hi
grm(gr M)(ξ,p).

Proof. Let π : Zr+1 −→ Zr be the projection to the first r-coordinates, and set B =
π!(gr A), so for every ξ ∈ Zr

Bξ =
⊕

p∈Z

gr A(ξ,p) = gr(Aξ).

Thus B is a connected Nr-graded algebra. Set n = π!(grm), which is the maximal
graded ideal of B, and set M̃ = π!(gr M).
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By [RZ15, Proposition 1.3.7] χ(gr M) implies χ(M̃) and by item (c) of Corollary
2.10 it also implies χ(M), so we may apply Lemma 2.8 to M and M̃, and deduce that
for given ξ ∈ Zr and i ≥ 0 the natural maps

Exti
A(A/A≥n, M)ξ −→ Hi

m(M)ξ

Exti
B(B/B≥n, M̃)ξ −→ Hi

n(M̃)ξ

are isomorphisms for n ≫ 0.
Combining this with [RZ15, Propositions 1.3.7 and 1.3.8], we obtain a chain of

isomorphisms

⊕

p∈Z

Exti
gr A

(

gr A

gr(A≥n)
, gr M

)

(ξ,p)

∼= Exti
B

(

B/B≥n, M̃
)

ξ
∼= Hi

n(M̃)ξ
∼=

⊕

p∈Z

Hi
grm(gr M)(ξ,p)

By definition gr(A/A≥n) ∼= gr A/ gr(A≥n), so applying item (a) of Corollary 2.10 and
taking n ≫ 0 we obtain

dimk Hi
m(M)ξ = dimk Ext

i
A(A/A≥n, M)ξ

≤
∞

∑
p=−∞

dimk Ext
i
gr A(gr A/ gr(A≥n), M)(ξ,p)

=
∞

∑
p=−∞

dimk Hi
grm(gr M)(ξ,p).

2.12. We are now ready to prove the main result of this section.

Theorem. Suppose A is a connected Nr-graded algebra endowed with a connected filtration,
and that gr A is noetherian and has property χ. Then the following hold.

(a) A has property χ.

(b) lcdm A ≤ lcdgrm gr A.

(c) If gr A is AS-Cohen-Macaulay, AS-Gorenstein or AS-Regular, so is A.

Proof. The hypothesis that gr A is noetherian implies that A is noetherian [MR01, 1.6.9].
If M is any finitely generated Zr-graded A-module, we may filter it using the proce-
dure described in 2.9. Since χ(gr M) holds by hypothesis, item (c) of Corollary 2.10

implies χ(M) holds, which proves that A has property χ.
Item 2 follows from Corollary 2.11, as does the fact that if gr A is AS-Cohen-

Macaulay so is A. If gr A is AS-Gorenstein of injective dimension n and Gorenstein
shift (ξ, p) ∈ Zr+1, the algebra A has injective dimension at most n by item (b) of
Corollary 2.10. Also, for each ζ ∈ Zr the spectral sequence E(k, A)ζ of Proposition
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2.10 degenerates at page 1: it is zero if ζ 6= −ξ, while for ζ = −ξ there is a single, one
dimensional non-zero entry in the diagonal −p − q = n. Hence we obtain vector space
isomorphisms

Exti
A(k, A)ζ

∼=

{

k if ζ = −ξ and i = n;

0 otherwise.

Thus Exti
A(k, A) ∼= k[ξ] as Zr-graded vector spaces. Any such isomorphism is also

A◦-linear, so A is left AS-Gorenstein of injective dimension n and Gorenstein shift ξ.
The same proof applies to show that A is right AS-Gorenstein with the same injective
dimension and Gorenstein shift, so A is AS-Gorenstein.

Finally, assume that gr A is AS-regular. Then A is AS-Gorenstein, and item (b)
of Corollary 2.10 implies that it has finite left and right global dimensions. These
dimensions are equal to the left and right projective dimensions of k as A-module
[RZ15, Lemma 2.1.5], which in turn equal the left and right injective dimensions of A
and hence coincide, so A is AS-regular.

3 Quantum affine toric degenerations

In this section we recall the homological properties of quantum affine toric varieties
proved in [RZ15], and give necessary and sufficient conditions for a connected Nr-
graded algebra A to have a connected filtration such that the associated graded ring is
a quantum positive affine toric variety.

Quantum affine toric varieties

3.1. Recall that an affine semigroup is a finitely generated monoid isomorphic to a
subsemigroup of Zr for some r ∈ N. An embedding of S is an injective semigroup
morphism i : S →֒ Zr for some r ∈ N. By definition, every affine semigroup S is
commutative and cancellative, so it has a group of fractions, which we denote by
G(S), and the natural map from S to G(S) is injective. The group G(S) is a finitely
generated and torsion-free commutative group, so there exists a natural number r such
that G(S) ∼= Zr as groups; we refer to r as the rank of S and denote it rk S. We say that
i is a full embedding if the image of S generates Zr as a group, in which case r = rk S.
Fixing an isomorphism G(S) ∼= Zrk(S) we obtain a full embedding of S in an obvious
way.

3.2. Let S be an affine semigroup. Fixing an embedding i : S →֒ Zr we identify S
with its image and see Zr as a subgroup of Rr in the obvious way. The rational cone
generated by S in Rr is the set

R+S =

{

n

∑
i=1

risi | ri ∈ R≥0, si ∈ S, n ∈ N

}

.

12



The relative interior of S is defined as relint S = S∩R+S◦, where R+S◦ is the topological
interior of R+S as a subset of the vector space RS endowed with the subspace topology
induced from Rr. The relative interior is intrinsic to S and does not depend on the
chosen embedding [BG09, Remark 2.6].

An affine semigroup S of rank r is called normal if it verifies the following property:
given z ∈ G(S), if there exists m ∈ N∗ such that mz ∈ S, then z ∈ S. If we identify
S with a subset of Zr through a full embedding and consider the real cone R+S of S
inside Rr in the obvious way, then Gordan’s lemma [BH93, Proposition 6.1.2] states
that S is normal if and only if S = Zr ∩R+S.

Example. We now introduce an example that will recur through the rest of this section. Recall
that a lattice is a poset L such that any two elements x, y have an infimum, called the meet
of x and y and denoted x ∧ y, and a supremum, called the join of x and y and denoted x ∨ y.
For example, given u ∈ N the poset Nu with the product order is a lattice, with join (resp.
meet) given by taking the maximum (resp. minimum) at each coordinate. A lattice is said to be
finite if its underlying set is finite, and distributive if the binary operation ∧ is distributive
over ∨, and vice versa. Clearly Nu is a distributive lattice, although of course not a finite
one. Given u, v ∈ N with u ≤ v, the set Πu,v consisting of all (a1, . . . au) ∈ Nu such that
1 ≤ a1 < · · · < au ≤ v is a finite distributive sublattice of Nu.

An element z of a distributive lattice is said to be join-irreducible if it is not the minimum,
and whenever z = x ∨ y then z = x or z = y. Let L be a distributive lattice, and let
J(L) = {x1, . . . , xr} be the set of its join irreducible elements, enumerated so that xi < xj

implies i < j. Following [RZ15, subsection 3.3] set str(L) to be the subset of Nr+1 consisting
of tuples (a0, a1, . . . , ar) such that a0 ≥ ai for all i = 1, . . . , r, and ai ≥ aj whenever xi < xj

as elements of L. It turns out that str(L) is a normal affine semigroup, which we will call the
affine semigroup associate to L. Later on we will give an equivalent definition of S(L) in terms
of the lattice, which will justify its name. Below we give an example with L = Π2,4.

(1, 2)

(1, 3)

(1, 4) (2, 3)

(2, 4)

(3, 4)
J(Π2,4) = {(1, 3), (1, 4), (2, 3), (3, 4)}

str(Π2,4) =







(a, b, c, d, e) ∈ N5

∣

∣

∣

∣

∣

a ≥ b, c, d, e;
b ≥ c, d, e;

c, d ≥ e







The lattice Π2,4 and its affine semigroup. Framed elements are join-irreducibles.

3.3. Let S be an affine semigroup. An element s ∈ S is called irreducible if whenever
s = x + y with x, y ∈ S, then either x or y is invertible. On the other hand S is called
positive if its only invertible element is 0. If S is positive then the set of its irreducible
elements is finite and generates S; for this reason it is called the Hilbert basis of S. The
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fact that S is positive also implies that there exists a full embedding S →֒ Zr such that
the image of S is contained in Nr. It follows that a semigroup is positive if and only
if there exists r ≥ 0 such that S is isomorphic to a finitely generated subsemigroup of
Nr. Proofs of these results can be found in [BG09, pp. 54–56].

3.4. Let S be a positive affine semigroup and let {s1, . . . , sn} be its Hilbert Basis. We
denote by π : Nn −→ S the semigroup morphism defined by the assignation ei 7→ si

for each 1 ≤ i ≤ n, where ei is the i-th element in the canonical basis of Nn. This map
determines an equivalence relation in Nn where p ∼ p′ if and only if π(p) = π(p′); we
denote this relation by L(π). Clearly L(π) is compatible with the additive structure
of Nn, and hence the quotient Nn/L(π) is a commutative monoid with the operation
induced by addition in Nn, and there is an isomorphism of monoids Nn/L(π) ∼= S.

In general, an equivalence relation on Nn closed under addition is called a congru-
ence. If ρ is a subset of Nn × Nn then the congruence generated by ρ is the smallest
congruence containing the set ρ. Redei’s theorem [RGS99, Theorem 5.12] states that ev-
ery congruence in Nn is finitely generated, i.e. there exists a finite set ρ ⊂ Nn ×Nn that
generates it; in particular there exists a finite set P = {(p1, p′1), . . . , (pm, p′m)} ⊂ L(π)
which generates L(π). A presentation of S will be for us a pair (π, P), where π : Nn −→
S is the map described above and P is a finite generating set of the congruence L(π).
By the previous discussion every positive affine semigroup has a presentation.

Example. Let L be a finite distributive lattice, and let F(L) be the free commutative monoid
on L, which is clearly isomorphic to N|L|. We will give a presentation of the group str(L)
introduced in 3.2 as a quotient of F(L).

As before, we denote by {x1, . . . , xr} the set of join-irreducible elements of L. We denote
by [l] the image of an element l ∈ L in F(L) and define a map π : F(L) −→ str(L) given
by π([l]) = e0 + ∑xi≤l ei. As shown in [RZ15, Proposition 3.3.3] this map is surjective.
Furthermore L(π) is the equivalence relation generated by the set {([l]+ [l′ ], [l ∨ l′]+ [l ∧ l′]) |
l, l′ ∈ L}. Notice also that the Hilbert basis of str(L) is precisely the image of L, and the map
π restricted to L is a lattice morphism. Thus every distributive lattice L can be realized as a
sublattice of {0, 1}|J(L)|+1.

(1, 0, 0, 0, 0)

(1, 1, 0, 0, 0)

(1, 1, 1, 0, 0) (1, 1, 0, 1, 0)

(1, 1, 1, 1, 0)

(1, 1, 1, 1, 1)

The lattice Π2,4, with each element replaced by its image through π.
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3.5. Let S be a commutative semigroup with identity. A 2-cocycle over S is a function
α : S × S −→ k× such that α(s, s′)α(s + s′, s′′) = α(s, s′ + s′′)α(s′, s′′) for all s, s′, s′′ ∈ S.
Given a 2-cocycle α over S, the α-twisted semigroup algebra kα[S] is the associative k-
algebra whose underlying vector space has basis {Xs | s ∈ S} and whose product over
these generators is given by XsXt = α(s, t)Xs+t. This is a noncommutative deformation
of the classical semigroup algebra k[S]. For more details see [RZ15, section 3]; in
this reference the group is assumed to be cancellative, but this is not relevant for the
definition of the twisted algebra.

Definition. Let A be a connected Nr-graded algebra. We say that A is a quantum positive
affine toric variety if there exist a positive affine semigroup S and a 2-cocycle α over S such
that A is isomorphic to the twisted semigroup algebra kα[S], and for each s ∈ S \ {0} the
element Xs is homogeneous of nonzero degree with respect to the Nr-grading of kα[S] induced
by this isomorphism. In that case we refer to S as the underlying semigroup of A.

Let r ≥ 1 and let ψ : S −→ Nr be a monoid morphism such that ψ−1(0) = {0}.
The twisted semigroup algebra kα[S] can be endowed with a connected Nr-grading
setting deg Xs = ψ(s) for each s ∈ S. Conversely, any connected grading such that
the elements of the form Xs are homogeneous arises in this manner. In particular,
if A is a quantum positive toric variety with underlying semigroup S then there is a
corresponding monoid morphism ψ : S −→ Nr, to which we will refer as the grading
morphism.

Example. Let q ∈ k× and set q =













1 q 1 1 q
q−1 1 q q q−2

1 q−1 1 1 q
1 q−1 1 1 q

q−1 q2 q−1 q−1 1













.

Let kq[X] be the twisted polynomial ring generated by variables X1, . . . , X5 subject to the
relations XiXj = qi,jXjXi. Given t = (a, b, c, d, e) ∈ N5 we set Xt = Xa

1Xb
2Xc

3Xd
4 Xe

5. The
formula XtXs = α(s, t)Xt+s induces a map α : N5 × N5 −→ k×, and associativity of the
product of kq[X] implies that α is a 2-cocycle. Recall from the examples in 3.2 and 3.4 that
S = str(Π2,4) ⊂ N5 is an affine semigroup. The restriction of α to S is also a 2-cocycle, and
kα[S] is isomorphic to the subalgebra of kq[X] generated by the elements Xt with t running
over the Hilbert basis of S. Setting

Y1 = X1 Y2 = X1X2 Y3 = X1X2X3

Y4 = X1X2X4 Y5 = X1X2X3X4 Y6 = X1X2X3X4X5

it is routine to check that YjYi = q−2YiYj for (i, j) ∈ {(1, 5), (2, 4)}, that Y2 and Y3 commute,

and that YjYi = q−1YiYj for all other possible pairs i < j. There is one more relation among

these monomials, namely Y2Y3 = q−1Y1Y4. Thus kα[S] has as many generators as S, and can
be presented by the commutation relations between them plus one extra relation arising from
the fact that there is exactly one pair of incomparable elements in Π2,4. We will see below in
Proposition 3.14 that all quantum positive affine toric varieties and several related algebras
have similar presentations.
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3.6. Quantum positive affine toric varieties were studied from the point of view of
noncommutative geometry in [RZ15, section 3]. The following is a summary of the
results proved there.

Proposition. Let S be a positive affine semigroup and let A be a positive quantum toric variety
with underlying semigroup S. Then the following hold.

(a) A is noetherian and integral.

(b) A has property χ and finite local dimension equal to the rank of S.

(c) Suppose S is normal. Then A is AS-Cohen-Macaulay and a maximal order in its division
ring of fractions. Furthermore, A is AS-Gorenstein if and only if there exists s ∈ S such
that relint S = s + S.

Proof. This is proved in [RZ15, section 3.2] in the case where the grading morphism
ψ is given by a full embedding of S in Nr for some r ≥ 0. The proposition follows
from the fact that all the properties mentioned in it are independent of the grading,
see paragraph 2.7.

Algebras with a quantum toric degeneration

Classically, a toric degeneration of an algebraic variety V is a flat deformation of V
into a toric variety T. Since varieties inherit many good properties from their flat
deformations, and positive affine toric varieties are well studied, toric degeneration
is a standard method to study algebraic varieties. With this in mind we introduce a
noncommutative analogue of toric degeneration.

3.7 Definition. Let A be a connected Nr-graded algebra. We will say that A has a quantum
positive affine toric degeneration if it has a connected filtration such that its associated
graded ring is a quantum positive affine toric variety. We refer to the underlying semigroup of
this quantum positive affine toric variety as the semigroup associated to the degeneration.

For the sake of brevity we will write “quantum toric degeneration”, omitting the
adjectives “positive” and “affine”. In view of Theorem 2.12 and Proposition 3.5, an
algebra with a quantum toric degeneration is noetherian, integral, has property χ

and finite local dimension. Furthermore, we can determine whether A is AS-Cohen-
Macaulay or AS-Gorenstein by studying the semigroup associated to the degeneration.

3.8. A standard technique for proving toric degeneration of a variety is to find the
structure of a Hodge algebra in the coordinate ring of the variety. We now introduce a
noncommutative notion, inspired in the definition of Hodge algebras and its descen-
dants such as classical and quantum algebras with a straightening law, which will play
a similar role for the rest of this article.

Definition. Let A be a noetherian connected Nr-graded algebra. Let S be a positive affine
semigroup and let (π, P) be a presentation of S as defined in 3.4, with P = {(pi, p′i) | 1 ≤ i ≤
m}. Let ϕ : S −→ N be a semigroup morphism such that ϕ−1(0) = {0}, and set ϕ̃ = ϕ ◦π.

We say that the algebra A is of (S, ϕ)-type with respect to (π, P) if the following hold.

16



1. A is generated as algebra by a finite set of homogeneous elements {b1, . . . , bn} of the

same cardinality as the Hilbert basis of S. We set bξ =
n

∏
i=1

b
ξi

i for each ξ ∈ Nn.

2. For each 1 ≤ i < j ≤ n and each ξ ∈ Nn such that ϕ̃(ξ) < ϕ(si + sj), there exist

ci,j ∈ k× and c
i,j
ξ ∈ k such that

bjbi = ci,jbibj + ∑
ϕ̃(ξ)<ϕ(si+s j)

c
i,j
ξ bξ .

3. For each 1 ≤ i ≤ m and each ξ ∈ Nn such that ϕ̃(ξ) < ϕ̃(pi) there exist di ∈ k× and
di

ξ ∈ k such that

bp′i = dib
pi + ∑

ϕ̃(ξ)<ϕ̃(pi)

di
ξ bξ .

We say that A is of (S, ϕ)-type if there exists a presentation of S such that A is of (S, ϕ)-type
with respect to it.

Remark. Since ϕ̃(ei) = ϕ(si) > 0 for all i, given l ∈ N there exist finitely many ξ ∈ Nn such
that ϕ̃(ξ) ≤ l and so the sums on the right hand side of the formulas displayed in 2 and 3 are
finite.

The reader familiar with Hodge algebras will notice that there is a condition miss-
ing in the definition, namely the existence of a set of linearly independent monomials
on the generators. Thus the trivial algebra is of (S, ϕ)-type for any S and ϕ. This
omission will be revised in 3.10, where the existence of a linearly independent set will
be shown to be equivalent to the existence of a quantum toric degeneration for the
algebra.

Example. As stated above, this definition is inspired by that of quantum graded algebras with
a straightening law (quantum graded ASL for short) as defined in [LR06, Definition 1.1.1]. A
quantum graded ASL is not necessarily an algebra of (S, ϕ)-type, but the results from [RZ12,
section 5] show that the quantized coordinate rings of grassmannians and their Richardson
subvarieties have this structure. Our paradigmatic example is the quantum grassmannian.

Fix a field k and let q ∈ k×. The quantum grassmannian Gq(2, 4) is the algebra generated
by elements {[ij], (i, j) ∈ Π2,4}, subject to the commutation relations

[34][12] = q−2[12][34] [24][13] = q−2[13][24] + q−2(q − q−1)[12][34]

while YX = q−1XY for any other pair X < Y (here we identify the generating set with
Π2,4 in the obvious way). There is also a quantum Plücker relation, given by [14][23] =
q−1[13][24] − q−2[12][34]. Notice that the set of generators can be identified with Π2,4, and
inherits the structure of a distributive lattice.

Setting wt as in [RZ12, Definition 4.3] we obtain an assignation

[12] 7→ 21 [13] 7→ 12 [14] 7→ 3

[23] 7→ 11 [24] 7→ 2 [34] 7→ 1

17



which extends to a semigroup morphism ϕ : str(Π2,4) −→ N. It is now a matter of routine
computations to check that Gq(2, 4) is of (str(Π2,4), ϕ)-type.

3.9. If A is an algebra of (S, ϕ)-type we write Fl A = 〈bξ | ϕ̃(ξ) ≤ l〉 for each l ∈ N. The
fact that ϕ̃(ei) > 0 for all i implies that this is a finite dimensional vector space, and
that F0 A = k. The following lemma shows that F = {Fl A}l≥0 is a connected filtration
on A.

Lemma. Let S be a positive affine semigroup. Let A be a noetherian connected Nr-graded
algebra, and assume that it is of (S, ϕ)-type with respect to a presentation (π, P). Then the
following hold.

1. Given ξ, ν ∈ Nn there exists cξ,ν ∈ k× such that bξbν ≡ cξ,νbξ+ν mod Fϕ̃(ξ+ν)−1A.
In particular F is a filtration on A.

2. Given (ξ, ν) ∈ L(π) there exists dξ,ν ∈ k× such that bξ ≡ dξ,νbν mod Fϕ̃(ξ)−1A.

Proof. To prove item 1 we proceed by induction on ϕ̃(ξ + ν), with the 0-th step being
obvious since F0A = k is a subalgebra of A. Suppose that the result holds for all
l < ϕ̃(ξ + ν) and let i be the least integer such that ξi 6= 0, so bξbν = bi(b

ξ−eibν).
Using the inductive hypothesis we obtain

bi(b
ξ−eibν) = bi

(

cξ−ei,νbξ−ei+ν + ∑
ϕ̃(ρ)<ϕ̃(ξ−ei+ν)

cρbρ

)

= cξ−ei,νbib
ξ−ei+ν + ∑

ϕ̃(ρ)<ϕ̃(ξ−ei+ν)

cρbib
ρ

where the cρ ∈ k and cξ−ei,ν ∈ k×. The inductive hypothesis also implies each product
bib

ρ lies in Fϕ̃(ξ+ν)−1A, so

bib
ξ−eibν ≡ cξ−ei,νbib

ξ−ei+ν mod Fϕ̃(ξ+ν)−1A.

Now let j be the least integer such that νj 6= 0. If i ≤ j then bib
ξ−ei+ν = bξ+ν and

we are finished; otherwise, using item 2 of Definition 3.8 and a similar argument as
before, we obtain

bib
ξ−ei+ν = (bibj)(b

ξ−ei+ν−e j) ≡ cj,i(bjbi)(b
ξ−ei+ν−e j) mod Fϕ̃(ξ+ν)−1A

The same reasoning applied to the product bj(bib
ξ−ei+ν−e j) shows that

bj(bib
ξ−ei+ν−e j) ≡ cei,ξ−ei+ν−e j

bj(b
ξ+ν−e j) mod Fϕ̃(ξ+ν)−1A.

Since j < i, the definition of j implies bj(b
ξ+ν−e j) = bξ+ν, so the proof of item 1 is

complete.
We now prove item 2. Set

T = {(ξ, ν) ∈ L(π) | bξ ≡ cbν mod Fϕ̃(ξ)−1 for some c ∈ k×}.
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We will show that L(π) ⊂ T, which clearly implies the desired result. By definition T
is an equivalence relation, and item 1 implies it is a congruence on Nn. By item 3 of
Definition 3.8, every pair (pi, p′i) ∈ P lies in T. Since L(π) is the smallest congruence
containing P, we deduce that L(π) ⊂ T.

3.10. Let S be a positive affine semigroup and let (π, P) be a presentation of S. A
section of π is a function τ : S −→ Nn such that π ◦ τ = IdS, that is s = ∑i τ(s)isi

for every s ∈ S. If A is an algebra of (S, ϕ)-type then Lemma 3.9 implies that for any
section τ of π the set {bτ(s) | s ∈ S} spans A. We now show that an algebra has a
quantum toric degeneration with associated semigroup S if and only if it is of (S, ϕ)-
type for an adequate morphism ϕ and the spanning set determined by any section is
linearly independent.

Proposition. Let S be a positive affine semigroup, and let A be a noetherian connected Nr-
graded algebra. The following statements are equivalent.

1. The algebra A has a quantum toric degeneration with associated semigroup S.

2. For every presentation (π, P) of S there exists a semigroup morphism ϕ : S −→ N such
that A is of (S, ϕ)-type with respect to (π, P), and for every section τ : S −→ Nn of π

the set {bτ(s) | s ∈ S} is linearly independent.

3. There exist a presentation (π, P), a semigroup morphism ϕ : S −→ N and a section
τ : S −→ Nn of π such that A is of (S, ϕ)-type with respect to (π, P) and the set
{bτ(s) | s ∈ S} is linearly independent.

Proof. We first show that 1 implies 2. By hypohtesis there exists a filtration by graded
subspaces F = {Fl A}l≥0 such that grF A ∼= kα[S] as Nr+1-graded algebras for some
2-cocycle α : S × S −→ k×, with the grading on the twisted semigroup algebra given
by a semigroup morphism ψ : S −→ Nr+1 such that ψ−1(0) = {0}. We identify grF A
with kα[S] through this isomorphism to simplify notation.

Fix a presentation (π, P) of S. For each 1 ≤ i ≤ n we choose homogeneous ele-
ments bi ∈ A such that gr bi = Xsi . By definition of the product of an associated graded

ring, for each ξ ∈ Nn the element ∏
n
i=1(gr bi)

ξi equals either gr
(

∏
n
i=1 b

ξi

i

)

or zero. Since

kα[S] is an integral ring the last possibility cannot occur, so gr(bξ) equals a nonzero
multiple of Xπ(ξ). Thus if τ : S −→ Nn is a section of π then for each s ∈ S there exists
a nonzero constant cs such that gr bτ(s) ≡ csXs, and so the set {gr bτ(s) | s ∈ S} is a
basis of kα[S], which implies that {bτ(s) | s ∈ S} is a basis of A. This also proves that
A satisfies item 1 of Definition 3.8.

Let ϕ : S −→ N be the additive map given by s 7→ ψ(s)r+1; equivalently ϕ(s) is the
minimal l such that bξ ∈ Fl A for all ξ ∈ π−1(s). In particular ϕ(si) > 0 since F0A = k.
Also Fl A =

〈

bξ | ϕ̃(ξ) ≤ l
〉

, and since for each ξ ∈ Nn there exists a nonzero constant

cξ such that gr bξ ≡ cξ gr bτ(π(ξ)) we actually have Fl A =
〈

bτ(s) | ϕ(s) ≤ l
〉

. Finally, for
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each 1 ≤ i, j ≤ n and each 1 ≤ k ≤ m there exist ci,j, dk ∈ k× such that

gr(bjbi) = ci,j gr(bibj),

gr bp′k = dk gr bpk

hold in grF A, which implies that items 2 and 3 of Definition 3.8 hold in A for the
morphism ϕ we have just defined. Thus A is of (S, ϕ)-type, and we have proved 1

implies 2.
We said in 3.4 that every positive affine semigroup has a presentation so clearly 2

implies 3. Let us see that 3 implies 1. Define the filtration F = {Fl A}l≥0 as in 3.9.
By item 2 of Lemma 3.9, the set {bτ(s) | ϕ(s) ≤ l} generates Fl A for each l ∈ N, and
since by hypothesis it is linearly independent, it is a basis of Fl A. Hence grF A is
generated by {gr bτ(s) | s ∈ S}. Once again by Lemma 3.9 for each s, s′ ∈ S there exist
β(s, s′), α(s, s′) ∈ k× such that

(gr bτ(s))(gr bτ(s′)) = β(s, s′) gr bτ(s)+τ(s′) = α(s, s′) gr bτ(s+s′).

Associativity of the product of grF A implies that α : S × S −→ k× is a 2-coycle,
so we may consider the k-linear map kα[S] −→ grF A induced by the assignation
Xs 7→ gr bτ(s), which is a multiplicative map. Since S is positive we must have τ(0) = 0,
and hence α(s, 0) = α(0, s) = 1 for all s ∈ S which implies that our multiplicative map
is unitaty and hence an isomorphism of k-algebras. Furthermore, the elements gr bτ(s)

are homogeneous, so this algebra is indeed a quantum positive affine toric variety.

Example. We return one last time to the example of the quantum grassmannian Gq(2, 4) over
an arbitrary field discussed in 3.8. We extend the order of Π2,4 to a total order so we can identify
the free abelian semigroup over Π2,4 with N6, and let π : N6 −→ str(Π2,4) be the presentation
morphism described in 3.4. For each s ∈ str(Π2,4) the fiber π−1(s) is finite and has a unique
maximal element with respect to the total lexicographic order of N6, which we denote by τ(s).
The monomials corresponding to this section are precisely the standard monomials introduced
in [LR06, Definition 3.2.1]. Using the map ϕ from 3.8 the quantum toric variety obtained
by degeneration is the twisted semigroup algebra presented in 3.5 (this explains the rather odd
choice of commutation coefficients in that example).

A similar argument holds not just for quantum grassmannians, but for the large class of
quantum graded ASL satisfying condition (C) introduced in [RZ12, Definition 4.1]. This
includes all quantum grassmannians in type A, along with their Schubert and Richardson
subvariaties. In the following section we will show that quantized coordinate rings of Schubert
subvarieties of arbitrary flag varieties also have a quantum toric degeneration.

3.11. We now introduce a second notion related to quantum toric degenerations. Re-
call that a commutative semigroup S is said to be well-ordered if there exists a well-
order < on S compatible with the additive structure, i.e. such that for all s, s′, s′′ ∈ S
the inequality s < s′ implies s + s′′ < s′ + s′′.

Definition. Let S be a commutative semigroup, and let < be a well-order on S compatible
with the semigroup structure. Let A be a connected Nl-graded algebra for some l ∈ N. An
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(S,<)-basis for A is an ordered basis {bs | s ∈ S} consisting of homogeneous elements, such
that for all s, s′, s′′ ∈ S with s′′ < s + s′ there exist cs,s′ ∈ k× and cs′′

s,s′ ∈ k such that

bsbs′ = cs,s′bs+s′ + ∑
s′′<s+s′

cs′′

s,s′bs′′ .

3.12. Let S be a commutative semigroup with neural element 0. Assume < is a well-
order on S compatible with its additive structure, and let A be an algebra. An (S,<)-
filtration on A is a collection of vector spaces F = {Fs A | s ∈ S}, such that Fs A · Fs′ A ⊂
Fs+s′ A for all s, s′ ∈ S, and such that Fs A ⊆ Fs′ A whenever s ≤ s′. The standard
notions related to N-filtrations translate easily to the context of (S,<)-filtrations. We
will assume that our filtrations are always exhaustive, so A =

⋃

s∈S Fs A, and discrete, so
Fs A = 0 for all s < 0.

Let A be an S-filtered algebra. The associated graded algebra grF A is defined
setting F<s A = ∑t<s Ft A and taking

grF A =
⊕

s∈S

Fs A

F<s A
.

As usual, for each element a ∈ A we may define gr a as the image of a in the quotient
Fs A/F<s A where s is the first element of S such that a ∈ Fs A; notice that this element
exists because < is a well-order. The product can then be defined as in the N-filtered
case, namely if a, b ∈ A and s, t are minimal elements such that a ∈ Fs A and b ∈ Ft A,
then (gr a)(gr b) equals the image of ab in Fs+t A/F<s+tA, which equals gr(ab) if t + s
is minimal with respect to the property that ab ∈ Ft+s A and zero otherwise.

Lemma. Let S be a positive affine semigroup and let < be a well-order of S compatible with
the semigroup structure. Let A be a noetherian Nl-graded connected algebra for some l ∈ N,
and assume A has an (S,<)-basis B = {bs | s ∈ S}. Set Fs A = 〈bt | t ≤ s ∈ S〉 and
F = {Fs A | s ∈ S}. Also let {s1, . . . , sn} be the Hilbert basis of S and set bi = bsi

for all
1 ≤ i ≤ n. The following hold.

1. The family F is an (S,<)-filtration. Furthermore, each quotient Fs A/F<s A is of dimen-
sion 1 and F0A = 〈1〉.

2. There exists a 2-cocycle α over S such that grF A is isomorphic as S-graded algebra to
kα[S] for the obvious S-grading on this.

3. The algebra A is generated by the set {bi | 1 ≤ i ≤ n}.

Proof. The fact that F is an exhaustive and discrete (S,<)-filtration is an immediate
consequence of the definition of an (S,<)-basis. Also F<s A = 〈bt | t < s〉, so Fs A/F<s A
is generated by the image of bs in the quotient, which is nonzero. Finally, writing 1 as
a linear combination of the bs and using a leading term argument, it is easy to see that
1 ∈ F0 A and hence it must generate it. Notice that this implies that b0 is a scalar so
without loss of generality we may assume that b0 = 1. This proves item 1.
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Set α(s, s′) = cs,s′ for each s, s′ ∈ S. By the first item the set {gr bs | s ∈ S} is a basis
of grF A, and (gr bs)(gr bs′) = cs,s′ gr bs+s′ by definition of the product on the associated
graded ring. Associativity of the product in grF A implies then that α is a 2-cocycle
over S, and furthermore the map grF A −→ kα[S] sending gr bs to Xs is a multiplicative
S-graded vector-space isomorphism. Since we are assuming that b0 = 1, it follows that
α(1, s) = α(s, 1) = 1 for all s ∈ S and hence our isomorphism preserves the unit, and
is thus a ring isomorphism. This proves item 2.

Finally, in order to prove that the bi’s generate A it is enough to show that each
bs is in the algebra generated by these elements. Suppose this is not the case. Then,
since S is well-ordered by <, there exists a minimal s such that bs is not in the algebra
generated by the bi’s. Take ξ = (ξ1, . . . , ξn) ∈ Nn such that ∑i ξisi = s. By the definition
of the product in the associated graded ring, ∏i(gr bi)

ξi equals either gr(bξ) or zero,
and since grF A ∼= kα[S] is integral (see [RZ15, Lemma 3.2.3]) the second possibility
can not occur. Thus gr(bξ) is a nonzero element of grF A of degree π(ξ), so item 1

of this lemma implies that gr bs = c gr(bξ) for some c ∈ k×, and hence bs = cbξ +

∑t<s ctbt. By the minimality of s all the bt’s appearing in the sum on the right hand
side of the equation lie in the algebra generated by the bi’s, and clearly so does bξ , a
contradiction.

3.13. There is an obvious way to obtain well-orderings on positive affine semigroups.
Since S is a positive affine semigroup it can be embedded in Nr for some r ≥ 0 through
a monoid morphism ι : S −→ Nr. Now Nr is a well-ordered semigroup with the
lexicographic order, which is compatible with its additive structure, so we may pull-
back the lexicographic order through ι and thus obtain a well-order <ι over S, which
is also compatible with its additive structure. Notice that in this case 0 is always the
minimal element of S.

Proposition. Let S be a positive affine semigroup, and let A be a noetherian connected Nl-
graded algebra for some l ∈ N. The algebra A has a quantum affine toric degeneration with
underlying semigroup S if and only if there exists an embedding ι : S −→ Nt such that A has
an ordered (S,<ι)-basis.

Proof. Suppose A has a quantum affine toric degeneration with underlying semigroup
S. Then by Proposition 3.10 there exists a semigroup morphism ϕ : S −→ N such that
A is of (S, ϕ)-type, and we may choose any section τ : S −→ Nn to obtain a basis
B = {bτ(s) | s ∈ S}. Let ρ : S −→ Nt−1 be an embedding (t > 1) and let ι : S −→ Nt

be defined as ι(s) = (ϕ(s), ρ(s)), which is an embedding of S since ρ is an embedding.
Write < for <ι, and notice that ϕ(s) < ϕ(s′) implies s < s′. By Lemma 3.9, for all
s, s′ ∈ S and all s′′ such that ϕ(s′′) < ϕ(s + s′) there exist cs,s′ ∈ k× and cs′′

s,s′ ∈ k such
that

bτ(s)bτ(s′) = cs,s′b
τ(s+s′) + ∑

ϕ(s′′)<ϕ(s+s′)

cs′′

s,s′b
τ(s′′),

which implies B is an ordered S-basis with respect to <.
Now assume A has an ordered S-basis with respect to some total order < induced

by an embedding ι : S −→ Nt. Since < is the pull-back of the lexicographic order
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through an embedding, we might as well assume S ⊂ Nt and that < is the lexico-
graphic order. By the previous lemma, we already know that the bi’s generate A, so
all that is left to do is to prove the existence of an additive map ϕ : S −→ N and that
the desired relations hold.

As before, we denote by π : Nn −→ S the map (ξ1, . . . , ξn) 7→ ∑i ξisi. Recall that
using the (S,<)-filtration F defined in the previous lemma, we proved that grF A ∼=
kα[S] for some 2-cocycle S. This implies that for all 1 ≤ i < j ≤ n and all ξ ∈ Nn such

that π(ξ) < si + sj there exist ci,j ∈ k× and c
i,j
ξ ∈ k such that

bjbi = ci,jbibj + ∑
π(ξ)<π(si+s j)

c
i,j
ξ bξ ,

and for each 1 ≤ i ≤ m and each ξ ∈ Nn such that π(ξ) < pi there exist di ∈ k× and
di

ξ ∈ k such that

bp′i = dib
pi + ∑

π(ξ)<pi

di
ξbξ .

Let C ⊂ S be the set consisting of the following elements:

- all si + sj with 1 ≤ i < j ≤ n;

- all π(pi) with 1 ≤ i ≤ m;

- all π(ξ) such that c
i,j
ξ 6= 0 for some 1 ≤ i < j ≤ n;

- and all π(ξ) such that di
ξ 6= 0 for some 1 ≤ i ≤ m.

The set C is finite and hence is contained in a cube [0, N]t for N large enough. Set ϕ :
Nt −→ N to be the semigroup morphism defined by (c1, . . . , ct) 7→ ∑

t
i=1 ci(N + 1)t−i.

If c ∈ C then ϕ(c) is the unique natural number such that its N + 1-adic expansion has
ci as its i-th digit. This implies that ϕ respects the restriction of the lexicographic order
to C, and thus A is of (S, ϕ)-type.

Let τ : S −→ Nn be any section of π. The algebra grF A has a natural S-grading,
and for each s ∈ S the element gr bτ(s) is of degree s. As we have already observed,
this is a non-zero element so the set {gr bτ(s) | s ∈ S} is a basis of grF A, which implies
that {bτ(s) | s ∈ S} is a basis of A. Thus by Proposition 3.10 A has a quantum affine
toric degeneration with underlying semigroup S.

Remark. The trick of turning the S-filtration into an N-filtration using N + 1-adic expansions
is due to Caldero [Cal02, Lemma 3.2]. A similar though less general version of this idea
appears in [GL96] and [RZ12].

3.14. We finish this section with an easy consequence of Lemma 3.9. It will not be
used in the sequel, but we include it for completeness.
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Proposition. Let S be a positive affine semigroup and A a noetherian connected Nr- graded
algebra. If A is of (S, ϕ)-type for some monoid morphism ϕ : S −→ N, and there exists some
section τ of π such that the set {bτ(s) | s ∈ S} is linearly independent, then the relations given
in items 2 and 3 of Definition 3.8 give a presentation of A.

Proof. Since A is of (S, ϕ)-type, it is generated as algebra by homogeneous elements

b1, . . . , bn, and there exist constants ci,j, c
i,j
ξ , di, di

ξ such that A complies with Definition
3.8. Furthermore, the relations described in items 2 and 3 of this definition are homo-
geneous.

Let B be the free algebra generated by X1, . . . , Xn and let I be the ideal of B gener-
ated by the elements

XjXi − ci,jXiXj − ∑
ϕ̃(ξ)<ϕ(si+s j)

c
i,j
ξ Xξ , for 1 ≤ i < j ≤ n;

Xp′i − diX
pi − ∑

ϕ̃(ξ)<ϕ̃(pi)

di
ξ Xξ , for 1 ≤ i ≤ m;

where Xξ = X
ξ1

1 X
ξ2

2 · · · X
ξn
n for each ξ ∈ Nn. We put an Nr grading on B by setting

deg Xi = deg bi, and this induces an Nr grading on B/I. Since B is a free algebra the
assignation Xi 7→ bi induces a morphism of graded algebras B −→ A, which factors
through B/I. We thus obtain a morphism of Nr-graded algebras f : B/I −→ A.

We denote by Yi the image of Xi in B/I. Clearly B/I is an (S, ϕ)- algebra, and
the algebra map f : B/I −→ A sends Yi to bi for all i. Since f (Yτ(s)) = bτ(s), the set
{Yτ(s) | s ∈ S} is linearly independent and hence a basis of B/I. Thus f maps a basis
onto a basis, so it is an isomorphism.

4 Quantum affine toric degeneration of quantum Schubert va-

rieties

We apply the results in the previous section to study Schubert varieties of quantum
flag varieties. We recall the definitions of quantum flag and Schubert varieties with
some detail in order to establish notation. We then adapt an argument due to P.
Caldero to show that these algebras have (S,<)-bases for adequate semigroups S. The
main ingredient in the construction of these bases is the canonical or global basis of
U−

q (g) discovered independently by Lusztig and Kashiwara. The semigroup arises out
of the string parametrization of this basis.

Quantum flag and Schubert varieties

4.1. Let g be a complex semisimple Lie algebra. We denote by Φ the root system of g
with respect to a fixed Cartan subalgebra, and by ZΦ its root lattice. We also fix a basis
Π ⊂ Φ of positive roots, and write P = {̟α | α ∈ Π} for the set of corresponding
fundamental weights. We denote by Λ the weight lattice ∑α∈Π Z̟α and by Λ+ the set
of dominant integral weights ∑α∈Π N̟α.
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Let W be the Weyl group of g, and sα ∈ W the reflection corresponding to α ∈ Π.
Given an element w ∈ W we denote its length by ℓ(w), and set N to be the length of
w0, the longest element of W. A decomposition of w ∈ W is a word on the generators
sα that equals w in W. The decomposition is reduced if it is of minimal length, i.e. its
length equals ℓ(w). We denote by (−,−) the standard W-invariant pairing between

ZΦ and Λ, and write 〈λ, α〉 = 2(λ,α)
(α,α)

for all λ ∈ Λ and α ∈ Φ, so if λ = ∑α∈Π rα̟α then

〈λ, α〉 = rα.

4.2. Fix q ∈ k×. Let Uq(g) be the quantum enveloping algebra of g; this is an algebra
generated by elements Fα, Eα, K±1

α for α ∈ Π, with the relations given in [Jan96, Defi-
nition 4.3]. We denote by U+

q (g), U−
q (g) the subalgebras generated by the Eα’s and the

Fα’s, which are respectively called the positive and negative parts of Uq(g) [Jan96, 4.4].
As shown in [Jan96, Proposition 4.11], Uq(g) is a Hopf algebra.

If q is not a root of unity and chark > 3 then by [Jan96, chapter 5] for each λ ∈
Λ+ there is an irreducible highest-weight representation of Uq(g) of type 1, which
we denote by Vq(λ). Each Vq(λ) decomposes as the direct sum of weight spaces
⊕

µ∈Λ Vq(λ)µ; the dimensions of the weight spaces are the same as the corresponding
representation over g, so the Weyl character formula holds for these representations,
see [Jan96, 5.15].

4.3. Let G be the simply connected, connected algebraic group with Lie algebra g.
Since Uq(g) is a Hopf algebra, its dual Uq(g)∗ is an algebra with convolution product
induced by the coproduct of Uq(g). There is a map Vq(λ)∗ ⊗Vq(λ) −→ Uq(g)∗ defined
by sending ϕ ⊗ v ∈ Vq(λ)∗ ⊗ Vq(λ) to the linear functional cλ

ϕ,v, which assigns to

each u ∈ Uq(g) the scalar cλ
ϕ,v(u) = ϕ(uv). Functionals of the form cλ

ϕ,v are called
matrix coefficients. The k-linear span of the matrix coefficients is a subalgebra of Uq(g)∗

denoted by Oq[G], called the quantized algebra of coordinate functions over the group
G [Jan96, 7.11].

4.4. Quantum analogues of flag varieties and their Schubert subvarieties were intro-
duced by Soibelman in [Soı̆92] and by Lakshmibai and Reshetikhin in [LR92]; we
review their definition. We assume that q is not a root of unity. Fix a maximal Borel
subgroup B of G. The full flag variety associated to G is G/B. Let C+

q (λ) be the vector

space of matrix coefficients of the form cλ
ϕ,vλ

in Uq(g)∗, where vλ is a highest weight
vector in Vq(λ), and set

Oq[G/B] =
⊕

λ∈Λ+

C+
q (λ) ⊂ Oq[G] ⊂ Uq(g)

∗.

This is called the quantum full flag variety of G. The product of two matrix coefficients
in Oq[G/B] is again in Oq[G/B], and its decomposition as a direct sum gives Oq[G/B]
the structure of a Λ+-graded algebra.

Let I be a subset of the set of fundamental weights and set J (I) = ∑̟/∈I N̟.
Denote by WI ⊂ W the subgroup generated by the reflections sα with ̟α ∈ I, and for
each class in W/WI pick a representative of minimal length. We denote by W I the set
of these representatives. Since the Weyl character formula holds, for each w ∈ W and
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each λ ∈ J (I) the vector space Vq(λ)wλ has dimension 1. The Demazure module Vq(λ)w

is the U+
q (g)-submodule of Vq(λ) generated by a vector of weight wλ in Vq(λ).

The set I determines a Lie subalgebra p ⊂ g, and a parabolic subgroup PI ⊂ G. The
variety G/PI is the corresponding generalized flag variety. To these data we associate
the Λ+-graded subalgebra of Oq[G/B]

Oq[G/PI ] =
⊕

λ∈J (I)

C+
q (λ)

called the quantum partial flag variety associated to I.
Given vector spaces V2 ⊂ V1, we denote by V⊥

2 the set of linear functionals over V1

which are zero on V2. For every w ∈ W I the vector space

J I
w =

⊕

λ∈J (I)

〈

cλ
ϕ,vλ

∈ C+
q (λ) | ϕ ∈ Vq(λ)

⊥
w

〉

⊂ Oq[G/PI ]

is an ideal of Oq[G/PI ] called the Schubert ideal associated to w. The quotient algebra
Oq[G/PI ]w = Oq[G/PI ]/J I

w is called the quantum Schubert variety associated to w.

Degeneration of quantum Schubert varieties

Our aim is to show that quantum Schubert varieties have quantum affine toric degen-
erations. In order to do so we work for a moment over the field Q(v), where v is
an indeterminate over Q, and consider the Q(v)-algebra U = Uv(g). We now review
Caldero’s proof of the existence of an (S,<lex)-basis of Ov[G/B], and its natural exten-
sion to arbitrary partial flag and Schubert varieties [Cal02]. Since Caldero is interested
in classical flag varieties, he works with a large base field C(q) that allows him to
specialize at q = 1 and still get algebraic varieties over the complex numbers. We give
a different version of his argument which works over Q(v).

4.5. Fix as our base field Q(v), and set U = Uv(g). We denote by U+ and U− the
algebras U+

v (g) and U−
v (g), respectively.

Let A = Z[v, v−1] ⊂ Q(v). For each n ∈ N and each α ∈ Π we write vα for v(α,α)/2.

We also use the notation [n]α = vn
α−v−n

α

vα−v−1
α

, and [n]α! = [1]α[2]α · · · [n]α. Finally, we set

F
(n)
α = 1

[n]α!
Fn

α and E
(n)
α = 1

[n]α!
En

α . The algebra U has an A-form which we denote by

UA; it is the A-subalgebra of U generated by the elements of the form F
(n)
α , E

(n)
α , K±1

α

for all α ∈ Π and all n ≥ 0 [Jan96, 11.1]. The algebra U+, resp. U−, also has an

A-form which we denote by U+
A, resp. U−

A ; it is generated by all the E
(n)
α , resp. F

(n)
α ,

with n ≥ 0. These A-forms are compatible with the weight decomposition of U. By
construction U ∼= Q(v)⊗A UA, and analogous results hold for U+

A and U−
A .

For the rest of this section we fix a nonzero highest weight vector vλ ∈ Vv(λ).
Setting VA(λ) = U−

Avλ ⊂ Vv(λ) we obtain A-forms of U-modules. These A-forms are
compatible with the weight decompositions of the original objects, see [Jan96, chapter
11]. Now let λ be a dominant integral weight and fix w ∈ W. The A-form of the
Demazure module Vv(λ)w is defined as VA(λ)w = U+

AVA(λ)wλ.
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4.6. The algebra U−
A has a homogeneous A-basis, called the canonical or global basis

of U−, discovered independently by Lusztig and Kashiwara. Its construction is the
subject of [Jan96, chapters 9 - 11], and we will use the notation from this source to
recapitulate some relevant facts.

Set A0 ⊂ Q(v) to be the ring of rational functions without a pole at 0. For each
α ∈ Π define the operators Ẽα, F̃α : U− −→ U− as in [Jan96, 10.2], and let L(∞) be the
A0-lattice generated by all elements of the form F̃α1

F̃α2 · · · F̃αr(1); by definition these
are weight elements, so setting L(∞)−ν = L(∞) ∩ U−

−ν for each ν ∈ ZΦ with ν ≥ 0,
we get L(∞) =

⊕

ν≥0 L(∞)−ν, and furthermore each L(∞)−ν is a finitely generated
A0-module that generates U−

ν over Q(v).
Set

B(∞)−ν =

{

F̃α1
F̃α2 · · · F̃αr(1) + vL(∞) | ∑

i

αi = ν

}

⊂ L(∞)−ν/vL(∞)−ν,

and set B(∞) =
⊔

ν≥0 B(∞)−ν. Although it is not obvious, B(∞)−ν is a basis of
L(∞)−ν/vL(∞)−ν [Jan96, Proposition 10.11]; this is the crystal basis of U−

−ν at v = 0.
It turns out that each b ∈ B(∞)−ν has a unique lift G(b) ∈ L(∞)−ν ∩ U−

A , which is
invariant under the action of certain automorphisms of U [Jan96, Theorem 11.10 a)].
The set G(B) of all G(b) with b ∈ B(∞) is the global basis of U−

A.
Let w ∈ W, and let w = sα1

· · · sαr be a reduced decomposition of w. Set Bw(∞) as

the set of elements in B(∞) of the form F̃k1
α1

F̃k2
α2
· · · F̃kr

αr (1) + vL(∞) with kj ≥ 0. This set
does not depend on the decomposition of w [Kas93, Proposition 3.2.5].

Theorem. Let ν ∈ ZΦ with ν ≥ 0.

(a) The set {G(b) | b ∈ B(∞)−ν} is an A-basis of (U−
A)−ν.

(b) Let λ be a dominant integral weight. The set {G(b)vλ | b ∈ B(∞)−ν} \ {0} is an
A-basis of VA(λ)λ−ν. Furthermore, if G(b)vλ = G(b′)vλ 6= 0 then b = b′.

(c) Let w ∈ W. The set Bw(λ) = {G(b)vλ | b ∈ Bw(∞)} \ {0} is an A-basis of VA(λ)w.

Proof. The first two items are part of [Jan96, Theorem 11.10]. The third is [Kas93,
Proposition 3.2.5 (vi)].

4.7. We now use the global basis to produce bases for quantum Schubert varieties. For
each dominant integral weight λ we write B(λ) = {b ∈ B(∞) | G(b)vλ 6= 0}. By the
previous theorem the set {G(b)vλ | b ∈ B(λ)} is a basis of Vv(λ), so we can take its
dual basis. Given b ∈ B(λ), we denote by b∗λ the unique element of Vv(λ)∗ such that
b∗λ(G(b′)vλ) = δb,b′ for all b′ ∈ B(λ). Thus to each element b ∈ B(λ) we can associate
the matrix coefficient bλ = cλ

b∗λ,vλ
∈ C+

v (λ), and the set {bλ | b ∈ B(λ)} is a basis of

C+
v (λ). Since the quantum flag variety is the direct sum of all these spaces with λ

running over all dominant integral weights, we obtain a basis of Ov[G/B] as defined
in 4.4 by taking

FB = {bλ | b ∈ B(λ), λ ∈ Λ+}.
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If I is a subset of the fundamental weights, then we obtain a basis of the partial
flag variety Ov[G/PI ] by taking

FBI = {bλ | b ∈ B(λ), λ ∈ J (I)}.

Finally, the third item of the previous theorem implies that the ideal J I
w defined in 4.4

is spanned over Q(v) by all elements of the form bλ with b ∈ B(λ) \ Bw(∞). Setting
Bw(λ) = Bw(∞)∩B(λ) we obtain a basis for the quantum Schubert variety Ov[G/PI ]w
by taking the image of

SBI(w) = {bλ | b ∈ Bw(λ), λ ∈ J (I)}.

in the quotient.

4.8. Recall that the Kashiwara operators Ẽα, F̃α induce operators Ẽα, F̃α : B(∞) −→
B(∞) ∪ {0} [Jan96, 10.12]. By definition the operators Ẽα are locally nilpotent as op-
erators on U [Jan96, 10.2] and hence as operators on B(∞), so it makes sense to set

eα(b) = max{k ∈ N | Ẽk
α(b) 6= 0} for each b ∈ B(∞). We write Eα(b) = Ẽ

eα(b)
α (b).

To each reduced decomposition of w ∈ W we can associate a parametrization
of Bw(∞), known as a string parametrization, introduced by Littelmann [Lit98] and
Berenstein and Zelevinsky [BZ01]. If w̃ = sα1

· · · sαr is the chosen decomposition then
we define Λw̃ : B(∞) −→ Nr by the formula

Λw̃(b) = (eα1
(b), eα2(Eα1

(b)), . . . , eαr(Eαr−1
· · · Eα1

(b))).

If a = Λb̃ then F̃a1
α1
· · · FaN

αN
1 = b, so this map is injective. Now according to [BZ01,

Proposition 3.5], the set Sw̃ = Λw̃(Bw(∞)) is the set of integral points of a convex
polyhedral cone, and hence by Gordan’s lemma a normal affine semigroup.

A decomposition of w0, the longest word of W, is said to be adapted to w if it is of
the form sα1

· · · sαN
with sα1

· · · sαℓ(w)
= w. For every element w ∈ W there exists a de-

composition of the longest word of W adapted to w, or in other words the longest word
of W is the maximum for the weak right Bruhat order on W, see [BB05, Proposition
3.1.2].

Definition. Set Π = {α1, . . . , αn} and set ̟i = ̟αi
. Fix w ∈ W and fix w̃0 a decomposition

of w0 adapted to w. We define

Γw̃0 : FB −→ NN ×Nn

bλ 7−→ Λw̃0(b)× (〈λ, α1〉, . . . , 〈λ, αn〉).

and set S̃w̃0 = Γw̃0(FB), S̃I
w̃0

= Γw̃0(FBI) and S̃I
w̃0,w̃ = Γw̃0(SBI(w)).

If Γw̃0(bλ) = Γw̃0(b
′
λ′) then λ = λ′ and Λw̃0(bλ) = Λw̃0(b

′
λ′), which implies bλ = b′λ′ .

Thus Γw̃0 is injective and the sets S̃w̃0 , S̃I
w̃0

and S̃I
w̃0,w̃ parametrize bases of the quantized

coordinate rings of the full flag variety, the partial flag variety associated to the set I,
and of the Schubert variety associated to I and w, respectively.

Lemma. The sets S̃w̃0 , S̃I
w̃0

and S̃I
w̃0,w̃ are normal affine semigroups.
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Proof. According to [Lit98, Proposition 1.5] S̃w̃0 is the set of all a × (r1, . . . , rn) ∈ Sw̃0 ×
Nn such that

al ≤

〈

λ −
N−l

∑
j=1

aN−j+1αiN−j+1
, αil

〉

(1 ≤ l ≤ N)

where λ = ∑i ri̟i. Thus S̃w̃0 is the set of points of Sw̃0 ×Nn that comply with these
inequalities, and hence it is also a normal affine semigroup.

Furthermore, S̃I
w̃0

= Γw̃0(FBI) is the intersection of S̃w̃0 with the hyperplanes de-
fined by the equations xN+i = 0 for all i such that ̟i ∈ I, and hence is also a normal
affine semigroup. Finally, the fact that the decomposition w̃0 is adapted to w implies
that S̃I

w̃0,w̃ = Γw̃0(SBI(w)) is the intersection of S̃I
w̃0

with the hyperplanes defined by
xi = 0 for all ℓ(w) < i ≤ N, and hence it is also a normal affine semigroup.

4.9. We have just shown that the bases of quantum flag varieties and quantum Schu-
bert varieties defined in 4.7 are parametrized by normal semigroups. All that is left to
check is that they have the multiplicative property of (S,<lex)-bases, where <lex is the
lexicographic order of NN ×Nn.

Let λ, λ′ ∈ Λ+ and b ∈ B(λ), b′ ∈ B(λ′). Recall that b∗λ denotes the element
in the dual basis of Vv(λ)∗ as defined in 4.7. The product bλb′λ′ is by definition the
matrix coefficient corresponding to the functional b∗λ ⊗ b′∗λ′ and the vector vλ ⊗ vλ′ over
V(λ)⊗ V(λ′). Now the U-module generated by vλ ⊗ vλ′ is isomorphic to Vv(λ + λ′),
so b∗λ ⊗ b′∗λ′ naturally induces an element in C+

v (λ + λ′), and the product bλb′λ′ is a
linear combination of matrix coefficients in C+

v (λ + λ′)

bλb′λ′ = ∑
b′′∈B(λ+λ′)

cb′′

b,b′b
′′
λ+λ′

with cb′′

b,b′ ∈ Q(v). In order to show that FB is an (S̃ω̃0 ,<lex)-basis we must show that

cb′′

b,b′ 6= 0 implies that Γω̃0(b
′′) ≤ Γω̃0(b) + Γω̃0(b

′), and that if equality holds then cb′′

b,b′

is nonzero. Notice that this would also imply that FBI is an (S̃I
ω̃0

,<lex)-basis and that

SBI(w̃) is a (S̃I
ω̃0,w̃,<lex)-basis.

By definition of a dual basis the scalar cb′′

b,b′ is the value bλb′λ′(G(b′′)). On the other
hand, by the definition of the product of matrix coefficients

bλb′λ′(G(b′′)) = b∗λ ⊗ b′∗λ′(∆(G(b′′)) · vλ ⊗ vλ′),

so we need to study the coproduct ∆(G(b′′)). It follows from [Jan96, 4.9 (4)] that

∆(F
(r)
α ) = ∑i+j=r v

ji
α F

(i)
α ⊗ F

(j)
α K−i

α , where vα = v(α,α)/2. Thus by an argument similar to
that of [Jan96, Lemma 4.12] we see that

∆(U−
A)−ν ⊂

⊕

0≤µ≤ν

(U−
A)−µ ⊗ (U−

A)−(ν−µ)K−µ

It follows that ∆(G(b′′)) is an A-linear combination of terms G(b(1))⊗ G(b(2))Kµ, with
b(1), b(2) ∈ B(∞), and µ the weight of b(1). Among all these terms there is one of the
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form db′′

b,b′(G(b)⊗ G(b′)Kwt(b)) with db′′

b,b′ ∈ A, and thus cb′′

b,b′ = v(wt(b),λ
′)db′′

b,b′ . Notice that

unlike before, the element db′′

b,b′ is independent of λ and λ′.

The problem of showing that FB is indeed an (S̃w̃0 ,<lex)-basis thus reduces to
showing that if db′′

b,b′ 6= 0 then Λw̃0(b
′′) ≤lex Λw̃0(b) + Λw̃0(b

′); this also implies that

FBI and SBI(w̃) are (S̃w̃0 ,<lex)-bases. Caldero shows that this is indeed the case in
[Cal02, Theorem 2.3], under the hypothesis that q is transcendental over C. We give
an alternative proof in the following paragraphs.

4.10. We fix some notation. Given a decomposition of the longest word of W w̃0 =

sα1
· · · sαN

, for each a ∈ NN we write F(a) = F
(a1)
α1

· · · F
(aN)
αN

and F̃a = F̃a1
α1
· · · F̃aN

αN
. If a lies

in the image of Λw̃0 then we write ba = Λ−1
w̃0
(a).

According to [Lit98, Proposition 10.3] the monomials F(a) with a in the image of
Λω̃0 form a weight basis of U−

A. In fact, if we fix ν ∈ ZΦ, ν ≥ 0, the change of basis
matrix between Littelman’s monomial basis and the global basis of (U−

A)−ν is unipo-
tent if we order the bases according to the lexicographic order of the corresponding
a ∈ Im Λω̃0 . The following lemma records this fact. On the other hand, we can con-
sider a monomial of the form F(a) with a outside the image of Λω̃0 ; we show that in
this case the monomial is a linear combination of monomials whose exponents are
strictly larger than a in the lexicographic order, or equivalently, elements G(ba′) with
a′ >lex a.

Lemma. Fix w̃0 = sα1
· · · sαN

a decomposition of the longest word of W. Let a ∈ NN , and let
ν ∈ ZΦ, ν ≥ 0 be such that F(a) ∈ U−

−ν.

(a) Let α ∈ Π and r > 0. Let b ∈ B(∞)−ν. Then for each b′ ∈ B(∞)−ν−rα with
eα(b′) > r + eα(b) there exists xb′ ∈ A such that

F
(r)
α G(b) =

[

r + eα(b)

r

]

G(F̃r
αb) + ∑

eα(b′)>r+eα(b)

xb′G(b′).

(b) Suppose a lies in the image of Λw̃0 . Then for each a′ ∈ Λw̃0(B(∞)−ν) with a′ >lex a
there exist xa,a′ , ya,a′ ∈ A such that

F(a) = G(ba) + ∑
a′>lexa

xa,a′G(ba′), G(ba) = F(a) + ∑
a′>lexa

ya,a′F
(a′).

(c) Suppose a does not lie in the image of Λw̃0 . Let b = F̃a1 + vL(∞) ∈ B(∞)−ν and let
s = Λw̃0(b). Then s >lex a, and for each a′ ∈ Λw̃0(B(∞)−ν) with a′ >lex a there exists
za,a′ ∈ A such that

F(a) = ∑
a′>lexa

za,a′G(ba′).

Furthermore za,s 6= 0.
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Proof. Recall from [Jan96, Lemma 11.3] that F̃r
α(U

−
A)−ν = ∑s≥0 F

(r+s)
α (U−

A)−ν+sα, and
that for each u ∈ (U−

A)−ν we have

F̃r
αu = F

(r)
α u + F̃r+1

α u′ = F
(r)
α u + ∑

s≥1

F
(r+s)
α us

where u′ ∈ (U−
A)ν+α and us ∈ (U−

A)ν+sα. Set e = eα(b). As shown in the proof of
[Jan96, Lemma 11.12], in p. 249 below equation (1),

G(b) = F̃e
α(G(Ẽe

αb)) + F̃e+1
α u′ (†)

with u′ ∈ (U−
A)ν+α, so

G(b) = F
(e)
α (G(Ẽe

αb)) + ∑
s≥1

F
(e+s)
α us.

Multiplying this by F
(r)
α we get

F
(r)
α G(b) =

[

r + e

r

]

F
(r+e)
α (G(Ẽe

αb)) + ∑
s≥1

F
(r+e+s)
α u′

s.

Using † we get

F̃r+e
α (G(Ẽe

αb)) = F̃r+e
α (G(Ẽe+r

α F̃r
αb)) = G(F̃r

αb) + F̃r+e+1
α u′′

and finally

F
(r)
α G(b) ≡

[

r + e

r

]

G(F̃r
αb) mod F̃r+e+1

α (U−
A)−ν.

By [Jan96, Lemma 11.12] the G(b′) with eα(b′) > r+ e form an A-basis of F̃r+e+1
α (U−

A)−ν,
so we are done with item (a).

As mentioned above, item (b) is a consequence of [Lit98, Proposition 10.3], which
states that given a dominant integral weight λ and a highest weight vector vλ ∈ VA(λ),
then if G(ba)vλ 6= 0 there exist xa,a′ as in the statement such that

F(a)vλ = G(ba)vλ + ∑
a′>lexa

xa,a′G(ba′)vλ.

As shown in the proof of [Jan96, Theorem 10.10], there exists a dominant integral
weight λ such that the map U−

−ν −→ Vv(λ)λ−ν given by G(b) 7→ G(b)vλ is an iso-
morphism, so the first formula is proved. This means that the (finite) matrix of the
coefficients of the F(a) ∈ (U−

A)−ν in the global basis of (U−
A)−ν with the order induced

by the lexicographic order, is lower triangular with ones in the diagonal. The second
formula follows by taking the inverse of this matrix.
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Let us prove the last item. Suppose that s <lex a. Then by definition s1 =
a1, . . . , sj = aj, sj+1 < aj+1 for some 1 ≤ j ≤ N. This implies that

Ẽ
s j+1+1
αj+1

Ẽ
s j
αj
· · · Ẽs1

α1
(b) = F̃

aj−s j−1
αj+1

· · · F̃aN
αN

1 + vL(∞) 6= 0,

since the maps F̃α are injective. This contradicts the definition of Λw̃0(b), so s ≥lex a
and since a is not in the image of Λw̃0 the inequality is strict.

We now prove the following intermediate result: for each a ∈ NN we have F(a) =
z′a,sG(bs) + ∑a′>lexa z′a,a′ F

(a′), where s = Λ−1
ω̃0
(F̃a(1 + vL(∞))) and z′a,a′ , z′a,s lie in A for

all a′. We prove this by descending induction on j = min{i | ai 6= 0}, starting with the
case j = N. In that case item (a) implies that F̃a = G(ba) and we are done.

Now let a ∈ NN be the N-tuple given by aj = 0 and ai = ai for all i 6= j. By the
inductive hypothesis we have

F(a) = F
(aj)
αj

F(a) = z′a,sF
aj
αj

G(bs) + ∑
a′>a

z′a,a′F
(aj)
αj

F(a′).

Now F
(aj)
αj

F(a′) is a scalar multiple of F(a′) where a′j = aj and a′i = ai, and clearly

a′ >lex a. On the other hand by item (a)

F
aj
αj

G(bs) =

[

aj + e

aj

]

G(F̃
aj
αj

bs) + ∑
eαj

(b′)>aj+eαj
(b)

xb′G(b′)

where e = eαj
(bs). Since bs = F̃a we have F̃

aj
αj

bs = F̃a(1 + vL(∞)) = bs. On the other

hand, the condition eαj
(b′) > aj + eαj

(b) guarantees that Λω̃0(b
′) >lex a and by item (b)

each G(b′) is a linear combination of monomials F(a′) with a′ >lex a. This completes
the proof of the intermediate result.

Now consider the set D of all a /∈ Im Λω̃0 such that F(a) ∈ (U−
A)−ν for which the

statement of (c) fails. This set is finite and totally ordered by the lexicographic order, so
if it is not empty then it has a maximal element d. Now by the intermediate statement
F(d) = z′d,sG(bs) + ∑d′>lexd z′d,d′F

(d′), and since no d′ can be in D, this sum is an A-linear

combination of elements G(bs′) with s′ >lex d′ >lex d. This contradicts the fact that
d ∈ D, and the contradiction arose from supposing D was nonempty. Thus (c) holds
in all cases.

4.11. Recall that we have defined cb′′

b,b′ ∈ A as the coefficient of b′′λ+λ′ in bλbλ′ , and that

we have shown that it equals a power of v times db′′

b,b′ , the coefficient of G(b)⊗G(b′)K−µ

in ∆(G(b′′)), where −µ is the weight of G(b). We have also shown above that the
statement of the following proposition is equivalent to FB being a (S̃ω̃0 ,<lex)-basis.

Proposition. Fix w̃0 = sα1
· · · sαN

a decomposition of the longest word of W. Let b, b′, b′′ ∈
B(∞). If db′′

b,b′ 6= 0 then Λw̃0(b
′′) ≤lex Λw̃0(b) + Λw̃0(b

′), and if equality holds then db′′

b,b′ is a
power of v.
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Proof. We have already observed that ∆(F
(r)
α ) = ∑i+j=r v

ij
α F

(i)
α ⊗ F

(j)
α K−i

α , and it follows

that for each a ∈ NN we get ∆(F(a)) = ∑t+u=a vz(t,u)F(t) ⊗ F(u)Kwt(F(t)), with z(t, u) ∈ Z.
By item (b) of the previous lemma

∆(G(ba)) = ∆(F(a)) + ∑
a′>lexa

ya,a′∆(F(a′))

= ∑
t+u=a

vz(t,u)F(t) ⊗ F(u)Kwt(F(t)) + ∑
t+u>lexa

ya,t+uvz(t,u)F(t) ⊗ F(u)Kwt(F(t)),

and using item (c) of the lemma we get that the element in the last display equals

∑
t+u=a

vz(t,u)G(bt)⊗ G(bu)Kwt(bt) + ∑
t+u>lexa

y′t,uG(bt)⊗ G(bu)Kwt(bt),

where t, u run over the image of Λw̃0 , and z(t, u) ∈ Z and y′t,u ∈ A for each such pair
(t, u). The result follows by taking ba = b′′.

Remark. It is possible to take an alternative approach, and define bases for quantum flag
and Schubert varieties as in paragraph 4.7 starting with the monomial basis instead of the
global basis, and in this case we also obtain an (S,<lex)-basis. This is the approach taken by
Fang, Fourier and Littelmann in [FFL17b], where they obtain many different monomial bases
for (classical) enveloping algebras and hence many different degenerations for a larger class of
varieties (in the commutative case). The price to pay is that one loses control over the semigroup
parameterizing the basis i.e. the exponents of the monomial basis. In general it is not known
whether this semigroup is affine (though in some cases it is known that it is not normal, see
the aforementioned article). In our case this is guaranteed by the fact that this semigroup is the
same as that arising from the string parametrization, which is known to be affine. Thus even
in the alternative approach the relation between the monomial basis and the canonical basis is
essential.

4.12. Now let k be an arbitrary field with char k > 2, or char k > 3 if the root system
of g has an irreducible component of type G2, and let q ∈ k× be a nonroot of unity.
There is a morphism A −→ k induced by the assignation v 7→ q, which makes k into
an A-bimodule. There is an algebra map κ : U−

q (g) −→ k⊗A U−
A , given by sending

Fαi
∈ U−

q (g) to 1 ⊗A Fαi
. This map is obviously surjective, and it respects the weight

decomposition of both algebras. By [Jan96, 8.24 Remark (3)], the dimension of the
weight components of both algebras are given by the Kostant partition function, and
hence they are equal. Thus κ is an isomorphism.

The map k⊗A VA(λ) −→ Vq(λ) is U−
q (g)-linear and sends highest weight vectors

to highest weight vectors, so it is an isomorphism and the global basis of VA(λ) maps
to a basis of Vq(λ), which we also call the global basis of Vq(λ). Also, if we set C+

A(λ)
as the A-span of bλ for b ∈ B(λ) we get an isomorphism k⊗A C+

A(λ) 7→ C+
q (λ), with

the image of the bλ forming the dual basis of the global basis of Vq(λ). Thus if we set
OA[G/PI ]w to be the A-span of SBI(w) inside Ov[G/PI ]w, we get that the natural map
k⊗A OA[G/PI ]w −→ Oq[G/PI ]w is an isomorphism.
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Theorem. Let k be any field and let q ∈ k× be a nonroot of unity. Let I ⊂ P be a set of
fundamental weights, let w ∈ W, and let w̃0 be a reduced decomposition of w0 adapted to w.

The quantum Schubert variety Oq[G/PI ]w degenerates to a quantum affine toric variety
with associated semigroup S̃I

w̃0,w̃. In particular any quantum Schubert variety has property
χ, finite local dimension, the AS-Cohen-Macaulay property, and is a maximal order in its
skew-field of fractions.

Proof. For each dominant integral weight λ and each a ∈ Λw̃0(B(λ)), we denote by
ba

λ the element 1 ⊗A bλ ∈ k ⊗A Ov[G/PI ]w where b = Γ−1
w̃0
(a). With this notation,

it follows from 4.10 that for each pair of dominant integral weights λ, λ′ and each
a ∈ Λw̃0(B(λ)), a′ ∈ Λw̃0(B(λ

′)), a′′ ∈ Λw̃0(B(λ + λ′)) such that a′′ ≥lex a + a′, there
exists xa′′ ∈ A such that

ba
λba′

λ′ = ∑
a′′≥a+a′

xa′′b
a′′

λ+λ′ ,

with xa+a′ a power of q. This implies that the basis {1 ⊗ b | b ∈ SBI(w)} is a
(S̃I

w̃0,w̃,≤lex ) basis. Thus by Proposition 3.13 we get the degeneration result.

Since S̃w
w0,I is a normal semigroup, we know by Proposition 3.6 that the associated

graded ring of the quantum Schubert variety has property χ, finite local dimension
and the AS-Cohen-Macaulay property, which Oq[G/PI ]w inherits by Theorem 2.12.
Also by Proposition 3.6, a quantum affine toric variety whose underlying semigroup is
normal is a maximal order in its ring of fractions, and it follows from [MR80, Chapitre
IV, Proposition 2.1 and Chapitre V, Corollaire 2.6] that Oq[G/PI ]w is also a maximal
order.
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[NVO79] C. Năstăsescu and F. Van Oystaeyen, Graded and filtered rings and modules, Lecture Notes in
Mathematics, vol. 758, Springer, Berlin, 1979.
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