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Abstract:We consider an optimal rearrangement minimization problem involving the fractional Laplace op-
erator (−∆)s, 0 < s < 1, and the Gagliardo seminorm |u|s. We prove the existence of the unique minimizer,
analyze its properties as well as derive the non-local and highly non-linear PDE it satis�es

−(−∆)sU − χ{U≤0} min{−(−∆)sU+; 1} = χ{U>0},

which happens to be the fractional analogue of the normalized obstacle problem ∆u = χ{u>0}.
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1 Introduction 10

One of the classical problems in rearrangement theory is the minimization of the functional

Φ(f ) =
∫
D

|∇uf |2dx, (1.1)

where uf is the unique solution of the Dirichlet boundary value problem in a bounded domain D{
−∆uf = f in D,
uf = 0 on ∂D,

(1.2)

and f belongs to the set

R̄β =

f ∈ L∞(D) : 0 ≤ f ≤ 1,
∫
D

fdx = β

 .

Recall that R̄β is the closure in the weak* topology of the rearrangement class

Rβ :=
{
f ∈ L∞(D) : f = χE , |E| = β

}
.

This minimization problem is related to the stationary heat equation

∂tu︸︷︷︸
=0

−∆u = f
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in the bounded domain D, which is under the action of the external heat sourcemodeled by the force function
f . The Dirichlet boundary condition, u = 0 on ∂D, models the constant temperature on the boundary of D.
Di�erent force functions f result di�erent heat distributions uf . The minimizer f̂ of the functional (1.1) is the
force function from a certain rearrangement class R, which is resulting the most uniformly distributed heat
u f̂ .5

The problem and its variations, such as the p−harmonic case, has been studied by several authors (see
[5–7, 13, 18]), and the results, for this particular setting, can be formulated in the following theorem.

Theorem 1.1. There exists a unique solution f̂ ∈ Rβ of the minimization problem (1.1). For the function û = u f̂
there exists a constant α > 0 such that

• 0 < û ≤ α in D,10

• f̂ = χ{û<α},
• û = α in {f̂ = 0}.

Moreover, the function U = α − û is the minimizer of the functional

J(w) =
∫
D

|∇w|2 + 2w+ dx,

among functions w ∈ H1(D) with boundary values α on ∂D, and solves the normalized obstacle problem equa-
tion

∆U = χ{U>0} in D. (1.3)

We refrain from presenting here details about the normalized obstacle problem (1.3), which is one of the15
classical free boundary problems (see [9]).

In recent years there has been a great development of nonlocal di�usion problems, mainly due to some
interesting new applications to di�erent �elds of the natural sciences such as some physical models [12, 14,
15, 19, 24, 30], �nance [2, 20, 27], �uid dynamics [10], ecology [17, 23, 26] and image processing [16]. For a
comprehensive reference for non-local di�usion problems and their applications see [4].20

It is also worth mentioning that the link between non-local di�usion problems and optimal design prob-
lems has been considered in recently in [22, 29].

Among these models for nonlocal di�usion, probably the most important one is given by the fractional
laplacian (−∆)s, (0 < s < 1) that is given (for smooth functions) as

(−∆)su(x) := p.v.
∫
Rn

u(x) − u(y)
|x − y|n+2s dy

= lim
ε↓0

∫
Rn\Bε(x)

u(x) − u(y)
|x − y|n+2s dy.

This operator is given as the gradient of the nonlocal Gagliardo energy

|u|2s :=
∫∫
R2n

|u(x) − u(y)|2
|x − y|n+2s dxdy, (1.4)

that is the nonlocal analog of the Dirichlet energy ‖∇u‖2
2.

In viewof the increasing interest in analyzing nonlocal di�usionmodels, it naturally comes into attention25
considering problem (1.2) where the Laplace operator is replace by its fractional counterpart.

Therefore, in this paper, similar to theway it has been done in [25], wewill consider an optimal rearrange-
ment problem and derive a related free boundary problem.

More precisely, we consider the minimization problem

Φs(f )→ min,
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where Φs(f ) = |uf |2s , uf is the unique solution to

(−∆)suf = f in D and u = 0 in Dc

and f ∈ R̄β.
We show existence and uniqueness of a solution to the fractional rearrangement optimization problem

and show that if f̂ is the solution and û = u f̂ , then 0 ≤ û ≤ α for some α > 0 and, moreover, Û = α − û is the
unique solution to the normalized fractional obstacle problem

χ{U>0} ≤ −(−∆)sU ≤ χ{U≥0} in D and U = α in Dc .

Also, we analyze the behavior of such solutions as the fractional parameter s goes to 1.
Finally, we show that the solution to the fractional normalized obstacle problem is also the solution to

the (highly nonlinear) equation

−(−∆)sU − χ{U≤0} min{−(−∆)sU+; 1} = χ{U>0},

in D with U = α in Dc.

Organization of the paper

In Section 2 we give a brief introduction to fractional calculus, in Section 3 we analyze the optimal rearrange- 5
ment problem in the fractional setting and show its relationwith the normalized fractional obstacle problem.
In Section 4, we study the behavior of the optimal fractional rearrangement problem as s → 1. Finally, in Sec-
tion 5,we further analyze thenormalized fractional obstacle problemandderive a (highly) nonlinear equation
that the solution satis�es.

2 Preliminaries 10

2.1 A very short tour through the basics of the fractional Laplacian

All the results in this section are either well-known or easily proved, so we just recall them for further refer-
ences without any attempt of giving proofs.

The fractional order Sobolev spaces Hs(Rn) (for 0 < s < 1) is de�ned as

Hs(Rn) = {v ∈ L2(Rn) : |v|2s < ∞},

where | · |s is the Gagliardo energy given by (1.4). This space is a Hilbert space with inner product given by

(u, v)Hs(Rn) =
∫
Rn

u(x)v(x) dx +
∫∫
R2n

(u(x) − u(y))(v(x) − v(y))
|x − y|n+2s dxdy.

For a brief summary of the properties of fractional order Sobolev spaces Hs, we refer to the survey article [12].
Further we denote by H−s(Rn) the topological dual space of Hs(Rn) and for a domain D ⊂ Rn, we denote

Hs0(D) = {v ∈ Hs(Rn) : v = 0 a.e. in Dc}.

Recall that for Lipschitz domainsD, the spaceHs0(D) coincideswith the closure of test functionswith compact
support inside D. We will also denote by H−s(D) the topological dual space of Hs0(D). Observe that we have

Hs0(D) ⊂ Hs(Rn) ⊂ L2(Rn) ⊂ H−s(Rn) ⊂ H−s(D),

with continuous inclusions. Moreover, since D ⊂ Hs(Rn) with a dense inclusion, then H−s(Rn) ⊂ D′ and, if 15
D is Lipschitz, then H−s(D) ⊂ D′(D).



J.F. Bonder, Z. Cheng and H. Mikayelyan, Fractional rearrangement and obstacle problems | 1595

Recall that if D is bounded, the following Poincaré type inequality holds true

‖u‖2 ≤ C|u|s for all u ∈ Hs0(D). (2.1)

An easy fact is that the Gagliardo semi-norm | · |2s is Gâteaux - di�erentiable in Hs(Rn) and

lim
ε→0

ε−1(|u + εv|2s − |u|2s ) = 2
∫∫
R2n

(u(x) − u(y))(v(x) − v(y))
|x − y|n+2s dxdy, (2.2)

for every u, v ∈ Hs(Rn).
Furthermore, for a function u ∈ Hs(Rn) we can also de�ne the fractional Laplace operator as

(−∆)su(x) = p.v.
∫
Rn

u(x) − u(y)
|x − y|n+2s dy = lim

ε→0
(−∆)sεu(x), (2.3)

where
(−∆)sεu(x) =

∫
Rn\Bε(x)

u(x) − u(y)
|x − y|n+2s dy

and the limit is understood in H−s(Rn).5
Moreover, it holds that

〈(−∆)su, v〉 = 1
2

∫∫
R2n

(u(x) − u(y))(v(x) − v(y))
|x − y|n+2s dxdy ≤ 1

2 |u|s|v|s ,

for any u, v ∈ Hs(Rn).
The interested reader may consult with [1] for much more on the fractional laplacian and an analysis of

di�erences and similarities with the local Laplace operator.
For any f ∈ H−s(D) we say uf ∈ Hs0(D) solves the fractional boundary value problem in D with homoge-

neous Dirichlet boundary condition10 {
(−∆)suf = f in D,
uf = 0 in Dc ,

(2.4)

if the equation is satis�ed in the sense of distributions. Equivalently, if

1
2

∫∫
R2n

(uf (x) − uf (y))(v(x) − v(y))
|x − y|n+2s dxdy =

∫
D

fv dx (2.5)

for any v ∈ Hs0(D). It is easily seen from Riesz representation Theorem, using Poincaré inequality (2.1), that
for any f ∈ H−s(D) there exists a unique uf ∈ Hs0(D) satisfying (2.5).

To �nish these preliminaries we refer the reader to [28], and recall that for f ∈ L∞(D) the weak solution
of (2.4), uf ∈ C0,δ

loc (D) for some δ > 0, if s ≤ 1
2 and uf ∈ C1,δ

loc (D) for some δ > 0, if s > 1
2 . Moreover, uf is a15

strong solution to (2.4), namely the limit in (2.3) exists pointwise a.e. and the equation (2.4) is also satis�ed
pointwise a.e.

3 The optimal fractional rearrangement problem
Let us now introduce the fractional analogue of the optimal rearrangement problem given in Theorem 1.1.
Throughout this paper D ⊂ Rn will always denote a bounded domain. Given f ∈ L2(D), let uf be the solution20
of (2.4) and let us de�ne the functional

Φs(f ) = |uf |2s . (3.1)

We are going to consider the minimization of the functional Φs on the closed, convex set R̄β, for 0 < β < |D|.
The main result of this section is the following theorem.
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Theorem 3.1. There exists a unique minimizer f̂ ∈ R̄β \Rβ such that

Φs(f̂ ) ≤ Φs(f )

for any f ∈ R̄β. Moreover, for some α > 0 the function û = u f̂ satis�es the following conditions

{f̂ < 1} ⊂ {û = α}, {û < α} ⊂ {f̂ = 1}, f̂ > 0 and 0 ≤ û ≤ α in D.

Remark 3.2. Observe that this result shows a remarkable di�erence with the local optimal rearrangement
problem, since the optimal con�guration f̂ for the fractional case is not a characteristic function. See Theorem
1.1.

For the proof of Theorem 3.1 we need a couple of lemmas.

Lemma 3.3. The set R̄β ⊂ L∞(D) is convex and

ext(R̄β) = Rβ ,

where for a convex set C, ext(C) denotes the extreme points of C. 5

Proof. The proof is standard and is omitted. For a more general result see [8, Lemma 3].

Lemma 3.4. Let Φs be the functional de�ned in (3.1). Then Φs : R̄β → R is strictly convex and sequentially
lower semi-continuous with respect to the weak* topology. Moreover, there exists a unique minimizer f̂ of the
functional Φs in R̄β.

Proof. The strict convexity is a direct consequence of the linearity uf1+f2 = uf1 + uf2 and the strict convexity of
t 7→ t2. Moreover, from (2.5), Hölder’s inequality and (2.1), we obtain

|uf |s ≤ C‖f‖2.

Therefore, f 7→ uf is strongly continuous from L2(D) into Hs0(D) and hence, Φs is strongly continuous from 10
L2(D) into R. Since Φs is convex, it follows that is sequentially weakly lower semicontinuous.

Finally, observe that if fn ∈ R̄β is such that fn *
⇀ f weakly* in L∞(D), then fn ⇀ f weakly in L2(D), and so

Φs(f ) ≤ lim inf Φs(fn).

To �nish the proof just notice that the existence of a minimizer follows from Banach-Alaoglu’s theorem
and the uniqueness of the minimizer from the strict convexity of Φs and the convexity of R̄β.

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. The proof will be divided into a series of claims. 15

Claim 1. ∫
D

ûf̂ dx ≤
∫
D

ûf dx for any f ∈ R̄β .

Let us take Ψ : L2(D)→ R̄ de�ned as

Ψ(f ) = Φs(f ) + ξR̄β
(f ),

where ξR̄β
(f ) is the indicator function, i.e.

ξR̄β
(f ) =

{
0, if f ∈ R̄β ,
∞, if f ∉ R̄β .

.
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Observe that Ψ is strictly convex there. Moreover, it is easy to see that f̂ minimizes Ψ in L2(D). Thus

0 ∈ ∂Ψ(f̂ ),

where

∂Ψ(f̂ ) =

g ∈ L2(D) : Ψ(f ) − Ψ(f̂ ) ≥
∫
D

g(f − f̂ ) dx, for any f ∈ L2(D)


is the sub-di�erential of Ψ at f̂ .

From (2.5) and (2.2) we get that
∂Φs(f̂ ) = {2û}.

Moreover

∂ξR̄β
(f̂ ) =

g ∈ L2(D) : ξR̄β
(f ) − ξR̄β

(f̂ ) ≥
∫
D

g(f − f̂ ) dx, for any f ∈ L2(D)


=

g ∈ L2(D) : 0 ≥
∫
D

g(f − f̂ ) dx, for any f ∈ R̄β

 .

Therefore the equation
0 ∈ ∂Ψ(f̂ ) = ∂Φs(f̂ ) + ∂ξR̄β

(f̂ ),

implies that
−û ∈ ∂ξR̄β

(f̂ )

and thus the claim.

Claim 2. There exists a function f̃ = χE ∈ Rβ such that∫
D

ûf̃ dx ≤
∫
D

ûfdx

for any f ∈ R̄β.
This follows from Claim 1, Lemma 3.3, and the fact that the minimum of the linear functional L(f ) =∫

D ûf dx on a bounded closed convex set R̄β is attained in an extreme point f̃ = χE ∈ Rβ.5

Claim 3. There exists α > 0 such that

{û < α} ⊂ E ⊂ {û ≤ α}.

The proof is an immediate consequence of the bathtub principle for f̃ . See [21, Theorem 1.14].

Claim 4.
f̂ = 1 in {û < α}.

The proof is again an immediate consequence of the bathtub principle for f̂ .

Claim 5.
{û > α} ⊂ {f̂ = 0}.

Since f̂ , f̃ ∈ R̄β, we have that

β =
∫
D

f̂ dx =
∫

{û<α}

f̂ dx +
∫

{û=α}

f̂ dx +
∫

{û>α}

f̂ dx

=
∫
D

f̃ dx =
∫

{û<α}

f̃ dx +
∫

{û=α}

f̃ dx +
∫

{û>α}

f̃ dx
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Therefore, by Claims 3 and 4, we obtain that∫
{û=α}

f̂ dx +
∫

{û>α}

f̂ dx =
∫

{û=α}

f̃ dx. (3.2)

On the other hand, by Claims 1 and 2, we get∫
D

ûf̂ dx =
∫
D

ûf̃ dx

that together with (3.2) give us

α
∫

{û=α}

f̃ dx = α
∫

{û=α}

f̂ dx + α
∫

{û>α}

f̂ dx

≤
∫

{û=α}

ûf̂ dx +
∫

{û>α}

ûf̂ dx

=
∫

{û=α}

ûf̃ dx

= α
∫

{û=α}

f̃ dx,

which implies
α
∫

{û>α}

f̂ dx =
∫

{û>α}

ûf̂ dx,

and thus the claim.

Claim 6.
{û > α} = ∅.

For β > α let us take ϕ(x) = (û(x) − β)+. Since suppϕ = ω ⊂ {û > α}, claim 5 implies that

0 = 2〈(−∆)s û, ϕ〉 =
∫∫
R2n

(û(x) − û(y))(ϕ(x) − ϕ(y))
|x − y|n+2s dxdy

=
∫
ω

∫
ω

(û(x) − û(y))2

|x − y|n+2s dxdy

︸ ︷︷ ︸
≥0

+
∫
ω

 ∫
Rn\ω

(û(x) − û(y))(û(x) − β)
|x − y|n+2s dy

 dx

︸ ︷︷ ︸
≥0

+
∫

Rn\ω

∫
ω

(û(x) − û(y))(β − û(y))
|x − y|n+2s dy

 dx

︸ ︷︷ ︸
≥0

+
∫

Rn\ω

 ∫
Rn\ω

(û(x) − û(y))(0 − 0)
|x − y|n+2s dy

 dx

︸ ︷︷ ︸
=0

.
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Thus, |ω| = |{û > β}| = 0 for any β > α. Moreover, since û ∈ C0,δ
loc (D) for some δ > 0, it is easy to see that the

claim follows.

Claim 7.
|{f̂ = 0}| = 0.

Since (−∆)s û = f̂ ∈ L∞(D) and f̂ ≥ 0 it is enough to check f̂ > 0 point-wise.
Taken Claim 4 we need to check this only in the set {û = α}. But

f̂ (x) = p.v.
∫
Rn

û(x) − û(y)
|x − y|n+2s dy = lim

ϵ→0

∫
Rn\Bϵ(x)

û(x) − û(y)
|x − y|n+2s dy >

∫
Rn\D

α
|x − y|n+2s dy > 0.

This proves the claim.

The proof of Theorem 3.1 is complete.5

4 The behavior of the optimal rearrangement problem as s → 1

In this section we analyze the behavior of the optimal fractional rearrangement problem as the fractional
parameter s goes to 1. For that purpose, we need to consider here the normalizing constant C(n, s) that is
de�ned as

C(n, s) =

∫
Rn

1 − cos(ζ1)
|ζ |n+2s dζ

−1

and we need to modify the de�nitions of the fractional laplacian and of the Gagliardo seminorm accordingly,
namely, we consider

|u|2s = C(n, s)
∫∫
R2n

|u(x) − u(y)|2
|x − y|n+2s dxdy

and
(−∆)su(x) = p.v. C(n, s)

∫
Rn

u(x) − u(y)
|x − y|n+2s dy.

It is awell known fact that this normalizing constant behaves like (1−s) for s close to 1.Moreover, the following
result holds

Proposition 4.1. Let u ∈ L2(Rn) be �xed. Then we have that

|u|2s → ‖∇u‖2
2 and (−∆)su → −∆u as s → 1.

where the �rst limit is understood as a limit if u ∈ H1(Rn) and as lim inf |u|2s = ∞ if u ̸∈ H1(Rn) and the second
limit is in the sense of distributions.10

For a proof, see for instance [12] and [3].
Moreover, it is shown in [3] the following stronger statement.

Proposition 4.2. Given a sequence sk → 1 and {uk}k∈N ⊂ L2(Rn) such that

sup
k∈N
‖uk‖2 < ∞ and sup

k∈N
|uk|sk < ∞,

then there exists a function u ∈ H1(Rn) such that (up to a subsequence),

uk → u strongly in L2
loc(Rn) and ‖∇u‖2

2 ≤ lim inf
k→∞

|uk|2sk .
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Throughout this section, we will denote by f̂s the optimal load for Φs, ûs = u f̂s the solution to (2.4). Also,
denote Φ(f ) as

Φ(f ) =
∫
D

|∇uf |2 dx,

where in this section, uf will denote the solution to{
−∆uf = f in D
u = 0 on ∂D.

Finally, denote by f̂ ∈ R̄β the solution to the minimization problem

Φ(f̂ ) = inf
f∈R̄β

Φ(f ).

So the main result in this section is the following:

Theorem 4.3. Under the above notations, f̂s *
⇀ f̂ weakly* in L∞ as s → 1. Moreover we also obtain that

Φs(f̂s)→ Φ(f̂ ) and ûs → û strongly in L2(D),

as s → 1.

For the proof of Theorem 4.3 we need the concept of Γ−convergece. This concept was introduced by De Giorgi
in the 60s and is now a well understood tool to deal with the convergence of minimum problems. For a
throughout introduction to the subject, we cite [11]. Let us recall now the de�nition of Γ−convergence and 5
some of its properties.

De�nition 4.4. Let X be a metric space and Fn , F : X → R̄. We say that Fn Γ−converges to F, and is denoted
by Fn Γ→ F, is the following two inequalities hold true
• (lim inf −inequality) For any x ∈ X and any sequence {xn}n∈N ⊂ X such that xn → x in X, it holds that

F(x) ≤ lim inf
n→∞

Fn(xn).

• (lim sup−inequality) For any x ∈ X, there exists a sequence {yn}n∈N ⊂ X such that yn → x in X and

F(x) ≥ lim sup
n→∞

Fn(yn).

The main feature of the Γ−convergence is that it implies the convergence of minima. In fact we have the
following: 10

Theorem 4.5. Let X be a metric space and Fn , F : X → R̄ be functions such that Fn Γ→ F. Moreover, assume
that for each n ∈ N, there exists xn ∈ X such that

Fn(xn) = inf
X
Fn

and that {xn}n∈N ⊂ X is precompact. Then

lim
n→∞

inf
X
Fn = inf

X
F

and every accumulation point of the sequence {xn}n∈N is a minimum point of F.

The proof of Theorem 4.5 is easy and can be found in [11].
The following result is key in the proof of Theorem 4.3.
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Theorem 4.6. Given 0 < s < 1, let fs ∈ L2(Ω) be such that fs ⇀ f weakly in L2(Ω) and let us ∈ Hs0(Ω) and
u ∈ H1

0(Ω) be the solutions to
(−∆)sus = fs in Ω, us = 0 in Rn \ Ω

and
−∆u = f in Ω, u = 0 on ∂Ω

respectively.
Then us → u strongly in L2(Ω). Moreover,

|us|s → ‖∇u‖2.

Proof. Let Fs , F : L2(Rn)→ R̄ given by

Fs(v) :=
{

1
2 |v|

2
s −
∫
Ω fsv dx if v ∈ Hs0(Ω),

+∞ otherwise

and

F(v) :=
{

1
2‖∇v‖

2
2 −
∫
Ω fv dx if v ∈ H1

0(Ω),
+∞ otherwise.

Since
∫
Ω fsvs dx →

∫
Ω fv dx if vs → v strongly in L2(Rn), from Propositions 4.1 and 4.2 we can conclude

that Fs Γ→ F as s → 1.
Now, observe that

Fs(us) = inf
v∈L2(Rn)

Fs(v) and F(u) = inf
v∈L2(Rn)

F(v).

The trivial estimate |us|s ≤ ‖fs‖2 imply that, for any sk → 1, the sequence {usk}k∈N ⊂ L2(Rn) is precom-
pact. Then from Theorem 4.5 we obtain that us → u strongly in L2(Ω).5

Finally,
lim |us|2s = lim

∫
Ω

fsus dx =
∫
Ω

fu dx = ‖∇u‖2
2.

This completes the proof.

Now we are ready to prove the main result of the section.

Proof of Theorem 4.3. Let f̂s ∈ R̄β be the optimal load forΦs. Observe that, for a subsequence, f̂s *
⇀ f weakly*

in L∞(Ω) for some f ∈ R̄β. Moreover, this convergence also holds weakly in L2(Ω).
From Theorem 4.6 we have that ûs → uf strongly in L2(Ω) and using Theorem 4.2 we get

inf
R̄β

Φ ≤ Φ(f ) = ‖∇uf ‖2
s ≤ lim inf |ûs|2s = lim inf inf

R̄β

Φs .

On the other hand, let f̂ ∈ R̄β be the optimal load for Φ. Then, using the �nal part of Theorem 4.6, we
obtain

lim sup inf
R̄β

Φs ≤ limΦs(f̂ ) = Φ(f̂ ) = inf
R̄β

Φ.

The proof is complete.10

5 The normalized fractional obstacle problem
This section is devoted to the study of the connection between the solutions to the optimal fractional rear-
rangement problem consider in Section 3 with solutions of the normalized fractional obstacle problem.
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The fractional analogue of the classical obstacle problem has been well known in the literature, however
its so called normalized version, i.e., the equation

∆u = χ{u>0}, (5.1)

has not been considered. Here we �nd the corresponding fractional analog of (5.1) and prove that the solution
of the fractional rearrangement problem is a solution of the fractional normalized obstacle problem.

Our �rst result is the following. 5

Theorem 5.1. Let f̂ ∈ R̄β be the solution to the optimal fractional rearrangement problem and û := u f̂ ∈ H
s
0(D)

be given by (2.4). Let α > 0 be the constant given in Theorem 3.1. Then the function Û := α − û minimizes the
functional

J(v) = |v|2s +
∫
D

v+ dx

over the set Hα = {v ∈ Hsloc(Rn) : v − α ∈ Hs0(D)}. Moreover, Û veri�es the inequalities

χ{U>0} ≤ −(−∆)sU ≤ χ{U≥0} in D (5.2)

in the sense of distributions. 10
Finally, the minimizer of J in Hα is unique and is the unique solution to the inequality (5.2).

Proof. Let
I(v) = |v|2s +

∫
D

f̂ v dx

and observe that, since 0 ≤ f̂ ≤ 1, for any v ∈ Hα it follows that J(v) ≥ I(v).
Next, observe that I(Û) = J(Û) and so the set of inequalities

J(v) ≥ I(v) ≥ I(Û) = J(Û), for any v ∈ Hα
imply the desired result.

Next, observe that the inequalities

χ{Û>0} ≤ −(−∆)sÛ ≤ χ{Û≥0}.

are the Euler-Lagrange equation for the functional J based on the variation uε(x) = u(x) + εϕ(x), with ϕ ∈
C∞c (D). 15

Now, the uniqueness of minimizer for J is an immediate consequence of the strict convexity of J.
Assume that the function U satis�es the inequalities (5.2), but the unique minimizer of the convex func-

tional J is the function V ≠ U.
Since J is strictly convex and J(V) < J(U) by taking Uε = U + ε(V − U) we will obtain

lim
ε→0+

J(Uε) − J(U)
ε < 0.

Thus for ψ = V − U

0 > lim
ε→0+

J(Uε) − J(U)
ε

=
∫∫
R2n

(u(x) − u(y))(ψ(x) − ψ(y))
|x − y|n+2s dxdy +

∫
D

χ{U>0}ψ + χ{U=0}ψ+dx

=
∫∫
R2n

(u(x) − u(y))(ψ+(x) − ψ+(y))
|x − y|n+2s dxdy +

∫
D

χ{U≥0}ψ+dx

︸ ︷︷ ︸
≥0

−
(∫∫

R2n

(u(x) − u(y))(ψ−(x) − ψ−(y))
|x − y|n+2s dxdy +

∫
D

χ{U>0}ψ−dx

︸ ︷︷ ︸
≤0

)
≥ 0,



J.F. Bonder, Z. Cheng and H. Mikayelyan, Fractional rearrangement and obstacle problems | 1603

where the last inequality follows from (5.2). This is a contradiction and the result follows.

Remark 5.2. This result again shows an interesting di�erence between the classical obstacle problem and the
fractional normalized version. Observe that in the positivity set, we still have −(−∆)sÛ = 1, but in the zero set
the function Û is not s−harmonic (even if it is identically zero!). The free boundary condition on ∂{Û > 0} is
given by the fact that (−∆)sÛ is a function bounded by 0 and 1 across the free boundary.5

The results in Theorem 5.1 are not completely satisfactory, since we do not obtain an equation satis�ed by Û
but only the inequalities (5.2).

Our last result shows that in fact Û is the solution to a fully nonlinear equation.

Theorem 5.3. Let Û be solution of the normalized fractional obstacle problem given by Theorem 5.1. Then Û is
a solution to10 {

−(−∆)sU − χ{U≤0} min{−(−∆)sU+; 1} = χ{U>0}, in D,
U = α in Dc .

(5.3)

Moreover, problem (5.3) is equivalent to (5.2). Finally, U veri�es (5.3) if and only if it is a minimizer of J in Hα,
where J and Hα are given in Theorem 5.1.

Before we start with the proof, let us observe that for u ∈ Hs(Rn),

|u±|s ≤ |u|s

and hence (−∆)su± ∈ H−s(Rn). On the other hand (−∆)su+ is a distribution and the expression

min{−(−∆)su+; 1) = −max{(−∆)su+, −1} = 1 − ((−∆)su+ + 1)+

makes in general no sense, unless (−∆)su+ is a signed measure in D. Let us further observe that since

χ{u≤0}(−∆)su+ ≤ 0,

we need to search for solutions of (5.3) only among functions u, such that (−∆)su ≤ 0 in D. This leads us to
the introduction of fractional subharmonic functions in D, which form a convex subset of Hs(D)15

Hssub(D) =
{
u ∈ Hsloc(Rn) : (−∆)su ≤ 0 in D

}
.

Here the inequality (−∆)su ≤ 0 should be understood in the sense of distributions.
The following lemma is essential for the equation (5.3) to make sense.

Lemma 5.4. Let u ∈ Hssub(D). Then u+ ∈ Hssub(D).

Proof. If u is smooth, then the fractional laplacian has pointwise values. In this case, we simply compute:
• For x ∈ {u ≤ 0},

(−∆)su+(x) = p.v.
∫
Rn

−u+(y)
|x − y|n+2s dy ≤ 0.

• For x ∈ {u > 0},

(−∆)su+(x) = p.v.
∫
Rn

u(x) − u+(y)
|x − y|n+2s dy

= p.v.
∫
Rn

u(x) − u(y)
|x − y|n+2s dy − p.v.

∫
Rn

u−(y)
|x − y|n+2s dy

≤ 0.
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For a general u ∈ Hs(Rn), we take {ρε}ε>0 a smooth family of approximations of the identity such that ρε(z) =
ρε(−z) and de�ne uε = u * ρε.

The result of the lemma will follow from the identity

〈(−∆)suε , ϕ〉 = 〈(−∆)su, ϕε〉, (5.4)

for every ϕ ∈ C∞c (Rn).
Indeed, assuming (5.4), if (−∆)su ≤ 0, then (−∆)suε ≤ 0 for every ε > 0. Hence, from the smooth case we 5

conclude that (−∆)su+
ε ≤ 0 and since u+

ε → u+ in Hs the result is proved.
It remains to prove (5.4). For that purpose, it is useful to introduce the notation

Dsu(x, y) = u(x) − u(y)
|x − y| n2 +s ,

the Hölder quotient of order s of u. Then, using that ρε(−z) = ρε(z), we observe that

〈(−∆)2uε , ϕ〉 =
∫∫
R2n

Dsuε(x, y)Dsϕ(x.y) dxdy

=
∫∫
R2n

∫
Rn

Dsu(x − z, y − z)ρε(z)Dsϕ(x, y) dz dxdy

=
∫∫
R2n

∫
Rn

Dsu(x, y)ρε(z)Dsϕ(x + z, y + z) dz dxdy

=
∫∫
R2n

∫
Rn

Dsu(x, y)ρε(z)Dsϕ(x − z, y − z) dz dxdy

=
∫∫
R2n

Dsu(x, y)Dsϕε(x, y) dxdy

= 〈(−∆)2u, ϕε〉.

The proof is now complete.

Corollary 5.5. If u ∈ Hssub(D) then min{−(−∆)su+; 1} ∈ L∞(D).

Corollary 5.5 allows us to formulate the following normalized fractional obstacle problem:
For α > 0 solve 10

−(−∆)sU − χ{U≤0} min{−(−∆)sU+; 1} = χ{U>0}, (5.5)

among functions U ∈ Hs(Rn), such that U = α in Dc and U ∈ Hssub(D).
The weak formulation of the equation (5.5) is

−1
2

∫∫
R2n

(U(x) − U(y))(ϕ(x) − ϕ(y))
|x − y|n+2s dxdy =

∫
D

[
χ{U≤0}(x) min{−(−∆)sU+; 1} + χ{U>0}(x)

]
ϕ(x) dx,

for any ϕ ∈ Hs0(D).
Now we are ready to prove Theorem 5.3.

Proof of Theorem 5.3. We only need to show that problems (5.2) and (5.5) are equivalent
For convenience let us break down the proof into several claims. 15

Claim 1. Assume that U ∈ Hsloc(Rn) is a solution of (5.5). Then U ≥ 0.
Observe �rst the following general fact:

(U(x) − U(y))(U−(x) − U−(y)) = (U+(x) − U+(y))(U−(x) − U−(y)) − (U−(x) − U−(y))2.
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This simple identity implies that

〈(−∆)sU, U−〉 = 〈(−∆)sU+, U−〉 − |U−|2s . (5.6)

Now, let us take ϕ = U− as a test function in the weak formulation of (5.5). Then we obtain

〈(−∆)sU, U−〉 = −
∫
D

[χ{U≤0} min(−(−∆)sU+; 1) + χ{U>0}]U− dx

= −
∫
D

min{−(−∆)sU+; 1}U− dx

=
∫
D

max{(−∆)2U+; −1}U− dx

(5.7)

But ∫
D

max{(−∆)sU+; −1}U− dx ≥ 〈(−∆)sU+, U−〉. (5.8)

Therefore, combining (5.6), (5.7) and (5.8), we arrive at

|U−|2s ≤ 0,

and so the claim is proved.

Claim 2. (5.5) implies (5.2).5
It is immediate from Claim 1.

Claim 3. (5.2) implies U ≥ 0.
The argument is similar to the one of Claim 6 in Theorem 3.1. Let U ∈ Hsloc(Rn) be a solution to (5.2). Take

β < 0 and ϕ = (U − β)−, so ω = suppϕ ⊂ {U < 0}. Then

0 =2〈(−∆)sU, ϕ〉 =
∫∫
R2n

(U(x) − U(y))(ϕ(x) − ϕ(y))
|x − y|n+2s dxdy

=
∫
ω

∫
ω

(U(x) − U(y))(U(y) − U(x))
|x − y|n+2s dxdy

︸ ︷︷ ︸
≤0

+
∫
ω

∫
R\ω

(U(x) − U(y))(β − U(x))
|x − y|n+2s dxdy

︸ ︷︷ ︸
≤0

+
∫

R\ω

∫
ω

(U(x) − U(y))(U(y) − β)
|x − y|n+2s dxdy

︸ ︷︷ ︸
≤0

+
∫

R\ω

∫
R\ω

(U(x) − U(y))(0 − 0)
|x − y|n+2s dxdy

︸ ︷︷ ︸
=0

≤0.

Thus, |ω| = |{U < β}| = 0 for any β < 0.10

Claim 4. (5.2) implies (5.5).
Can be veri�ed directly.
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