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Abstract: Alzheimer ́s dementia is a neurodegenerative 

disease that affects the elderly population and causes 

memory impairment and cognitive deficit. Manifestation of 

this disease is associated to acetylcholine decrease; thus, 

Cholinesterase inhibition is the main therapeutic strategy for 

the treatment of Alzheimer’s disease.  

In the present study, a series of aporphinoid alkaloids were 

tested as potential acetylcholinesterase (AChE) and 

butyrylcholinesterase (BChE) inhibitors in vitro. Alkaloids 

liriodenine (3) and cassythicine (10) were the best inhibitors 

of both cholinesterases with IC50 values lower than 10 µM. In 

addition, these alkaloids demonstrated better inhibition of 

BChE than reference drug galantamine.  

In addition, some alkaloids showed selective inhibition. 

Laurotetatine clorhydrate (13) selectively inhibit AChE over 

BChE. On the contrary, pachyconfine (7) interacted more 

efficiently with BChE active site. 

Molecular modelling studies were performed in order to 

illustrate key interactions between most active compounds 

and the enzymes and to explain their selectivity. These 

studies reveal that the benzodioxole moiety exhibits strong 

interactions due to hydrogen bonds that form with the Glu201 

(AChE) and Tyr440 (BChE) residues, which is reflected in the 

IC50 values. 

Keywords: Acetylcholinesterase; Aporphinoid; Butyrylcholinesterase; Molecular modelling. 

 

1 Introduction 

Alzheimer’s disease (AD) is one of the most common 

neurodegenerative disorder affecting approximately 47 million 

people worldwide. With the progressive aging of the 

population, AD has become a serious medical problem in 

modern society. The complexity and still unclear pathology of 

this disease makes treatment difficult. [1]  

One of the most widely accepted explanations of AD 

development is the cholinergic hypothesis, which offers clear 

directions for treatment strategies. [2] Cholinesterases (ChE) 

are a family of enzymes that mainly catalyze the hydrolysis of 

the neurotransmitter acetylcholine (ACh) restoring the 

cholinergic pathway at the end of the nerve transmission in the 

central nervous system. There are two major forms of 

cholinesterases in vertebrates: acetyl and 

butyrylcholinesterase (AChE and BChE). While AChE prevails 

in a healthy brain, BChE activity increases in patients with AD. 

Thus, AChE and BChE inhibition have been documented as 

critical targets for the effective management of AD. [3-5] Drugs 

acting as cholinesterase inhibitors (ChEI) have shown several 

benefits including improvement of brain ACh levels resulting 

in an enhanced cholinergic transmission. Nowadays ChEI 

represent the main treatment to ameliorate the cognitive and 

behavioral dysfunctions associated with AD. [6,7] 

Aporphinoids are an important class of alkaloids widely 

distributed in the plant kingdom. These natural compounds 

have been shown to exhibit an important spectrum of 

pharmacological activities as an antimicrobial [8], antitumor [9], 

and antifungal, [10] among others. Even though, potent 

cholinesterase inhibition has been reported for members of 

this alkaloid subgroup little is known on their mode of inhibition. 
[11-13] 

Continuing our studies on cholinesterase inhibitors from 

natural sources in this work we evaluate set of thirteen 

aporphinoid alkaloids as AChE and BChE inhibitors in vitro. In 

addition, the key binding interactions between these 

compounds and the enzymes are studied by docking 

calculation with hybrid (Quantum Mechanics/Molecular 

Mechanics) QM/MM calculations (ONIOM). Finally, a 

Quantum Theory of Atoms in Molecules (QTAIM) study is 

performed in order to understand the selectivity of these 

compounds 

2 Materials and Methods 

2.1 Aporphinoid alkaloids 
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Thirteen alkaloids were isolated in previous research works 

from different plants species like Rollinia marginata (Schlecht) 

from Chaco, Argentina; Enantia pilosa (Exell); Xylopia 

lemúrica (Diels) Pachypodanthium staudtii and Guatteria 

psilopus from Republic of Congo, Africa [14] using techniques 

as described in [15]. Alkaloids were kindly granted by 

Department of Chemistry from South Paris University, France, 

through Dr. Matıas Nieto and Dr. Carlos R. Pungitore. Scheme 

1 shows the chemical structure of the tested alkaloids. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1. Structures of compounds employed in this study. 

 

2.2 Cholinesterase inhibition assay 

Electric eel (Torpedo californica) AChE and horse serum 

BChE were used as cholinesterase source. AChE and BChE 

inhibitory activity were measured in vitro by the 

spectrophotometric method developed by Ellman with slight 

modifications. [16] The lyophilized enzymes, 500 U AChE/ 300 

U BChE, were dissolved in buffer A (8 mM K2HPO4, 2.3 mM 

NaH2PO4) to obtain 5/3 U/mL stock solutions. Further enzyme 

dilutions were carried out with buffer B (8 mM K2HPO4, 2.3 

mM NaH2PO4, 0.15 M NaCl, 0.05% Tween 20, pH 7.6) to 

produce 0.126/0.06 U/mL enzyme solution. Samples were 

dissolved in buffer B. Compounds required 2.5% of MeOH as 

cosolvent. Enzyme solution (300 μL) and 300 μL of sample 

solution were mixed in a test tube and incubated for 60/120 

min at room temperature. The reaction was started by adding 

600 μL of the substrate solution (0.5 mM DTNB, 0.6 mM ATCI, 

0.1 M Na2HPO4, pH 7.5). The absorbance was read at 405 nm 

for 120 s at 27 °C. Enzyme activity was calculated by 

comparing reaction rates for the sample to the blank. All the 

reactions were performed in triplicate. IC50 values (the inhibitor 

concentration required for 50% inhibition of the enzyme) were 

determined with GraphPad Prism5. Galanthamine was used 

as the reference AChE/BChE inhibitor. 

2.3 Docking Calculations 

The docking simulations were carried out using of AutoDock 

4.2. [17] The crystal structures for the AChE and BChE were 

obtained from the Protein Data Bank. In order to remove the 

bad contacts from the X-ray structure, each receptor molecule 

was subjected to 1000 steps of energy minimization using the 

Amber16 program.[18] Then, the compounds were docked in 

each enzyme. In docking experiments the following 

parameters were used: the initial population of trial ligands 

was constituted by 250 individuals; the maximum number of 

generations was set to 270000. The maximum number of 

energy evaluations was 10.0 × 106. All other run parameters 

were maintained at their default setting. The resulting docked 

conformations were clustered into families by the backbone 

Root Mean Square Deviation.  

2.4 Refinement of the anchoring and QTAIM analysis 

After the docking calculations, leading lowest energy 

structures were optimized at M06-2X/631G(d) level using 

QM/MM calculations. The inhibitors and the side chains of the 

residues that have at least one heavy atom within 4 Å from the 

ligand molecule (first shell residues) were incorporated into 

the high-level QM layer using the M06-2X/631G(d) method. 
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The chosen cut-off value has resulted from a compromise 

between computational cost and efficiency. [19] The remainder 

of the system was included in the low-level MM layer using the 

AMBER force field. The MM parameters absent in the 

standard AMBER force field were included from the 

generalized amber force field (GAFF). [20] These calculations 

were carried out employing the Gaussian 09 package. [21] 

Then, the optimized geometry for each inhibitor-

Cholinesterase complex was used as input for Quantum 

Theory of Atoms in Molecules (QTAIM) analysis, [22] which 

was carried out using the Multiwfn software, [23] employing the 

wave functions generated at the M06-2X/6-31G(d) level. 

3 Results and Discussion 

3.1 In vitro AChE and BChE inhibitory activities 

Thirteen structurally related alkaloids were evaluated as 
cholinesterase inhibitors by the Ellman’s method. BChE 
inhibition was tested for all the alkaloids while AChE 
inhibition was determined for those that had not been 
reported previously (1, 2, 4, 5, 7, 10-12). For compounds 
3, 6, 8, 9, and 13, which have shown AChE inhibition in 
the past, their reported values of IC50 were taken into 
account for comparison purposes. [11,24] The IC50 values 
for enzyme inhibition, along with their standard deviations, 
and the selectivity index for the inhibition of AChE over 
BChE are summarized in Table 1. Compounds with IC50 
values over 250 µM were considered inactive in this work. 
The alkaloid galanthamine, an FDA-approved drug for the 
treatment of AD, was used as reference AChE and BChE 
inhibitor. 

All tested alkaloids showed inhibitory activity for at 
least one of the enzymes in the micromolar range. 
Alkaloid 13 elicited the most potent activity against AChE 
with a reported IC50 value of 3.2 µM [Mollataghi, 2012], 
although it showed a weak BChE inhibition (IC50= 193.1 ± 
2.9 µM). Compound 3, liriodenine, exhibited strong 

inhibition on both AChE and BChE activities and showed 
poor selectivity with IC50 values of 3.5 µM [11] and 3.2 ± 
0.1 µM, respectively. 

As can be concluded from the IC50 values in Table 1, 
laurotetatine clorhydrate (13) was the most selective 
inhibitor of AChE over BChE. On the other hand, 
pachyconfine (7) seemed to interact better with BChE 
active site. 

Alkaloids 1, 2 and 11 demonstrated no inhibition for 
BChE while only compound 12 resulted inactive for AChE. 

 

3.2 Molecular modelling 

 

In order to better understand the above described 

experimental results, a molecular modelling study was 

conducted by using combined simulation techniques. This 

study was carried out in several stages. First, five 

alkaloids were selected and subjected a docking study in 

order to find the binding mode in the AChE and BChE 

enzyme. Second, the complexes obtained in the first 

stage were subjected to hybrid QM/MM calculations 

(ONIOM), where the geometries of the residues of binding 

site and the inhibitor were optimized at quantum level. 

Finally, to better appreciate the molecular interactions 

involved in the different Ligand-Receptor complexes and 

to understand the selectivity of these compounds, a 

QTAIM study was performed. The main goal of this study 

was to determine the possible mechanism of action of the 

compounds reported here and explain the selectivity of 

these inhibitors. 

 

In order to validate the parameters employed in the 

docking calculations, we attempted to reproduce the 

binding mode of complexes AChE-Ganlantamine 

(pdbcode: 4EY6) [25] and BChE-tacrine (pdbcode: 

4BDS). [26] 

 

Table 1. Cholinesterase inhibitory activities of alkaloids expressed as IC50 (µM). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aSelectivity index = IC50 (BChE)/IC50 (AChE).  
bReference inhibitor. 
*Reference [11]  
#Reference [24] 

Alkaloid 

IC50 (µM) 
Selectivity 

indexa 
 

AChE BChE 

1 50.3 ± 1.4 > 250 > 5 

2 176.5 ± 1.8 > 250 > 1.4 

3 3.5* 3.2 ± 0.1 0.9 

4 83.6 ± 2.5 20.7 ± 1.0 0.2 

5 202.8 ± 3.7 74.3 ± 1.2 0.4 

6 9.4* 152.3 ± 2.0 16.2 

7 213.0 ± 3,2 16.5 ± 0.3 0.01 

8 47# 14.5 ± 0.6 0.3 

9 8.5* 102.2 ± 1.4 12.0 

10 5.5 ± 0.2 9.8 ± 0.2 1.8 

11 214.9 ± 2.6 > 250 > 1.2 

12 >250 86.8 ± 3.4 > 0.3 

13 3.2* 193.1 ± 2.9 60.3 

Refb 0.8 ± 0.01 23.8 ± 1.1 29.8 
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The lowest energy conformations obtained from the 
docking calculations for the AChE-Ganlantamine and 
BChE-tacrine complexes presents the RMSD values 0.24 
and 0.37 Å for the complex AChE-Ganlantamina and 
BChE-tacrine, respectively. In principle, these results 
suggest that the parameters used in the docking 
calculations were adequate for this study.   

3.3 Binding mode selections 

 

Figure 1 shows a summary of the molecular docking 

results, here are plotted the number of conformations of 

each cluster for all compounds. It should be noted, that 

the docking calculations suggest several modes of 

binding for each compound and the binding energies 

between the clusters are similar, thus, the leader of the 

most populated cluster was selected for further study. In 

the AChE system, the leader of cluster 2, 2, 2, 1 and 1 

were selected for the compound 3, 4, 7, 8 and 10 

respectively, while in the BChE complex the leader of 

cluster 1, 1, 1, 1 and 1 was selected for the compounds 3, 

4, 7, 8 and 10 respectively. 

 

It must be highlighted that the binding mode of the 

conformations chosen as the most favorable for AchE 

inhibition are similar to that of galantamine. This is 

because they are structurally similar. The compounds 

reported here, have three groups (HBA, HBD and HBA) 

separated by 6.2, 6.6 and 7.3 Å, while galantamine has  

 

Figure 1. Summary of molecular docking calculations for a) 

AChE-inhibitor complex and b) BChE-inhibitor complex. Bars 

indicate the number of conformations that form each cluster. In 

black color the free energy of union of the leader of each cluster 

are shown.  

 

the like group separated by 6.5, 5.4 and 6.8 Å respectively 

(Figure 2).  

 

Figure 2. Structural comparison between galantamine (a) and 

compound 8 (b). The triangle in dot lines shows the interatomic 

distances between the main functional groups.  

 

Thus, these compounds present hydrophobic contacts 

and aromatic interactions mainly with the Trp85, Gly120, 

Phe296 and Phe337, while the H-bond acceptor group 

forming a hydrogen bond with Ser202 and the H-bond 

donor group presents a hydrogen bond with Tyr132. The 

last one, in the galantamine case this hydrogen bond is 

with Glu201, due to the group separation is less. 

For the BChE complexes, we can see that the 

favorable conformations chosen for each inhibitor have a 

binding mode like tacrine, although these do not present 

a marked structural similarity. These compounds are 

joined to BChE mainly by two hydrogen bonds between 

for the benzodioxolo moiety and residues Tyr332 and 

Tyr440. In addition, the compounds 3, 4 and 7 presents 

a) 

b) 
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other anchorage point forming a strong hydrogen bond 

with Thr120. On the other hand, compounds 8 and 10 

have a strong hydrogen bond with Thr120 but, through the 

hydroxyl moiety.  

 

3.4 QTAIM analysis 

 

The QTAIM analysis is an important tool in the study of 

ligand-receptor interactions because the values of the 

electronic density at a critical point (CPB) indicate the 

strength of the interactions. In addition, this information 

allows us to visualize which portion of the ligand presents 

a greater contribution to the binding, which makes it 

particularly useful in analysis, design and optimization of 

ligand molecules. However, for the QTAIM analysis to be 

reliable, good geometry is needed. For this reason, the 

structures obtained from the molecular docking were 

optimized at M06-2X/631G(d) level using QM-MM 

calculations as described in section 2.4. 

Figure 3, show in bars the sum of the charge density 

values at the intermolecular bond critical points for the 

non-covalent interactions for the five inhibitors with the 

AChE and BChE enzyme. This plot shows that the  

inhibitors bind more strongly to BChE than to AChE. This 

means that the selectivity could be explained through the 

interactions study using the QTAIM analysis. 

Figure 3. Sum of the values of charge density (∑ρ(r)) at the bond 

critical points obtained for the different compounds. The 

interactions are shown in orange for AChE and in yellow for 

BChE. 

 

 

Compound 3 is bonded to the AchE through weak non 

classical hydrogen bond while in the BchE complex this 

inhibitor has the classical hydrogen bond well-oriented. 

The benzodioxole moiety act as H-Bond acceptor forming 

a non-classical hydrogen bond with Phe337, 

(HE2Phe337,AChE•••OInh3) in the AChE complex, while in the 

BChE complex presents two moderate hydrogen bonds 

with Tyr332 (HHTyr332,BChE•••O2Inh3) and Ty440 

(HHTyr440,BChE•••O1Inh4). Both complexes present a 

hydrogen bond with the carbonyl group with the residue 

Ser124 (HGSer124,AChE•••O01Inh3) and Thr120 

(HG1Trp120,BChE•••O01Inh3) in the AchE and BchE 

respectively.  In addition, the compound 3 has several π-

stacking interactions with Trp82 in the BChE complex 

(Figure 4). 

 

 

 

 

 

 

Figure 4. Molecular graph of the noncovalent interactions 

between compound 3 and (a) AChE and (b) BChE. The inhibitor 

is represented as yellow sticks while that the receptors are 

represented by grey and cyan cartoon, respectively. The 

elements of the electron density topology are shown. The bond 

paths connecting the nuclei are represented in pink sticks and 

the bond critical points are shown as red spheres. 

 

Compound 4, unlike compound 3 presents protonated 

nitrogen atom in the isoquinoline moiety and a methoxy 

group adjacent. In the AChE complex, these changes lead 

to the loss of the hydrogen bond with Ser124, while the 

quinoline nitrogen acts as H-bond donor against Tyr336 

(HOTyr336,AChE•••HN Inh4) (Figure 5a). On the contrary, in 

the BChE complex, the methoxide group forms a 

moderate hydrogen bond with Thr120   

(HG1Thr120,BChE•••O01Inh4), while the quinoline nitrogen 

acts as a H-bon acceptor against amide group of Gly116 

(HNGly116,BChE•••NInh4) (Figure 5b). The hydrophobic 

region of these compounds presents several contacts with 

Trp85 (AChE) and Trp82 (BChE), while that the 

compound 4 have two hydrogen bond weak with Glu201 

in the AChE complex. The selectivity of this compound for 

BChE is mainly due to the strong anchoring provided by 

the hydrogen bonds that form the benzodioxole group with 

the Tyr332 (HHTyr332,BChE•••O2Inh4) and Ty440 

(HHTyr440,BChE•••O1Inh4) while in the AChE complex this 

a) 

b) 
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group presents a moderate hydrogen bond with Ser202 

(HGSer202,BChE•••O1Inh4). 

Figure 5. Molecular graph of the noncovalent interactions 

between compound 4 and (a) AChE and (b) BChE. The 

inhibitor is represented as green sticks while that the 

receptors are represented by grey and cyan cartoon, 

respectively. 

The structural changes in compound 7, respect to 
compounds 3 and 4, render its inactivity against AChE, as 
shown in Figure 6, the interaction HOTyr336,AchE•••HN Inh7  
that had compound 3 and 4 was lost by the incorporation 
of the methyl group. This moderate hydrogen bond was 
replaced by a very weak non-classical hydrogen bond 
(HOTyr336,AchE•••HCInh7). In addition, the breaking of the 
benzodioxole group causes the loss of the hydrogen bond 
with Ser202 (HGSer202,BChE•••O1Inh4) present in 
compounds 4, which is replaced by a non-classical 
hydrogen bond (OGSer202,BChE•••HCInh7). On the other 
hand, in the BChE complex, compound 7 retains the 
hydrogen bond with Thr120 (HG1Thr120,BChE•••O01Inh7) and 
Gly116 (HNGly116,BChE•••NInh7) as well as the hydrophobic 
contacts with Trp82. It is important to note that the 
breaking of the benzodioxole group causes the loss of the 
interaction with Tyr332 (HHTyr332,BChE•••O2Inh7) , while the 
hydrogen bond with the OH group of Tyr440 
(HHTyr440,BChE•••O1Inh7) is a very important anchor point for 
the inhibitory activity of compound 7 and is key to the 
selectivity of this compound. 

 

 

Figure 6. Molecular graph of the noncovalent interactions 

between compound 7 and (a) AChE and (b) BChE. The inhibitor 

is represented as magenta sticks while that the receptors are 

represented by grey and cyan cartoon, respectively. 

In the AChE complex the compounds 8 and 10, like 
compound 4 forms a hydrogen bond between the 
quinoline nitrogen and Tyr336 (HOTyr336,AChE•••HN Inh8,10) 
while the hydrophobic contacts with Trp85 are conserved 
(Figure 7a and Figure 8a). On the other hand, the 11-
methoxy substituent presents two non-classical hydrogen 
bond with Glu201 (OE1Glu201,AChE•••HC Inh8,10, 

OE2Glu201,AChE•••HC Inh8,10). It should be noted, that the 
small structural changes respect the other compounds 
generate a different mode of union in which valuable 
interactions such as those produced in compounds 3 and 
4 between the benzodioxole group and Ser202 are missed. 
In contrast, in the BChE complex the isoquinoline region 
of compound 8 and 10 is strongly bounded by interactions 
with the Thr (HG1Thr120,BChE•••O01Inh8,10) and Gly 
(HNGly116,BChE•••NInh8,10) residues while the dioxolo moiety 
also participates in a large number of hydrophobic 
contacts with Thr82. Compounds 8 and 10 differ in the 
anchoring of the benzodioxole group. In compound 8 this 
group forms a hydrogen bond with Tyr440 
(HHTyr440,BChE•••O1Inh8) while in compound 10 it has two 
hydrogen bonds with Tyr 332 (HHTyr332,BChE•••O2Inh10) and 
Tyr440 (HHTyr440,BChE•••O1Inh10) (Figure 7b and Figure 
8b).  

It is important to note that the mode of union of these 
compounds is similar to that reported by other authors in 
many articles. In the case of AChE, it is reflected in the 
hydrogen bridge interactions with residues Tyr332 and 
Glu201 as well as with hydrophobic interactions with 
residues Trp85 and Phe337. On the other hand, in the 
case of BChE these compounds have important hydrogen 
bridge interactions with the Thr120, Tyr332 and Tyr440 
residues while they have numerous hydrophobic 
interactions with the Trp82 residue. [27,28] 

a) 

b) 

b) 

a) 
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Figure 7. Molecular graph of the noncovalent interactions 

between compound 8 and (a) AChE and (b) BChE. The 

inhibitoris represented as orange sticks while that the receptors 

are represented by grey and cyan cartoon, respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Molecular graph of the noncovalent interactions between 

compound 10 and (a) AChE and (b) BChE. The inhibitor is 

represented as light blue sticks while that the receptors are 

represented by grey and cyan cartoon, respectively. 

4 Conclusions 

In the current study, thirteen alkaloids of natural origin with 

aporphinoid structure were tested for their cholinesterase 

inhibitory activity. All of them were shown to interact with at 

least one of the enzymes. Alkaloids liriodenine 3 and 

cassythicine 10 demonstrated the best activity as dual 

inhibitors of AChE and BChE with IC50 values in the 

micromolar range. Also, these alkaloids were demonstrated to 

inhibit BChE more effectively than current drug for AD 

treatment galanthamine. In addition, molecular modelling 

analysis allowed us to explain the selectivity and mode of 

inhibition of some of the compounds trough the study of the 

interactions in the enzymes active sites. Benzodioxole moiety 

seemed to be responsible for the strong interaction between 

these subgroups of alkaloids and AChE and BChE. 
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