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Abstract 20 

In this work, the first long-term (eight years) record of hourly concentrations of carbon monoxide 21 

(CO), nitrogen dioxide (NO2) and particulate matter with diameter less than 10 µm (PM10) from 22 

three sites in the city of Buenos Aires is analysed. Considering the short-term guidelines 23 

suggested by the WHO, the daily mean PM10 concentrations present a relatively large number of 24 

exceedances at the three sites. Different statistical techniques are combined to study the 25 

relationship between these relatively high PM10 concentrations and relevant surface 26 

meteorological variables.  For all pollutants and sites, wind speed shows the largest differences 27 

between the lowest and highest concentration quartiles. To further explore its role on daily mean 28 

PM10 concentration, a k-means algorithm is applied, grouping days with similar surface 1h-wind 29 

sequences. Five wind sequence clusters are found, presenting distinctive air quality data 30 

features. Two clusters (1 and 2) show that PM10 exceedances occurring with winds entering the 31 

city from the river represent between 10-21% of total events at the three sites. The frequency of 32 

exceedance under these conditions decreases with the distance to the coast. For cluster 1, the 33 

hourly PM10 concentration profile and its associated daily wind sequence suggest an important 34 

contribution to exceedance events from the city’s southernmost power plant. Two clusters (3 35 

and 4), exhibiting continental winds, account for 49-59% of the exceedances and co-occur with 36 

relatively drier air conditions. The correlation between CO and PM10 for days belonging to cluster 37 

3 supports the hypothesis of a potential remote or distributed source contribution with SW 38 

winds. For cluster 4, differences among sites in the number of events under NNW winds suggest 39 

an important contribution from the city’s widest avenue to the PM10 levels at the most coastal 40 
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site. A large contribution coming from urban sources is also indicated for these winds. Finally, 41 

cluster 5, exhibiting low wind speed sequences, accounts for 23-33% of the exceedances at the 42 

three sites. The average PM10 concentration increases with persistence of this cluster, which 43 

could be a driver for exceedances. These results contribute to show the importance of simple 44 

methods such as clustering analysis to obtain insights into air quality features such as 45 

exceedances and their potential drivers. They also suggest that further efforts in monitoring, 46 

modelling and emission estimates may help to better understand local, urban and regional 47 

source contributions to these events in the city of Buenos Aires. 48 

 49 

Keywords: air quality data; Buenos Aires; exceedance conditions; meteorological data 50 

 51 

1. INTRODUCTION 52 

 53 

Air pollutants can cause adverse effects on human health and the environment if their 54 

concentrations are relatively large. According to the World Health Organisation (WHO), nine out 55 

of ten people worldwide breathe polluted air. The combined effects of poor outdoor and indoor 56 

air quality cause around seven million deaths annually (WHO, 2018). The largest negative impact 57 

of atmospheric pollution occurs in urban areas because they not only present the highest air 58 

pollutant levels but also the largest number of people exposed to them. Given the increasing 59 

evidence of negative effects on the health of the population (e.g., Lelieveld et al., 2019; 60 

Papadogeorgou et al., 2019; Sun and Zhu, 2019), more governments are taking action for which 61 

interaction with the scientific community may be crucial. 62 

Although air quality improvement strategies rely on emission abatement measures, 63 

meteorological factors play a major role on high concentration values (Borge et al., 2018). Urban 64 

air quality is the result of a complex combination of different scale processes and local factors 65 

(Borge et al., 2016) that cannot be extrapolated across cities and must therefore be evaluated for 66 

each particular case. The study of the role of meteorological conditions on high concentration 67 

events requires long-term (i.e., several years) series of observations. Usually, air quality data 68 

availability is the main limitation for such analysis. Exceedances over a given threshold typically 69 

represent a small fraction of the data set (the higher the threshold the lower the fraction). A 70 

long-term record guarantees that all possible outcomes (resulting from the countless 71 

combinations of meteorological and emission conditions) are included in the analysis. 72 

The city of Buenos Aires (CBA) is part of the Metropolitan Area of Buenos Aires (14,967,000 73 

inhabitants, 3830 km
2
), the third mega-city in Latin America (UN, 2019). Compared to other 74 

South American cities, the air quality and its relationship with meteorology in the CBA has been 75 

poorly studied. Most works (e.g., Bogo et al., 1999; Mazzeo et al., 2005; Arkouli et al., 2010) 76 

analyse air pollutant concentrations using observations from short-term (i.e., a few months) 77 

monitoring campaigns. A few studies using long-term series have focused on meteorological 78 

aspects of air pollution. For example, Venegas and Mazzeo (1999) analyse stagnation, 79 
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recirculation and ventilation conditions using two years of meteorological data from several sites 80 

of Argentina including Buenos Aires, and conclude that the frequency of occurrence of these 81 

conditions accounts for 10%, 6% and 40% of the time, respectively. Gassmann and Mazzeo (2000) 82 

study the air pollution potential using four years of observations and find that Buenos Aires has a 83 

frequency of days with low ventilation conditions of 8.5%. Finally, Mazzeo and Venegas (2004) 84 

analyse the persistence of different wind and stability conditions in the CBA using three years of 85 

meteorological data and highlight that while all wind directions present long persistence periods, 86 

some of them may lead to worse air pollution conditions. 87 

At regulatory level, the environmental protection agency of the CBA (APRA, in Spanish) monitors 88 

ambient concentration levels of carbon monoxide (CO), nitrogen dioxide (NO2) and particulate 89 

matter with an aerodynamic diameter less than or equal to 10 µm (PM10) at three air quality 90 

stations, simultaneously since 2009. While current air quality is adequate to protect human 91 

health according to the present regulation (Res. 403/APRA/13), air quality standards in the CBA 92 

are expected to be updated in the coming years to follow the guidelines suggested by the World 93 

Health Organisation (APRA, personal communication). In this context, knowledge of the 94 

mechanisms responsible of high concentrations [i.e., those exceeding the WHO levels (WHO, 95 

2005)] is fundamental. In addition, a comprehensive study of the relationship between air quality 96 

and meteorology may contribute to identify potential source regions of air pollutants.  97 

In this work, we present a study of the first long-term air quality data set recorded in the CBA 98 

consisting of 8 years of 1-hour NO2, CO and PM10 ambient concentration records measured by 99 

the APRA at the three monitoring sites. The methodology includes simple statistical analyses and 100 

clustering of daily wind sequences. The relationship between observed air quality features and 101 

meteorological conditions is discussed with a focus on the PM10 concentrations exceeding the 102 

daily mean WHO guideline. The objective is to gain knowledge on the underlying meteorological 103 

drivers of high air pollutant concentrations in the atmosphere of Buenos Aires that should be 104 

considered for air quality management in the city. 105 

Air quality data are described in Section 2. The statistical analyses used four our research are 106 

presented in Section 3 and the results discussed in Section 4. A discussion on the advantages and 107 

limitations of the methodology is presented in Section 5 and the main conclusions of the work 108 

are summarised in Section 6. 109 

 110 

2. AIR QUALITY DATA 111 

 112 

Air quality data consist of eight years (01/05/2010 - 30/04/2018) of continuous hourly 113 

concentrations of CO, NO2 and PM10 measured at three sites in the city of Buenos Aires (Table 1). 114 

These monitoring stations are regarded by the local environmental authority (APRA) as: urban 115 

background (CEN: Parque Centenario), urban traffic (COR: Córdoba) and urban industrial (LB: La 116 

Boca). Parque Centenario is located in the geographical centre of the city, in a residential-117 

commercial area, 60 m away from a large park (see Figure 1). Córdoba station is located on a 118 
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busy avenue through which 38,000 vehicles circulate daily in an east-west direction (Mazzeo and 119 

Venegas, 2012). This site is surrounded by buildings with varying heights (10-80 m) in a 120 

commercial area of the city. Finally, La Boca station is located near the coast (where three 121 

thermal power plants operate) and 160 m away from a highway.  122 

Correlation between stations of hourly concentration values is greater than or equal to 0.5 for all 123 

pollutants and sites, except for CO between COR and LB sites (0.38) (see Figure S.1). Note that 124 

relatively high correlations within the city are expected because all stations are subject to similar 125 

influences of diurnal and seasonal variations in both the meteorological conditions and the 126 

emissions. However, correlations are not perfect, implying that local features still account for a 127 

substantial amount of the variation in concentration values. In general, at each site, the following 128 

correlation order is verified: CO < NO2 < PM10, as expected from the nature of these pollutants.  129 

NO2 and CO concentrations are larger in COR (Figure 2). As expected, in all sites, these species 130 

present diurnal variations which follow that of road traffic emissions with two maxima at peak 131 

hours and larger concentration during winter months mainly due to reduced dispersion 132 

conditions, as previously suggested in other studies (e.g., Venegas and Mazzeo, 1999; Mazzeo 133 

and Venegas, 2004). However, the amplitude of the mean monthly concentration values varies 134 

differently for the two pollutants. The maximum-to-minimum NO2 concentration ratio is 135 

considerably larger at COR (104%) than at CEN (56%) and LB (70%); while the CO variation is 136 

rather similar across sites (74-85%). These differences must be related with local features. 137 

PM10 presents hourly and monthly variations that are similar across sites and contrast with the 138 

traffic-related profile of the other species. On average, hourly PM10 concentration values show 139 

small variations during diurnal hours, except at LB where larger levels in the afternoon are 140 

observed, peaking at 18h. These characteristic small diurnal variations suggest a large 141 

contribution of sources other than traffic (secondary formation and/or non-local sources). The 142 

monthly variation of PM10 shows larger values in June, July and November, with a maximum-to-143 

minimum PM10 concentration ratio varying between 26% (COR) and 45% (CEN). The relatively 144 

larger concentration values observed in warm months could be due to photochemical reactions 145 

leading to a larger fraction of secondary aerosols.  146 

During weekdays, the concentration of the three species is larger as a result of greater human 147 

activities, mainly traffic. Despite similar temporal patterns, some differences among pollutants 148 

and sites are observed. At CEN, COR and LB, the weekend reductions relative to the weekday 149 

mean are respectively: 16%, 14% and 16% for NO2 (ratio=1.14); 11%, 25% and 11% for CO 150 

(ratio=2.27); and 11%, 14% and 7% for PM10 (ratio=2).  151 

 152 

3. METHODOLOGY 153 

 154 

In order to explore the role of relevant meteorological variables on daily pollutant 155 

concentrations, simple statistical techniques and clustering analysis are combined. Due to the 156 

lack of meteorological observations at the air quality stations, in this work we assume that data 157 
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from the meteorological station that is located in the local airport (see Figure 1) is representative 158 

of that at the three sites. These data consist of: air temperature (AT), sky cover (SC), relative 159 

humidity (RH), precipitation (PP), wind speed (WS) and wind direction (WD). The assumption of 160 

horizontally homogeneous ambient wind conditions in the area has been used satisfactory in air 161 

quality modelling studies (e.g., Pineda Rojas, 2014) and relies on the fact that the Metropolitan 162 

Area of Buenos Aires is located over flat terrain. 163 

Days presenting two or more consecutive hours with missing data are discarded; otherwise linear 164 

interpolation is applied. Daily averages are computed for all variables, obtaining N=2347 days 165 

with complete (i.e., 24 hours) meteorological data and air quality data of each species in at least 166 

one site. Since wind is a circular variable, average values are obtained separately for its zonal and 167 

meridional components.  168 

In order to identify the atmospheric variables that are mostly associated with low and high air 169 

pollutant levels, an analysis of their distributions by concentration quartiles for each species and 170 

site is first performed. For each meteorological variable, the statistical difference between the 171 

distributions of the 1st and 4th quartiles is assessed using the Mann-Whitney U-test. Significant 172 

effects indicate an influence of the meteorological variable on concentration levels for a given 173 

pollutant and site. 174 

Since wind is the most important variable for dispersion of air pollutants, and its hourly variation 175 

(along with that of emissions) may contribute to the observed daily mean concentration values, a 176 

clustering analysis is then performed on the daily 1h-wind sequence. Clustering analysis is among 177 

the methods most widely used to study the relationship between air pollution and 178 

meteorological conditions using long-term series when a reduction of data dimensionality is 179 

required (e.g., Davies et al., 1998; Beaver and Palazoglu, 2006; Borge et al., 2007; Beaver et al., 180 

2008; Rimetz-Planchon et al., 2008; Pakalapati et al., 2009; Khedairia and Khadir, 2012). This 181 

methodology allows grouping elements taken from a high dimensionality data set based on their 182 

similarity. In the case of daily 1h-wind sequence, each day is described by 48 variables (= 2 wind 183 

components x 24 hours). A k-means algorithm is applied to group them according to their wind 184 

sequences. The elbow method (Kaufman and Rousseeuw, 2009) is used to select the optimum 185 

number of clusters (k). It relies on the analysis of within-cluster sum of squares (WCSS) 186 

representing the sum of the squared distance between each member of the cluster and its 187 

centroid. WCSS is calculated for different numbers of cluster starting at k = 2 and plotted against 188 

k. According to this method, an optimum k value (i.e., that providing an optimum trade-off 189 

between a significant cluster separation and a manageable number of groups) is given by the 190 

inflexion point in the curve. In order to get a more complete description of the wind fields in the 191 

area that are associated with the clusters, the daily mean sea level pressure (SLP) field is 192 

computed for each cluster using data taken from the NCEP-NCAR II Reanalysis dataset 193 

(Kanamitsu et al., 2002).  194 

Once days are classified according to the method described above, the statistical difference of air 195 

pollutant concentrations among clusters is assessed for each pollutant and site in order to 196 
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determine whether different wind patterns are associated with different air pollutant levels. For 197 

a given cluster, the centroid represents the wind dynamics during a stereotypical day belonging 198 

to it, and interactions with mean hourly variations of concentration values can be analysed. In 199 

addition, as highlighted by other authors (e.g., Carslaw and Beevers, 2013), further insights on 200 

the air quality data may be obtained through the evaluation of inter- and intra- cluster variability. 201 

In order to elucidate the meteorological conditions associated with PM10 events, we analyse: 202 

- differences among clusters in: i) the mean diurnal species concentration profiles, ii) the 203 

variation of mean pollutant concentration with the cluster persistence period, and iii) the PM10 204 

exceedances over the WHO guideline at each site,  205 

- within-cluster differences among exceedance and non-exceedance days of: iv) relevant 206 

meteorological variables and v) correlations between PM10 and CO daily mean concentrations.  207 

While analyses i) to iii) are performed for each site, observations from all sites are pooled 208 

together in the analyses iv) and v) to gain a comprehensive view of the exceedances at city level 209 

and to increase the statistical power given the reduced overall number of events.  210 

 211 

4. RESULTS 212 

 213 

4.1. Local meteorological conditions associated with different air pollutant levels  214 

In order to get a general picture of the relationship between air pollutant concentrations 215 

measured at each site and relevant surface meteorological variables recorded at AEP station, the 216 

distributions of the meteorological variables corresponding to each daily mean concentration 217 

quartile are analysed. As shown in Figure 3, NO2 and CO upper quartile concentrations occur 218 

more frequently with lower daily mean air temperature (AT) values compared with their lower 219 

quartile levels. While the distributions of AT for the two extreme concentration quartiles show 220 

significant differences, those of sky cover (SC), relative humidity (RH) and precipitation (PP) 221 

present a more complex behaviour. For example, larger CO levels associated with larger RH 222 

values are only evident at CEN and COR stations. In the case of PM10, differences in AT are not 223 

robust and those in SC and RH show a clear inverse relationship with the daily mean 224 

concentrations. Larger PM10 concentrations, occurring more frequently with lower SC (clearer sky 225 

conditions) and RH values, could be related to the role of precipitation. At the three sites, the 226 

impact of PP is stronger on PM10 than on NO2 and almost no effect on CO concentrations is 227 

observed (Figure 4), which is expected due to the different efficiency of rain to remove these 228 

pollutants from the atmosphere (Yoo et al., 2014). 229 

The three species show larger concentration values with lower values of wind speed (WS), and 230 

this variable is the one showing the most significant statistical difference between extreme 231 

quartile concentrations, as shown by its low p-value compared to other meteorological variables 232 

(Figure 4). The distributions of wind direction (WD) also show some similarities among pollutants 233 

and sites: in general, lower concentrations occur mostly with winds from the 1st and 2nd 234 

quadrants (i.e., winds entering the city from the river) and larger differences between the upper 235 
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and lower concentration quartiles (i.e., the difference between the red and blue curves in Figure 236 

3) occur more frequently with winds from the 4th quadrant. An exception to this typical 237 

behaviour is observed in the WD distributions for CO and PM10 in COR which show greater upper 238 

- lower differences with S winds. This can be attributed to the street canyon effect that has been 239 

previously reported for this monitoring site (e.g., Mazzeo and Venegas, 2012; Venegas et al., 240 

2014) and is expected due to the street having an east-west orientation and the monitoring 241 

station being located on its south side. NO2 concentrations at traffic hotspots can be affected by 242 

a variety of combined micro-scale phenomena (e.g., Sanchez et al., 2017).The fact that these 243 

concentrations are less affected by the street canyon effect suggests that at COR they may be 244 

more influenced by urban background levels.  245 

Considering the important role of wind on air pollutant concentrations and the fact that daily 246 

averages may prevent from understanding important features linked to hourly variations, the 247 

relationship between concentrations and surface wind sequences is investigated in the following 248 

sections. 249 

 250 

4.2. Surface wind sequence patterns and associated synoptic pressure fields 251 

As described in Section 3, clustering analysis is performed to find groups of similar daily 252 

sequences of hourly wind during the analysed period. A number of k (number of clusters) = 5 is 253 

identified as an adequate value for the k-means algorithm applied (see Figure S.2). Figure 5 254 

presents the accumulated hourly mean wind vector obtained for each of the five clusters along 255 

with the corresponding 95% confidence interval along the day. Clusters are ordered clockwise 256 

starting at the 1st quadrant (cluster 1) and ending at sequences including the lowest wind speeds 257 

(cluster 5). The first two clusters present larger hourly mean wind speeds. Cluster 1 shows 258 

uniform wind direction from NNE during night and early morning hours and with wind rotating 259 

clockwise around 15 h so that ESE direction dominates during the afternoon. Clusters 2, 3 and 4 260 

show nearly constant wind directions from SE, SW and NNW, respectively. Finally, cluster 5 261 

includes winds with the lowest mean speeds along the day. The direction is SSE at night, it 262 

rotates to ENE at around 12 h and to ESE at 18 h. Examples of how this wind sequence 263 

classification performs at individual days are shown in Figure S.3. 264 

In order to describe these clusters at synoptic scale, Figure 6 displays the horizontal fields of the 265 

mean sea level pressure (SLP) averaged for each cluster using daily SLP data from the NCEP-NCAR 266 

II Reanalysis. The SLP pattern corresponding to cluster 1 (Figure 6.a) is characterised by a well-267 

defined high pressure system over the South Atlantic waters, east of the study area, and winds 268 

prevailing mostly from the NE and ENE. A high pressure system is also present in cluster 2 (Figure 269 

6.b), although its strength is weaker compared to cluster 1 and its location is displaced onto the 270 

continent, slightly to the south of the study region. In this scenario, prevailing winds come mainly 271 

from the E and SE. In turn, the SLP patterns corresponding to clusters 3 and 4 are associated with 272 

more dynamical conditions: cold fronts propagating over the study area (Escobar and Bischoff, 273 

1999). In these two scenarios, surface winds have a continental origin and blow from the SW 274 
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(NW) in the case of cluster 3 (cluster 4). Both cases may lead to the uplift of fine soil particles, 275 

especially under dry soil conditions, providing a natural source of particulate matter (from the 276 

regions that are highlighted in the Figure) which may eventually reach the city of Buenos Aires 277 

and increase the concentration of PM10. Lastly, the pattern associated with cluster 5 (Figure 6.e) 278 

is characterised by a high pressure system located over the city of Buenos Aires leading to light 279 

and variable winds over the study area. Overall, the obtained SLP fields are consistent with the 280 

surface wind sequences shown in Figure 5 and provide an insight on the potential source regions 281 

and stagnation conditions that may contribute to increased pollution levels in the city. Still, it 282 

should be taken into account that hourly variations in the wind components (Figure 5) are 283 

expected on top of the synoptic, daily-mean wind direction, since the location of the wind 284 

measuring site close to the river shore makes it much more prone to be affected by the diurnal 285 

cycle of the river breeze. 286 

 287 

4.3. Variation of air quality with surface wind sequence patterns  288 

Once individual days have been distributed among the five wind sequence patterns described in 289 

the previous section, differences in the air pollutant concentrations among these clusters must 290 

be investigated in order to determine whether the classification can be useful to further explore 291 

the role of meteorology on air quality at the three sites. As shown in Figure 7, the concentrations 292 

of the three chemical species are larger (in terms of their means) in clusters 4 and 5 at CEN and 293 

LB stations, while at COR (the street canyon site) a less clear pattern is observed: NO2 is larger in 294 

clusters 3 to 5, and CO and PM10 levels are higher in clusters 3 and 5. From this Figure, it can be 295 

concluded that average pollutant concentrations are relatively lower during surface winds 296 

conditions corresponding to clusters 1 and 2, and relatively higher for clusters 4 and 5, except at 297 

COR where cluster 3 is also associated with high concentration values. 298 

It is interesting to note that differences among clusters are present not only in the concentration 299 

levels but also on the profiles of variation along the day (see Figure 8). For NO2 and CO, for 300 

example, the concentration profile of cluster 1 presents a second daily peak considerably larger 301 

than the first one (except at LB), that of cluster 2 shows comparatively lower diurnal variation 302 

and those of clusters 3, 4 and 5 look like those of typical traffic emissions (see for example the 303 

vehicle emissions profile at COR presented by Venegas et al., 2014). In turn, the hourly variation 304 

of the PM10 concentration presents less smoothed profiles with no clear order in the cluster 305 

curves (they cross each other at different times of the day). At the three stations, in the night and 306 

during the morning, cluster 1 has the lowest concentrations and cluster 5 the largest one. Shortly 307 

after 6 h, PM10 concentrations of cluster 1 start to increase, reaching values comparable to those 308 

of cluster 5 towards 18 h. At LB, a clear contribution of cluster 1 to the highest 18h-peak 309 

(previously noticed in Figure 2) is observed. Other clusters present only small diurnal variations, 310 

while only cluster 5 at LB shows a profile similar to the emissions from the road transport. 311 

Since persistence in wind conditions has been suggested to affect AQ in the CBA (Mazzeo and 312 

Venegas, 2004), the role of cluster persistence on average air pollutant concentrations was also 313 
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explored. The daily variation of the cluster number at each site (with a brief description) is 314 

presented in Figure S.4. Some common features are observed in the daily mean NO2 and CO 315 

concentrations: they show significant decreases with persistence of cluster 2 at CEN, and 316 

increases with persistence of cluster 5 at COR (see Figure 9 and Table 2). NO2 also decreases with 317 

persistence of cluster 1 at all sites, while CO increases with persistence of cluster 5 at CEN. Daily 318 

mean concentrations of PM10 at the three sites decrease (increase) with persistence of clusters 2 319 

(cluster 5), with the strongest statistical trend found for cluster 2. At LB, the most coastal site, an 320 

increase of the average PM10 concentrations with persistence of clusters 1 and 4 is also observed.  321 

 322 

4.4. PM10 exceedances over the WHO guideline 323 

While a few exceedances of the local air quality standard occur in the 8-year period under study 324 

(with frequencies ≤ 0.1, not shown), the WHO guideline (50 µg/m
3
) is exceeded much more 325 

often, with frequencies varying between 5.8% in CEN and 8.2% in LB (computed over the total 326 

analysed days at each site), totalling 368 PM10 exceedances in 229 days (Table 3). 57% of these 327 

days presents exceedances at only one monitoring site, 25% at two sites and 18% at the three 328 

sites simultaneously (see Figure 10). The average daily concentration when the WHO standard is 329 

exceeded varies between 68-69 µg/m
3
 across sites. When looking at the distribution of the PM10 330 

exceedances by cluster (Figure 11), the largest number of exceedances at CEN and LB are related 331 

to cluster 4 (winds from the 4th quadrant), followed by cluster 5 (low wind speeds) and cluster 3 332 

(winds from the 3rd quadrant), while a larger exceedance frequency for cluster 3 is found at COR. 333 

In total, 90%, 82% and 79% of the events occur in clusters 3 to 5 at CEN, COR and LB, 334 

respectively. Only a few exceedances occur in clusters 1 and 2, except at LB where these clusters 335 

amount for 21% of the events.  336 

While the occurrence of clusters is quite homogeneous in the whole period (see upper panel of 337 

Figure 11), the relative frequency has considerable seasonal variations. Figure 12 shows a clear 338 

dominance of clusters 1 and 2 during austral spring and summer (Sep-Feb) that could be 339 

explained by the fact that during the warm season, the climatological position of the Atlantic 340 

Subtropical High pressure system favours the occurrence of easterly winds over CBA. Clusters 3 341 

and 4 dominate during the cold season (Jun-Aug) when the passage of cold fronts is much more 342 

frequent. Cluster 5 dominates in May but also shows relative peaks in February and August, 343 

which can be explained by the fact that higher pressures over CBA occur in both the cold and 344 

warm seasons. As shown in Figure 12, PM10 exceedances at CEN and COR occur more frequently 345 

during cold months, mainly related to clusters 3 to 5. In turn, at LB, the number of exceedance 346 

days is more homogeneously distributed both along the year and among the five clusters, except 347 

in June and July when a larger contribution from clusters 3 and 4 is observed. The monthly mean 348 

PM10 exceedance frequencies (computed over the monthly number of days with complete data) 349 

vary between 0.7-13.3% (CEN), 1.3-14.5% (COR) and 3.1-17.0% (LB). 350 
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Within each cluster, exceedances occur during a very small fraction of days, as evidenced by 351 

comparing the lower and upper panels of Figure 11. This suggests that, within a given cluster, 352 

variables other than the mean surface wind sequence may contribute to explain the occurrence 353 

of these events. 354 

 355 

4.5. Within-cluster variation of other meteorological variables 356 

 This section analyses differences between meteorological variables occurring in exceedance vs. 357 

non-exceedance days for each cluster. Interestingly, exceedance days co-occur with relatively 358 

larger air temperature values under wind conditions of cluster 1 and the opposite is observed for 359 

clusters 4 and 5 (see Figure 13). This feature of cluster 1 suggests a potential contribution of 360 

secondary sources when the wind comes from the river and is not observed if the wind 361 

classification is not considered (not shown). Differences in the mean relative humidity are only 362 

evident in cluster 3 and 4; while those of wind speed are statistically significant in clusters 1, 3 363 

and 4. Despite significant differences in SC and PP values between the lower and upper PM10 364 

concentration quartiles (Figure 4), differences in their average values among exceedance and 365 

non-exceedance days are not significant under this wind classification. This could be due to the 366 

relatively low number of events. 367 

The synoptic pressure fields (Figure 6) associated with SW winds in cluster 3 and NW winds in 368 

cluster 4 suggest that these continental winds are efficient in providing a natural source of 369 

particulate matter entering the city of Buenos Aires. In order to check this hypothesis, the 370 

correlation between daily mean concentrations of PM10 and CO during exceedance and non-371 

exceedance days, are computed. As shown in Table 4, correlation for cluster 3 not only decreases 372 

but also becomes not-significant in exceedance days. This supports the hypothesis of an 373 

important contribution from remote emission sources under SW winds conditions. In turn, the 374 

correlation analysis does not support the hypothesis for cluster 4 because the correlation is 375 

higher during these PM10 events. Note that the relatively higher average concentrations of NO2 376 

and CO at CEN and LB for this cluster (Figure 7) suggest a larger contribution of urban pollution 377 

under NW winds, which could also be the case for PM10. 378 

 379 

5. DISCUSSION 380 

 381 

 Advantages of the methodology  382 

In this work, different statistical techniques are combined to provide novel insights into the air 383 

quality (AQ) in the CBA. The rationale behind their choice is related to specific significant 384 

information provided at each step. First, meteorological variables with a high influence on daily 385 

concentration of pollutants are identified. To do this, the data distributions of each 386 

meteorological variable corresponding to the first and last pollutant concentration quartiles are 387 

compared. While significantly different distributions for several meteorological variables are 388 

found, the daily mean wind speed is identified as the most influential factor for all pollutants and 389 
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sites. Next, to further understand the role of wind in determining daily pollutant concentration 390 

values and exceedances, the impact of different surface hourly wind sequences on daily 391 

concentration values is studied. A k-means algorithm is applied to group days having similar 1h-392 

wind sequences with the aim of assessing potential differences in AQ data among these groups. 393 

The discriminating power of the clustering analysis comes from its capacity to classify multi-394 

dimensional datasets, making no a priori assumptions as to how the data are distributed. The 395 

method proves itself useful if differences among the clusters are found in AQ variables, as 396 

exemplified in Carslaw and Beevers (2013). This is also the case for the data analysed here. 397 

The main result of this work is that different typical hourly wind sequences, grouped by the k-398 

means algorithm, are associated with distinct AQ features, as shown in figures 7 to 9 and 11 to 399 

13. As an example of the advantage of the clustering approach applied to wind sequences, Figure 400 

14 shows that the daily mean PM10 concentration profile during exceedance days in cluster 1 401 

presents strong hourly variations, which can be associated with the wind rotation characterising 402 

the cluster (Figure 5). In this case, a daily mean concentration above 50 µg/m
3
 results from very 403 

large values (up to 140 µg/m
3
) during the evening rather than moderately high but constant 404 

hourly concentration values along the day (Figure 14), as also suggested by examples of 405 

individual days belonging to the cluster. The interpretation of the mechanisms behind this 406 

particular class of exceedance would be obscured in a daily mean value analysis. 407 

 408 

Cluster differences among sites highlight local features 409 

Assuming that the wind measured at the local meteorological station may be representative for 410 

the whole city, cross-site differences in PM10 levels and in the number of daily exceedances for a 411 

given cluster are expected to result from differences in local source contributions. This simple 412 

reasoning allows us to draw some interesting conclusions regarding the impact of specific 413 

emission sources at different monitoring sites. First, the number of exceedances in clusters 1 and 414 

2 decrease in the order: LB → COR → CEN (Figure 11). The location of the stations (Figure 1) and 415 

the dominant wind directions in these clusters (Figure 5) suggest an important contribution of 416 

emissions from the city’s three power plants, located along the coastline. However, the clearly 417 

defined PM10 diurnal variation (Figure 14) occurring with the wind rotating conditions of cluster 1 418 

(Figure 5) suggests that these exceedances are dominated by an emission source located at ESE 419 

of the city, highlighting the potential impact on AQ of the southernmost power plant (Costanera). 420 

Second, while COR and LB are approximately aligned along cluster 4's dominant wind direction 421 

(NNW), thus expected to receive the same air parcel from distant sources, they differ significantly 422 

in the number of PM10 exceedances on days belonging to this cluster (Figure 11). This difference 423 

can only be explained by the presence of an important PM10 emission source between the two 424 

sites. Arguably this source may be related to traffic emissions at  Av. 9 de Julio (see Figure 1), 425 

regarded as the widest avenue in the world accommodating 14 car and bus lanes.  Third, the 426 

number of exceedances under wind conditions of clusters 3 and 5 are quite homogeneous among 427 
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sites, suggesting similar source contributions that are either distant or spatially distributed 428 

relative to the specific locations of the monitoring sites.  429 

 430 

More and better data are essential 431 

Several statistical tests in this work suggest significant effects when considering the complete 8-432 

year dataset but non-significant effects when analysing exceedance days alone. This brings up 433 

the issue, often overlooked in the literature, of which of these two datasets best describes urban 434 

AQ. This is the case, for example, for the difference in PP between the two extreme PM10 435 

quartiles (Figure 4), or for correlations between daily mean PM10 and CO concentrations (Table 436 

4). A strong possibility behind the loss of significance is the simple fact that there is less data 437 

when only exceedences are considered. Note that lack of significance does not provide positive 438 

evidence in favour of the null hypothesis, but rather states that the null hypothesis cannot be 439 

rejected with the present data. This also highlights the need for larger records of AQ data, to be 440 

able to analyse exceedance events and the mechanisms behind them with enough statistical 441 

power, especially if data are further divided into smaller groups representative of specific 442 

conditions (as in the clustering analysis).  443 

The 2010-2018 data suggest that the total number of exceedances over the WHO suggested 444 

guideline for daily PM10 concentration (50 µg/m
3
) is decreasing over time at CEN and COR. In 445 

contrast, exceedances at LB seem to increase since 2014 (Figure S.4). This calls for further efforts 446 

in monitoring and analysing particulate matter levels and their main drivers around this site. 447 

Understanding the role of specific emission sources on PM10 concentrations requires detailed 448 

knowledge about emission sources in the whole Metropolitan area of Buenos Aires, currently not 449 

available. In order to correctly account for the local contribution (using air quality models) and 450 

confirm the hypothesis of potentially important contributions from specific sources, in-situ wind 451 

measurements at the air quality monitoring sites are also needed.  452 

 453 

6. CONCLUSIONS 454 

 455 

In this work, a relatively large number of daily mean PM10 concentrations exceeding the World 456 

Health Organisation (WHO) guideline (50 µg/m
3
) is found at the three air quality (AQ) sites in the 457 

city of Buenos Aires (CEN: 110, COR: 100 and LB: 158) in a 8-year period (2010-2018). Simple 458 

quartile and clustering analyses of the three pollutants (NO2, CO and PM10) measured at the sites 459 

and relevant meteorological variables measured at the AEP station, are combined to study the 460 

main drivers of these events.  461 

The analysis of meteorological values corresponding to each pollutant concentration quartile 462 

shows different relationships for two groups of pollutants. On one hand, NO2 and CO (local 463 

pollutants) present larger daily mean concentrations most frequently with lower temperatures 464 

(which is probably related to the lower dispersion capacity of the atmosphere during winter). On 465 

the other hand, PM10 most frequently exhibits higher concentration levels with lower sky cover 466 
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and relative humidity, highlighting the role played by wet removal. The statistical comparison of 467 

the extreme quartile distributions confirms that the impact of precipitation is stronger on PM10 468 

than on NO2, and that wind speed is the variable showing largest differences between low and 469 

high concentration distributions for all pollutants and sites.  470 

In order to better understand the role of wind on the daily mean pollutant concentrations, a k-471 

means algorithm is applied to find groups of days having similar surface 1h-wind sequences. Five 472 

wind sequence patterns (clusters) are obtained and significant differences in the AQ among them 473 

are found at the three sites. From the combined analysis of: a) PM10 event frequency distribution 474 

by cluster, b) synoptic pressure fields associated with the clusters, c) cluster profiles of pollutant 475 

hourly concentrations, d) pollutant levels vs cluster persistence period, and e) intra-cluster 476 

differences of relevant variables between exceedance and non-exceedance days, we arrive to the 477 

following conclusions: 478 

- Two clusters (1 and 2) represent winds entering the city from the river (i.e., bringing "clean 479 

air") that are associated with a breeze-type circulation. Exceedances under these conditions 480 

account for 10-21% of total events at each site. Those presenting with winds from the 1st 481 

quadrant (cluster 1) co-occur with relatively lower wind speeds and higher temperatures 482 

(compared with similar wind conditions during non-exceedance days) which suggests a 483 

potential contribution of photochemical formation. The decrease in the number of 484 

exceedances with the distance to the coast and the strong diurnal profiles of both PM10 485 

concentrations and wind during exceedance days, suggest an important contribution from 486 

the southernmost power plant. 487 

- Two clusters (3 and 4) represent continental winds from the SW and NW sectors which are 488 

associated with cold fronts. Exceedances in these cases represent 49-59% of total events and 489 

co-occur with lower relative humidity values. SW winds (cluster 3) are suggested to provide 490 

a natural source of PM10 for the city of Buenos Aires; while a larger contribution from urban 491 

sources to the concentrations of the three pollutants is suggested under NW wind 492 

conditions (cluster 4). In this last case, a large difference in the number of exceedances 493 

between COR and LB highlights an important contribution from Av. 9 de Julio to the PM10 494 

events at LB. 495 

- The fifth cluster (5) represents days with low wind speeds and calm conditions. PM10 496 

exceedances in these situations account for 23-33% of total events at the three sites, and 497 

they co-occur with relatively lower air temperatures and wind speeds compared with non-498 

exceedance days.  499 

- At the three sites, the average PM10 concentrations are positively correlated with 500 

persistence of cluster 5 and negatively correlated with that of cluster 2. A positive 501 

correlation is also observed in cluster 1 (breeze-prone conditions) at the most coastal site. 502 

These relationships are not statistically significant when only exceedance days are 503 

considered. Larger records of AQ measurements will help to determine the reason, as 504 

discussed in the previous section. 505 
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Further research, for example utilizing air quality deterministic modelling tools, may contribute 506 

to confirm the role of different emission sources within the Metropolitan area of Buenos Aires. 507 

To do this, both a high resolution emissions inventory and further monitoring efforts (including a 508 

larger number of air quality monitoring sites and in-situ wind measurements) are necessary. 509 
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TABLES 

Table 1: Basic statistics obtained from hourly time series of NO2 (ppb), CO (ppm) and PM10 

(µg/m
3
) concentrations at each monitoring site (CEN: Parque Centenario, COR: Córdoba, LB: La 

Boca) during the analysed period (2010-2018). [The number of observations (N) and data 

availability (%) at each site is indicated] 

  NO2 (ppb)     CO (ppm)     PM10 (µg/m
3
)   

  CEN COR LB CEN COR LB CEN COR LB 

Hourly values                 

Min 0 0 1 0.05 0.05 0.05 4 4 4 

Median 18 23 16 0.50 0.50 0.26 24 24 24 

Mean 19 26 19 0.56 0.61 0.34 30 30 31 

Max 112 190 129 6.80 5.21 8.76 492 744 880 

N 58499 46674 57131 51669 54604 50831 56245 52284 60915 

% 83 67 81 74 78 72 80 75 87 

Daily values                 

Min 3 2 2 0.16 0.08 0.07 9 9 7 

Median 18 22 16 0.52 0.6 0.34 25 26 27 

Mean 18 25 18 0.56 0.64 0.39 29 29 30 

Max 54 102 75 1.85 2.59 2.9 280 174 243 

N 1809 1497 1800 1726 1587 1332 1882 1657 1936 

% 62 51 62 59 54 46 64 57 66 
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Table 2: Pearson correlation coefficient between the average concentration and the cluster 

persistence period, for each pollutant and site. Positive (negative) correlation values indicate 

positive (negative) trends in the curves of Figure 9. Bold numbers indicate that the correlation is 

significant (i.e., the p-value obtained from the Kendall test is lower than 0.05) 

 

 

Cluster 

  1 2 3 4 5 

NO2           

CEN -0.13 -0.13 0.09 0.09 0.06 

COR -0.12 -0.04 0.02 0.08 0.10 

LB -0.10 -0.07 -0.01 0.07 0.02 

CO           

CEN -0.06 -0.18 0.02 0.09 0.20 

COR 0.02 0.02 -0.05 0.04 0.12 

LB 0.11 -0.07 -0.08 0.05 0.01 

PM10           

CEN -0.03 -0.22 0.00 0.05 0.08 

COR 0.05 -0.21 -0.03 0.06 0.10 

LB 0.10 -0.20 0.02 0.07 0.09 

 

 

Table 3: Number and relative frequency (%) of daily mean PM10 concentration exceedances over 

the guideline suggested by the WHO (50 µg/m
3
) at each monitoring site, in the studied period. 

[N: number of complete days (with 24 hours of data)] 

Monitoring site N Number of events Frequency (%) 

CEN 1882 110 5.8 

COR 1657 100 6.0 

LB 1936 158 8.2 

 

 

Table 4: Pearson correlation coefficient between PM10 and CO daily mean concentrations, for 

each cluster, stratifying by WHO guideline non-exceedance (Non-EXC) and exceedance (EXC) 

days. Bold numbers indicate that the correlation is statistically significant (p < 0.05) 

Days 
Cluster 

1 2 3 4 5 All 

Non-EXC 0.15 0.19 0.33 0.25 0.28 0.29 

EXC 0.41 -0.43 0.16 0.45 0.12 0.19 
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Figures 

 

Figure 1: Map of the Metropolitan Area of Buenos Aires, including the city of Buenos Aires (CBA) 

and location of the three air quality monitoring stations (CEN: Parque Centenario, COR: Córdoba, 

LB: La Boca) from the `Agencia de Protección Ambiental (APRA)’. The locations of the AEP 

meteorological station (Domestic Airport) and three thermal power plants (triangles) are also 

indicated. [Source: Google Maps] 
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Figure 2: Temporal variation of air pollutant concentrations at hourly, monthly and weekly scales, 

at each monitoring site (CEN: Parque Centenario, COR: Córdoba, LB: La Boca). 
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Figure 3: Distributions of surface daily mean meteorological data associated to each quartile 

interval of daily mean (a) NO2, (b) CO and (c) PM10 concentrations, at each monitoring site. The p-

value in each figure indicates the statistical significance of the difference between the average 

values of the 1st (blue) and 4th (red) quartiles. 
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Figure 4: Statistical comparison between the mean meteorological variables corresponding to the 

lower and upper quartile distribution of the daily mean concentration of each pollutant (blue and 

red series in Figure  3, respectively), at each site. [significance level of the difference (-log10 of p-

value); white indicates no statistically significant difference (p > 0.01) and darker colours indicate 

more significant difference]. 
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Figure 5: Accumulated hourly mean wind vector (solid lines) and corresponding 95% CI (dashed 

lines) along the day for each cluster (left) and their corresponding mean daily wind sequences 

(right). 
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Figure 6: Sea level pressure (SLP) averaged for each cluster a) 1 to e) 5. The number of days 

within each cluster is indicated between brackets. SLP units are hPa. Shaded regions indicate 

potential natural sources of PM for the area of the city of Buenos Aires. In Figure 6.a), Argentina 

(AG), the CBA (star) and neighbour countries (UY: Uruguay, PY: Paraguay, BZ: Brazil, BO: Bolivia, 

CH: Chile) are indicated. 
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Figure 7: Matrix of p-values obtained from the Dunn-Sidàk multi-comparison test applied to the 

cluster mean concentrations (upper panel; white indicates no statistical difference between the 

mean pollutant concentrations of two clusters) and box-plot of the cluster concentrations (lower 

panel; the p-values obtained from the Kruskal-Wallis test is indicated), for each pollutant and 

monitoring site. 
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Figure 8: Hourly variation of air pollutant concentrations at each monitoring site (CEN: Parque 

Centenario, COR: Córdoba, LB: La Boca), by cluster. 
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Figure 9: Mean pollutant concentration occurring with different wind sequence persistence 

periods, by cluster. 
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Figure 10: Percentage of days with PM10 concentration exceeding the WHO guideline (50 µg/m
3
, 

24 h) at one, two and the three sites simultaneously, relative to the total number of exceedance 

days (229). 
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Figure 11: For each cluster (colour code): day count (upper panel), exceedance day count (middle 

panel) and percentage of days with exceedance (lower panel), at each monitoring site (columns, 

as indicated). 
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Figure 12: Monthly distributions of: (a) cluster occurrence (%); and number of PM10 exceedance 

days by cluster at the three monitoring sites: (b) CEN, (c) COR  and (d) LB. 
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Figure 13: Mean values of a) temperature (AT, °C); b) relative humidity (RH, %); c) precipitation 

(PP, mm/day); and d) wind speed (WS, m/s) considering days with PM10 concentration below 

(blue) and above (red) the 50 µg/m
3
 threshold in at least one of the monitoring stations, by 

cluster. Asterisks next to the cluster number indicate that the differences are statistically 

significant at the 99% confidence level according to a two-sided t-Student test.  
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Figure 14: Hourly variation of PM10 concentrations during exceedance days at each monitoring 

site (CEN: Parque Centenario, COR: Córdoba, LB: La Boca), by cluster. 
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Highlights 

- Hourly AQ data and surface wind sequence are analysed over a 8-year period 

- Large number of PM10 exceedances over the WHO guideline at the three sites 

- Five 1-h wind sequence clusters with distinctive AQ features 

- Wind and AQ variations suggest specific local source contributions 

- Two clusters highlight potential urban and regional contributions to the events 
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