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PRINCIPAL EIGENVALUES OF FULLY NONLINEAR

INTEGRO-DIFFERENTIAL ELLIPTIC EQUATIONS WITH A

DRIFT TERM

ALEXANDER QUAAS, ARIEL SALORT AND ALIANG XIA

Abstract. We study existence of principal eigenvalues of a fully nonlinear
integro-differential elliptic equations with a drift term via the Krein-Rutman

theorem and regularity estimates up to boundary of viscosity solutions. We

also show simplicity of eigenfunctions in the viscosity sense by using a nonlocal
version of the ABP estimate and a “sweeping lemma”.

1. Introduction

The main scope of this paper is to study regularity of viscosity solutions and spec-
tral properties of non-divergence integro-differential equations. To be more precise,
we consider non-local elliptic equations with a drift term having the following form

(1.1) Iu(x) = inf
a∈A

sup
b∈B

{
LKa,bu(x) + ca,b(x) · ∇u(x)

}
= 0,

where {LKa,b}a∈A,b∈B is a family of integro-differential operators defined by

LKa,b =

∫
Rn
δ(u, x; y)Ka,b(y) dy,

δ(u, x, y) = u(x+ y) + u(x− y)− 2u(x).

The function ca,b is assumed to be uniformly bounded in Ω and the family of
kernels {Ka,b}a∈A,b∈B is symmetric and comparable with the respective kernel of
the fractional laplacian −(−∆)s, for s ∈ (0, 1).

Equations of type (1.1) arise from stochastic control problems, namely, in com-
petitive stochastic games with two or more players, which are allowed to choose
from different strategies at every step in order to maximize the expected value of
some functions at the first exit point of a domain, see for instance [43] and [34] in
the context of jump processes. Integro-differential equations like (1.1) have been
studied intensively in the last years, see [15, 16, 39, 41] and references therein.
We also refer to the work of Chang-Lara [19], where the author considers the case
containing a drift term and uniform not-symmetric kernels.

In this article, we assume the operator I under the same hypothesis as in [19],
see also [16] for equation without drift. We will be interested, as a starting point, in
studying the equation −Iu = f in a given domain Ω, u being a function vanishing
outside the domain, and f is assumed to be a continuous function. This problem,
and a generalization to possibly non-symmetric kernels, was treated in [19]. For

2010 Mathematics Subject Classification. 35J60; 47G20; 35P30.
Key words and phrases. Principal eigenvalue, integro-differential equation, regularity, Krein-

Rutman theorem.

1



2 ALEXANDER QUAAS, ARIEL SALORT AND ALIANG XIA

other previous existence and interior regularity results we refer to [4, 15, 16, 30, 41],
see also references therein.

In this manuscript we discuss Cα regularity up to the boundary by using the ideas
in [5], which allow us to analyze the behavior of the maximal Pucci nonlocal operator
for a power of the distance function near the boundary. Then, by using these results,
we aim at establishing the existence of the principal eigenvalues corresponding to
operator −I with Dirichlet boundary conditions via the classical Krein-Rutman
theorem for compact operator, see [1, 29, 32]. Beside the existence of the eigen-pair
we also aim to give some characterization relations with the maximum principle
and simplicity.

In this article, we will be focused on the principal half-eigenvalues of non-local
fully nonlinear elliptic operator −I. Eigenvalue problems have been extensively
studied for nonlinear operators, and the literature on this subject is quite vast. We
provide for a brief review by way of introduction. In [35], Pucci first noticed the
phenomena of nonlinear operators possessing two principal half-eigenvalue (which
are often referred also as semi-eigenvalue, or demi-eigenvalue). A similar behavior
for Sturm-Liouville equations was also remarked by Berestycki [6]. An important
contribution dealing with this kind of problems was made by Lions [31], who used
stochastic methods to study principal half-eigenvalues of certain Bellman opera-
tors. The ideas of Berestycki, Nirenberg and Varadhan [11] are also of essential
relevance, since they pointed out deep connections between the maximum princi-
ple and principal eigenvalues of linear operators. Furthermore, the question about
existence of principal eigenvalues of Pucci extremal operator was dealt by Felmer
and Quaas in [23]. Regarding principal eigenvalues for fully nonlinear uniformly
elliptic operators in non-divergence form, the problem was addressed by Quaas and
Sirakov [36, 37]. Ishii and Yoshimura [28] and Armstrong [2] showed analogous
results for not necessarily convex operators, such as Bellman-Isaacs operator. Fi-
nally, Birindelli and Demengel [7, 8] showed similar results for certain nonlinear
degenerated elliptic operators.

For further information and some examples with different situation on principal
eigenvalues and eigenfunction of nonlinear elliptic operators can be found in [2] and
[36]. We notice that these examples also can be reproduce for the nonlocal setting
after our main results.

We make the convention that any time we say that a non-regular function satisfies
an (in)equality, we shall mean it is satisfied in the viscosity sense. See for instance
[16, 19] for definitions and properties of these issues.

With this in mind, following the definitions in [11] (see also [2, 36] in the case
of fully elliptic operators), we define the following finite quantities (see Lemma 5.3
for more more details):

λ+
1 (I,Ω) = sup{λ : ∃v ∈ C(Ω̄) ∩ L1(ωs), v > 0 in Ω and v ≥ 0 in Rn \ Ω

such that Iv + λv ≤ 0 in Ω},
λ−1 (I,Ω) = sup{λ : ∃v ∈ C(Ω̄) ∩ L1(ωs), v < 0 in Ω and v ≤ 0 in Rn \ Ω

such that Iv + λv ≥ 0 in Ω},

where the weight function ωs is given in Section 2 in such way that the operator for
viscosity solution is well-defined. Then λ+

1 (I,Ω) and λ−1 (I,Ω) will be the principal
half-eigenvalues of −I in Ω.
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We state now our main results. The first one reads as follows.

Theorem 1.1. Let Ω be a C2 bounded domain in Rn and assume s ∈ ( 1
2 , 1). Then

there exists functions φ+, φ− ∈ Cγ(Ω̄) for some 0 < β < 1, such that φ+ > 0 and
φ− < 0 in Ω, and which satisfy

−Iφ+ = λ+
1 (I,Ω)φ+ in Ω,

−Iφ− = λ−1 (I,Ω)φ− in Ω,

φ+ = φ− = 0 in Rn \ Ω.

From now on, we say that the eigenvalue λ+
1 (I,Ω) (resp. λ−1 (I,Ω)) has a corre-

sponding eigenfunction φ+ > 0 (resp. φ− < 0).
In our next result, by using an Aleksandrov-Bakelman-Pucci (ABP) estimate

and owing some techniques from [11] (see also [2] and [36]), we prove a generalized
simplicity result of eigenfunctions.

Theorem 1.2. Let Ω be a C2 bounded domain of Rn and assume s ∈ ( 1
2 , 1).

Assume there exists a viscosity solution u ∈ C(Ω̄) ∩ L1(ωs) of

(1.2)

{
−Iu ≤ λ+

1 (I,Ω)u in Ω,

u(x0) > 0, u ≤ 0 in Rn \ Ω,

for some x0 ∈ Ω. Then u = tφ+ for some t ∈ R. If a function v ∈ C(Ω̄) ∩ L1(ωs)
satisfies the reverse inequalities in (1.2), with λ+

1 (I,Ω) replaced λ−1 (I,Ω), then v =
tφ− for some t ∈ R.

The main tool, as mentioned before, to obtain the two principal half-eigenvalues
is a version of the classical Krein-Rutman theorem [1, 29, 32] that apply for a class
of compact operators. Notice that the uniqueness (simplicity) results of [32] fails,
as can be seen in [1]. In [1] there is also a review of Krein-Rutman type theorems.

The compactness issue of the operator in our case is be based on regularity
estimates up to boundary. Regularity up to boundary of solutions involving a
special class of integro-differential operators was tackled by Ros-Oton and Serra
[39].

In our paper, we obtain regularity up to the boundary for viscosity solutions to
integro-differential operators with a gradient term. We remark that in our article we
only consider the case s ∈ (1/2, 1) since we need that the first order term is of lower
order with respect to the nonlocal operator. Observe that, when the coefficient
ca,b ≡ 0 in Ω, we can assure Theorems 1.1 and 1.2 to be true for the whole range
s ∈ (0, 1). Moreover in both cases zero order term can be included without any
big inconvenient. Similar results (including a gradient term) are known just in the
case of the fractional Laplacian, see [9], where a Green function (which is available
in that particular case) is crucial to get the existence of the eigen-pair.

It is worthy to mention that the study of principal eigenvalues is a subject of
relevance since it is the starting point to treat Rabinowitz bifurcation-type results,
solutions at resonance, Ladezman-Lazer type results and Ambrosetti-Prodi phe-
nomena, see for example [3, 24, 25, 38, 42] and references therein. In a recent
preprint [20] some of these results were extended to non-local operators. Here
we apply principal eigenvalues to establish decay estimates for parabolic nonlocal
equations.

This article is organized as follows. In Section 2, we recall some definitions and
some useful and known results. Regularity up to the boundary for the Dirichlet
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problem involving the operator (1.1) is obtained in Section 3. Section 4 is devoted
to prove the ABP estimate. We prove our main theorems, Theorems 1.1 and 1.2, in
Section 5. Finally, in Section 6 we provide for an application of principal eigenvalues
to parabolic nonlocal equations.

2. Preliminaries

To be precise about the formulas we presented in the introduction, we need to
ask for an integrability condition for the kernels around the origin. Throughout the
paper we denote L the class of all the linear operators given in (1.1), and, given
L ∈ L we assume that the operator Lu(x) is defined for u ∈ C1,1(x)∩L1(ωs), where

ωs(dy) = min{1, |y|−(n+2s)}dy.

We notice that the family of extremal Pucci operator for a function u is computed
at a point x by

M+
Lu(x) = sup

L∈L
Lu(x), M−Lu(x) = inf

L∈L
Lu(x).

Observe that L andM±L depend on s and on some additional parameters depending
on the boundedness of the kernel, but we do not make it explicit to do not overcharge
the notation.

We also say that an operator I defined over a domain Ω ⊂ Rn is elliptic with
respect to the family of linear operators L if for every x ∈ Ω and any pair of
functions u and v where Iu(x) and Iv(x) can be evaluated, then also Lu(x) and
Lv(x) are well defined and

M−L (u− v)(x) ≤ Iu(x)− Iv(x) ≤M+
L(u− v)(x).

In this context, Lu is continuous in Br(x0) if u ∈ C2(Br(x0))∩L1(ωs). Stability
properties of I depend on Iu being continuous when u is sufficient regular, in
this case, C2(Br(x0)) ∩ L1(ωs) is a reasonable requirement. As in [16], we define
continuous elliptic operators as follows.

Definition 2.1. We say that I is a continuous operator, elliptic with respect to
L = L(K) in Ω if,

(1) I is an elliptic operator with respect to L in Ω,
(2) Iu(x) is well defined for any u ∈ C1,1(x) ∩ L1(ωs) and x ∈ Ω,
(3) Iu is continuous in Br(x0) for any u ∈ C2(Br(x0))∩L1(ωs) and Br(x0) ⊂ Ω.

In the hypothesis we have introduced we see that the non-local term of the
family L is actually obtained bounding our kernels by multiples of the kernel of the
fractional Laplacian. Along the paper, unless it is stated otherwise, it is assumed
that s ∈ ( 1

2 , 1).

2.1. Hypothesis. We assume the following hypothesis on the family L depending
on a family of kernels K and some additional parameters in the following way:

(H1) Every I ∈ L is of the form I = LK + ca,b · ∇ for K ∈ K.
(H2) There are constants λ ≤ Λ, such that for every K ∈ K,

λ

|y|n+2s
≤ K(y) ≤ Λ

|y|n+2s

for Λ ≥ λ > 0.
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(H3) The operator I is positively 1-homogeneous in u, that is, I(tu) = tI(u), for
t ≥ 0.

(H4) There is a constant c+ > 0 such that

|ca,b| ≤ c+ uniformly in Ω.

In this settings we can also write

M±Lu(x) =M±Ku(x)± c+|Du(x)|,

with

M+
Ku(x) = sup

K∈K
LKu(x) =

∫
Rn

S+(δ(u, x, y))

|y|n+2s
dy,(2.1)

M−Ku(x) = sup
K∈K

LKu(x) =

∫
Rn

S−(δ(u, x, y))

|y|n+2s
dy,(2.2)

where given t ∈ R we denote

S+(t) = Λt+ − λt−, S−(t) = λt+ − Λt−.

An example of operator satisfying all the previous hypothesis is

L = {Lc = −(−∆)s + c · ∇ : |c| ≤ c+}

where the fractional Laplacian is defined as

−(−∆)su(x) =

∫
Rn

δ(u, x, y)

|y|n+2s
dy.

We notice that the operator L we have defined belongs to the more general class
treated in [19], where no symmetry assumption on the kernels is made.

Let us fix some notations we will use along the paper. From now on, we define
for δ > 0 the set

Ωδ := {y ∈ Ω : d(y) < δ}.

Also, along this paper we denote d(x) the distance of x to ∂Ω, that is,

d(x) := dist(x, ∂Ω), x ∈ Ω.

It is well known that d is Lipschitz continuous in Ω with Lipschitz constant equal
to 1. From now on, we will assume that ∂Ω is C2, then, in light of [26, Lemma
14.16], d can be considered to be a C2 function in a neighborhood of ∂Ω.

We modify it outside this neighborhood to make it a C2 function (still with
Lipschitz constant 1), and we extend it to be zero outside Ω.

Then, we define our barrier function as follows

(2.3) ξ(x) =


d(x)β if x ∈ Ωδ,

` if x ∈ Ω \ Ωδ,

0 if x ∈ Rn \ Ω,

for β > 0 and a function ` such that ξ is positive and C2 in Ω.
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2.2. Preliminary results. In this section we present some results concerning the
family L. We denote the set of upper (resp. lower) semicontinuous functions in Ω
by USC(Ω) (resp. LSC(Ω)). Then, we recall the notion of viscosity solution in
this setting, considered in [16]. See also [19].

Definition 2.2. Given a non local operator I and a function f : Ω → R, we say
that u ∈ LSC(Ω) ∩ L1(ωs) is a super-solution (sub-solution) to

Iu ≥ (≤)f in the viscosity sense in Ω,

if for every point x0 ∈ Ω and any neighborhood V of x0 with V̄ ⊂ Ω and for any
ϕ ∈ C2(V̄ ) such that u(x0) = ϕ(x0) and

u(x) < ϕ(x) (resp. u(x) > ϕ(x)) for all x ∈ V \ {x0}
the function v defined by

v(x) = u(x) if x ∈ Rn \ V and v(x) = ϕ(x) if x ∈ V
satisfies

Iv(x0) ≥ f(x0) (resp. − Iv(x0) ≤ f(x0).

Additionally, u ∈ C(Ω) ∩ L1(ωs) is a viscosity solution to Iu = f in Ω if it is
simultaneously a sub-solution and a super-solution.

Remark 2.3. Regarding the previous definition,
(1) as in the usual case, we may consider inequality instead strict inequality

u(x) ≥ ϕ(x) for all x ∈ V \ x0,

and “in some neighborhood V of x0” instead “in all neighborhood”;
(2) other definitions and their equivalence can be founded in [4].

A useful tool in our computations is the following comparison principle between
sub and super-solution proved in [19, Corollary 2.9].

Lemma 2.4 (Comparison principle). Let u ∈ LSC(Ω)∩L1(ωs) and v ∈ USC(Ω)∩
L1(ωs) be a super-solution and a sub-solution, respectively, of the same equation
Iw = f in Ω . Then u ≥ v in Rn \ Ω implies u ≥ v in Rn.

Also, a result related to the difference of solutions is proved in in [19] .

Theorem 2.5. Let I be a uniformly elliptic operator with respect to L, and f , g
continuous functions. Given u ∈ LSC(Ω)∩L1(ωs) and v ∈ USC(Ω)∩L1(ωs) such
that Iu ≤ f and Iv ≥ g hold in Ω in the viscosity sense, then M−L (u− v) ≤ f − g
also holds in Ω in the viscosity sense.

By using the Perron’s method together with the comparison principle it follows
the existence and uniqueness of solution for the operator I in the viscosity sense,
see [19] (or [4] in a similar setting). Notice that barrier can be construct by using
a power of the distance function see Lemma 3.3 below.

Theorem 2.6. Given a domain Ω ⊂ Rn with the exterior ball condition, a contin-
uous operator I with respect to L, and f and g bounded and continuous functions
(in fact g only need to be assumed continuous on ∂Ω), then the Dirichlet problem

(2.4)

{
Iu = f in Ω,

u = g in Rn \ Ω,

has a unique bounded viscosity solution u.
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A stability result for sub-solutions is stated in [19]. Naturally, a corresponding
result holds for super-solutions by changing u to −u. As a corollary, the stability
under uniform limits follows.

Proposition 2.7. Let {fk} be a sequence of continuous functions and uk ∈ LSC(Ω)∩
L1(ωs) be a sequence of functions in Rn such that

(a) Iuk ≤ fk in Ω,
(b) uk → u locally uniformly in Ω,
(c) uk → u in L1(ωs),
(d) fk → f locally uniformly in Ω,
(e) |uk(x)| ≤ C for every x ∈ Ω.

Then Iu ≤ f in Ω.

Another useful result is the following version of the strong maximum principle.

Theorem 2.8 (Strong Maximum Principle). Let u ∈ LSC(Ω) ∩ L1(ωs) be a vis-
cosity super-solution of −M−Lu ≥ 0 in Ω, u ≥ 0 in Rn. Then either u > 0 in Ω or
u ≡ 0 in Ω.

Proof. The proof follows similarly as in [5, Lemma 7], and we omit it here. �

3. Regularity

In this section we prove regularity up to the boundary for the equation

(3.1)

{
−Iu = f in Ω,

u = 0 in Rn \ Ω.

As usual, global regularity will follow by studying the regularity both in Ω\Ωδ and
Ωδ, where, for a fixed δ > 0 small enough we denote Ωδ a δ−neighborhood of Ω.

In order to reach the regularity estimates, we first prove in Lemma 3.3 lower and
upper bounds of the extremal Pucci operators defined in (2.1) for powers of the
distance to the boundary. For that end, we recall the following useful lemma stated
in [39, Proposition 2.7]. Given β ∈ (0, 2s), we denote ϕβ : R→ R the function

(3.2) ϕβ(x) := (x+)β .

Lemma 3.1. Given s ∈ (0, 1), for β ∈ (0, 2s) the function (3.2) satisfies

M+
K(ϕβ) = c+(β)xβ−2s and M−K(ϕβ) = c−(β)xβ−2s in {x > 0}.

The constants c+ and c− depend on s, β and n, and are continuous as functions
of the variables s and β in {0 < s ≤ 1, 0 < β < 2s}. Moreover, there are β1 ≤ β2

in (0, 2s) such that

c+(β1) = 0 and c−(β2) = 0.

Furthermore,

c+(β) < 0 if β ∈ (0, β1), c+(β) > 0 if β ∈ (β1, 2s)

c−(β) < 0 if β ∈ (0, β2), c−(β) > 0 if β ∈ (β2, 2s).

In particular, for the fractional Laplacian −(−∆)s it holds that β1 ≤ s ≤ β2.
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Remark 3.2. An alternative approach for proving Lemma 3.3 is the study of the
strict convexity of the real-valued function

c+(τ) =

∫
R

S+((1 + t)τ+ + (1− t)τ+ − 2)

|t|1+2s
dt,

which is well-defined for τ ∈ (0, 2s) and c+(0) < 0. See for example [5].

We state the behavior of the extremal operators regarding the barrier function ξ
defined in (2.3) that corresponds to a smooth extension of the distance function so
that the nonlocal operator is well defined. The proof of the lemma below is based
on a contradiction argument that reduces the problem to a one dimensional one,
and together with Lemma 3.1 gives the result. A direct approach is possible but
the computations are more complicated, see [21] for a direct approach in the case
of the fractional Laplacian for the case of negative power of the distance.

Lemma 3.3. Let Ω be a C2 bounded domain in Rn and s ∈ (0, 1). Then there
exist C, δ > 0 such that

(a) M+
K(ξ(x)) ≥ Cdβ−2s(x) if β ∈ (β1, 2s),

(b) M+
K(ξ(x)) ≤ −Cdβ−2s(x) if β ∈ (0, β1),

(c) M−K(ξ(x)) ≥ Cdβ−2s(x) if β ∈ (β2, 2s),

(d) M−K(ξ(x)) ≤ −Cdβ−2s(x) if β ∈ (0, β2)

for x ∈ Ωδ, where 0 < β1 < β2 < 2s are given in Lemma 3.1.

Proof. Let us prove (a). By contradiction, let us assume that the conclusion of the
lemma is not true. Then there exist β ∈ (β1, 2s) and a sequence of points xn ∈ Ω
converging, up to some subsequence, to some point x ∈ ∂Ω (i.e., d(xn) → 0)
satisfying

(3.3) lim
n→+∞

d(xn)2s−βM+
K(dβ(xn)) ≤ 0.

Without loss of generality we will assume that in x, the interior normal is given by
eN , the last vector of the canonical basis of Rn.

Equation (3.3) says that

(3.4) d(xn)2s−βM+
K(dβ(xn)) =

∫
Rn

S+(δ(dβ , xn, y))

dβ−2s
n |y|N+2s

dy ≤ o(1).

Denoting for simplicity dn := d(xn), and performing the change of variables
y = dnz, we can rewrite the integral in (3.4) as

(3.5)

∫
Rn

S+

((
d(xn+dnz)

dn

)β
+
(
d(xn−dnz)

dn

)β
− 2

)
|z|N+2s

dz.

In order to perform our computations we split the previous integral as∫
|z|≥L

S+(g(z))

|z|n+2s
dz +

∫
|z|≤η

S+(g(z))

|z|n+2s
dz +

∫
η≤|z|≤L

S+(g(z))

|z|n+2s
dz := I1 + I2 + I3

where L and η are fixed positive values and

g(z) :=

(
d(xn + dnz)

dn

)β
+

(
d(xn − dnz)

dn

)β
− 2.
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Before passing to the limit in the integral (3.5), let us estimate lower bounds of I1
and I2 (we also need upper bounds in order to prove items (b) and (d)). For that
end, observe that

|I1| ≤
∫
{|z|≥L}

|S+(g(z))|
|z|n+2s

dz ≤ Λ

∫
{|z|≥L}

g+(z)

|z|n+2s
dz + λ

∫
{|z|≥L}

g−(z)

|z|n+2s
dz

≤ Λ

∫
{|z|≥L}

|g(z)|
|z|n+2s

dz := ΛI ′1

and analogously, |I2| ≤ Λ
∫
{|z|≤η}

|g(z)|
|z|n+2s dz := ΛI ′2.

Consequently, it is sufficient to find bounds for I ′1 and I ′2.
Let us deal with I ′1. Observe that when xn + dnz ∈ Ω, we have by the Lipschitz

property of d that d(xn + dnz) ≤ dn(1 + |z|). Of course, the same is true when
xn + dnz 6∈ Ω and it similarly follows that d(xn − dnz) ≤ dn(1 + |z|). Thus, taking
L > 0 we obtain for large n

(3.6) I ′1 ≤ 2

∫
|z|≥L

1 + (1 + |z|)β

|z|N+2s
dz.

Observe that the previous expression tends to zero as L→ +∞.
On the other hand, since d is smooth in a neighborhood of the boundary, when

|z| ≤ L and xn + dnz ∈ Ω, we obtain by Taylor’s theorem

(3.7) d(xn + dnz) = dn + dn∇d(xn)z + Θn(dn, z)d
2
n|z|2,

where Θn is uniformly bounded, i.e, −C ≤ Θn ≤ C for some positive constant C.
Hence

(3.8) |d(xn + dnz)− (dn + dn∇d(xn)z)| ≤ Cd2
n|z|2.

Now choose η ∈ (0, 1) small enough. Since d(xn)→ 0 and |∇d| = 1 in a neighbor-
hood of the boundary, we can assume that

(3.9) ∇d(xn)→ e as n→ +∞ for some unit vector e.

Without loss of generality, we may take e = eN , the last vector of the canonical
basis of Rn. If we restrict z further to satisfy |z| ≤ η, we obtain 1 + ∇d(xn)z ∼
1 + zN ≥ 1− η > 0 for large n, since |zN | ≤ |z| ≤ η. Therefore, inequality (3.8) is
also true when xn+dnz 6∈ Ω for large n (depending only on η). Moreover, by using
again Taylor’s theorem

|(1 +∇d(xn)z ± Cdn|z|2)β − (1 + β∇d(xn)z)| ≤ C|z|2,

for large enough n. Thus from (3.8),∣∣∣∣∣
(
d(xn + dnz)

dn

)β
− (1 + β∇d(xn)z)

∣∣∣∣∣ ≤ C|z|2,
for large enough n. A similar inequality is obtained for the term involving d(xn −
dnz), i.e., ∣∣∣∣∣

(
d(xn − dnz)

dn

)β
− (1− β∇d(xn)z)

∣∣∣∣∣ ≤ C|z|2,
for large enough n. Therefore we deduce that I ′2 can be bounded as

(3.10) I ′2 ≤ C
∫
|z|≤η |z|

2(1−s)−Ndz.
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Observe that the previous expression tends to zero as η → 0.
We finally observe that it follows from the above discussion (more precisely from

(3.7) and (3.9) with e = eN ) that for η ≤ |z| ≤ L

(3.11)
d(xn ± dnz)

dn
→ (1± zN )+ as n→ +∞

and by dominated convergence we arrive at

lim
n→∞

∫
η≤|z|≤L

S+(g(z))

|z|N+2s
dz =

∫
η≤|z|≤L

S+((1 + zN )β+ + (1− zN )β+ − 2)

|z|N+2s
dz.(3.12)

Therefore by using (3.6) and (3.10) to bound by below (3.4), as n→ +∞, from
(3.12) we get

−CΛ

∫
|z|≥L

2 + (1 + |z|)β

|z|N+2s
dz +

∫
η≤|z|≤L

S+((1 + zN )β+ + (1− zN )β+ − 2)

|z|N+2s
dz

−CΛ

∫
|z|≤η

1

|z|N−2(1−s) dz ≤ 0.

Letting now η → 0 and then L→ +∞ we have∫
Rn

S+((1 + zN )β+ + (1− zN )β+ − 2))

|z|N+2s
dz ≤ 0.

It is well-known, with the use of Fubini’s theorem and a change of variables, that
this integral can be rewritten as a one-dimensional integral

(3.13) c+(β) =

∫
R

S+((1 + t)β+ + (1− t)β+ − 2)

|t|1+2s
dt ≤ 0,

for β ∈ (β1, 2s), which contradicts Lemma 3.1.
The proofs of (b), (c) and (d) are analogous. �

The following lemma is a key in order to obtain the boundary regularity for (3.1).

Lemma 3.4. Let u be a solution of (3.1) with s ∈ ( 1
2 , 1), then there exists δ > 0

and β ∈ (0, β1) such that

|u(x)| ≤ Cd(x)β ∀x ∈ Ωδ,

where C is a positive constant.

Proof. First, we claim that there exist δ > 0, β ∈ (0, β1) and a positive constant C
such that

Iξ(x) ≤ −Cd(x)β−2s in Ωδ(3.14)

provided that s > 1/2.
We apply Lemma 3.3. For δ > 0 small enough, given x ∈ Ωδ it holds that

M+
Kξ ≤ −Cd(x)β−2s in Ωδ

for some C > 0 and β ∈ (0, β1). Now, since Dξ(x) = Cβd(x)β−1, we have

Iξ(x) ≤M+
Lξ(x) =M+

Kξ(x) + c+|Dξ(x)|

≤ −Cd(x)β−2s + Cd(x)β−1

≤ −Cd(x)β−2s
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whenever β − 2s < β − 1, that is, s > 1
2 , from where claim (3.14) follows.

Moreover, δ can be taken small enough such that

−Iξ(x) ≥ f(x) in Ωδ.

Since, for some positive constant L, ξ(x) = `(x) ≥ L in Ω \ Ωδ, we can take C
such that Cξ(x) ≥ CL ≥ ‖u‖L∞(Ω) for x ∈ Ω \Ωδ. By using that u and ξ vanish in
Ωc we conclude that

Cξ(x) ≥ u(x) in Ωcδ.

From the comparison principle given in Lemma 2.4 we obtain that

Cd(x)β = Cξ(x) ≥ u(x) in Ωδ

and the result follows.
Repeating the same argument with −u we find the result. �

In [19], by applying a diminish of oscillation argument (see for instance [15, 16])
the following interior Hölder’s regularity for (3.1) is proved.

Lemma 3.5 (Interior regularity, [19]). Let f ∈ L∞ and u be a viscosity solution of

(3.15)

{
−Iu = f in B1,

u = 0 in Rn \B1.

Then u ∈ Cα(B1/2) for some universal α ∈ (0, 1), and satisfies,

(3.16) ‖u‖Cα(B1/2) ≤ C(‖u‖L∞(B1) + ‖f‖L∞(B1))

for some universal C.

Finally, combining the interior and boundary regularity given in Lemmas 3.5
and 3.4, by an standard ball covering argument it follows the next result. A version
of this type of arguments can be found in [27] where the fractional p-Laplacian is
studied.

Theorem 3.6 (Global regularity). Let Ω be a C2 bounded domain in Rn, f ∈
L∞(Ω) and let u be a viscosity solution of (3.1) with s ∈ ( 1

2 , 1). Then u ∈ Cγ(Ω̄)
for γ = min{α, β}, where α and β are given in Lemmas 3.5 and 3.4, respectively.

4. Refined ABP estimate for nonlocal equation

The Aleksandrov-Bakelman-Pucci (ABP) estimate is a key ingredient in our
arguments. Such an estimate is the bridge connecting estimates in measure with
pointwise estimates. Here we follow [12], which gives even an improvement of the
ABP estimate by using a weak Harnack inequality.

Following [12], for a domain Ω ∈ Rn (not necessarily bounded) and 0 < σ < 1
we define the quantity R(Ω) to be the smallest positive constant R such that

meas(BR(x) \ Ω) ≥ σmeas(BR(x)) for all x ∈ Ω.

If such a radius R does not exist, we define R(Ω) = +∞. Notice that is not
difficult to see that

R(Ω) ≤ C(n, σ)|Ω|1/n.
We start with a version of the weak Harnack inequality that follows directly from

[40, Theorem 6.1] and some scaling. In particular it means that our improvement
of the ABP estimate below holds for a more general class of extremal equation as
the treated in [40].
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Theorem 4.1 (Weak Harnack inequality). Let u ∈ C(B̄2R) is a viscosity solution
of

M+
L(u) ≥ f in B2R,

and u ≥ 0 in Rn, where f ∈ L∞(Ω) ∩ C(Ω). Then(
1

|BR|

∫
BR

up0
)1/p0

≤ C
{

inf
BR

u+R2α‖f‖L∞(B2R)

}
,

where p0 and C are positive universal constants depending on parameters of the
problem, in particular it depends of C0 such that c+R2s−1 ≤ C0.

Proof. From [33, Lemma 4.3], a version in ball of [40, Theorem 6.1] it follows if
v ∈ C(B̄2) is a viscosity solution of

(4.1) M+
L(v) ≥ f̃ in B2,

and v ≥ 0 in Rn, there exist C and p0 depending on the parameters of the problem,
in particular depending on c+ or a bound for it, such that

(4.2)

(
1

|B1|

∫
B1

vp0
)1/p0

≤ C
{

inf
B1

u+ ‖f̃‖L∞(B2)

}
.

Hence if u ∈ C(B̄2R) satisfies

M+
L(u) ≥ f in B2R,

then v(x) = u(Rx) satisfies (4.1) with f̃ = R2sf , c+ replaced by c+R2s−1 and c+

can be replace by C0. Therefore, we deduce the results by rewriting (4.2) in terms
of u. �

Proposition 4.2 (Improvement of ABP). Let Ω be an open domain with R(Ω) <
+∞. Suppose that u is a bounded viscosity solution of

M+
L(u) ≥ f in Ω,

with u ≤ 0 in Ωc and f ∈ L∞(Ω)∩C(Ω). Then, there exist C(c) > 0 (not depending
on u) such that

sup
Ω
u ≤ C(R(Ω))2s‖f‖L∞(Ω).

Remark 4.3. From here, with the same as in the proof of (ii) of Theorem 4.8 in [13]
we have the following lower bound for λ+

1 :

λ+
1 (Ω) ≥ CR(Ω)−2s.

Proof. Here we follow closely [12] (see also [13]). Notice that it is direct to see that
u+ is a viscosity solution of

(4.3) M+
L(u+) ≥ −‖f‖L∞(Ω) in Ω,

with u+ = 0 in Ωc.
Now we assume first that Ω is bounded. Then the supremum of u is achieved,

so there exists x̃ ∈ Ω such that

M := sup
Ω
u = u(x̃).

To simplify the notation, we write R := R(Ω) and BR := BR(x̃). We know that

meas(BR \ Ω)

meas(BR)
≥ σ.
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Consider the function

w = M − u+.

We claim that w is a viscosity solution of

M−L (w) ≤ ‖f‖L∞(Ω) in Rn.

Indeed, let ϕ be a test function in some neighborhood V with ϕ(x0) = w(x0) and
ϕ < w in V \ {x0}. Then if we define v as

v(x) = w(x) if x ∈ Rn \ V and v(x) = ϕ(x) if x ∈ V.

If w(x0) = v(x0) = M then v has a global maximum at x0 so

M−L (v) ≤ 0 ≤ ‖f‖L∞(Ω).

If w(x0) = v(x0) < M then x0 ∈ Ω. If we define ϕ̃ := M − ϕ > M − w = u+ in
V \ {x0} and u+(x0) = ϕ̃(x0). So, z(x) := M − v(x) is a test function for u+ that
is a viscosity solution of (4.3) therefore

M+
L(−v) =M+

L(z) ≥ −‖f‖L∞(Ω).

Thus,

M−L (v) ≤ ‖f‖L∞(Ω).

Finally, Theorem 4.1 applied to v in B2R gives that

(σ)1/pM ≤
(

meas(BR \ Ω)

meas(BR)

)1/p

M

≤

(
1

meas(BR)

∫
BR\Ω

vp

)1/p

≤
(

1

meas(BR)

∫
BR

vp
)1/p

≤ C{inf
BR

v +R2α‖f‖L∞(B2R)}

= CR2α‖f‖L∞(B2R∩Ω),

where p := p0 > 0. This proves the desired inequalities.
In case that Ω is unbounded, the proof is the same with minor changes. We define

M := supΩ u and we take, for any η > 0, a point x0 such that M − η ≤ u(x0). We
now have that v(x0) ≤ η. We proceed as before and get desired estimate by letting
η → 0.

�

5. Proof of main results

This section is devoted to prove Theorems 1.1 and 1.2. We first use Proposition
4.2 to get the following relevant sweeping lemma in the spirit of [11, Theorem 2.2].

Theorem 5.1. Suppose u, v ∈ C(Ω̄) ∩ L1(ωs) λ ≥ 0 and f ∈ C(Ω) satisfying
Iu+ λu ≤ f in Ω,

u > 0 in Ω,

u ≥ 0 in Rn \ Ω,

resp.


Iu+ λu ≥ f in Ω,

u < 0 in Ω,

u ≤ 0 in Rn \ Ω
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and
Iv + λv ≥ f in Ω,

v ≤ 0 in Rn \ Ω,

v(x0) > u(x0),

resp.


Iv + λv ≤ f in Ω,

v ≥ 0 in Rn \ Ω,

v(x0) < u(x0),

for some point x0 ∈ Ω and f ≤ 0 (resp. f ≥ 0). Then u ≡ tv for some t > 0.

Proof. Let u, v be two functions satisfying the first set of inequalities in Theorem
5.1. Take a compact set K ⊂ Ω such that |Ω \K| ≤ ε1, where with ε1 is such that
by Proposition 4.2 the maximum principle is valid for M+

L · +λ· in Ω \ K. This
follows from Proposition 4.2 with f := λu. Set now zt = v−tu. If t is large enough,
zt < 0 in K. For t ≥ 1, we have

M+
Lzt + λzt ≥ Iv − tIu+ λzt = (1− t)f ≥ 0 in Ω

and zt ≤ 0 in Rn \ (Ω \K), then we get zt ≤ 0 in Ω \K and thus zt ≤ 0 in Ω. So,
by the strong maximum principle, either zt ≡ 0 in Ω in which case we are done, or
zt < 0 in Ω. We define

τ = inf{t | zt < 0 in Ω}.
Since v(x0) > u(x0) we have τ > 1. Now we repeat the same argument for zτ . So,
either zτ ≡ 0 in Ω in which case we are done or zτ < 0 in Ω. In this case there
exists η > 0 such that zτ−η < 0 in K. Now we repeat again the same argument for
zτ−η, which yields a contradiction with the definition of τ .

If the inequalities satisfied by u, v are reversed (second set of inequalities in
Theorem 5.1), we consider the function tu− v and the same argument. �

Remark 5.2. Here we remark that if f ≡ 0 in Theorem 5.1, we just need v(x0) > 0
instead of v(x0) > u(x0) (resp. v(x0) < 0 instead of v(x0) < u(x0)). See also [36,
Theorem 4.2] for local case.

A consequence of Theorem 5.1 is an upper bound of the principal half-eigenvalue
in terms of thickness of the domain. For each ρ ∈ R, we define the nonlinear
operator Gρ by

Gρ(u) = −Iu− ρu.
We say the operator Gρ satisfies the maximum principle in Ω if, whenever v ∈
LSC(Ω)∩L1(ωs) is a solution of Gρv ≤ 0 in Ω with v ≤ 0 in Rn \Ω, we have v ≤ 0
in Ω. Similarly, we say that the operator Gρ satisfies the minimum principle in Ω
if, whenever v ∈ LSC(Ω) ∩ L1(ωs) is a solution of Gρv ≥ 0 in Ω with v ≥ 0 in
Rn \ Ω, we have v ≥ 0 in Ω.

Define constants

µ+(I,Ω) = sup{ρ : Gρ satisfies the maximum principle in Ω},

and

µ−(I,Ω) = sup{ρ : Gρ satisfies the minimum principle in Ω}.
We will eventually show that λ±(I,Ω) = µ±(I,Ω). The following lemma is the first
step in this direction.

Lemma 5.3. We have

λ±(I,Ω) ≤ µ±(I,Ω) <∞.
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Proof. Here we follow the argument as in [2, Lemma 3.7]. We show that

λ+(I,Ω) ≤ µ+(I,Ω).

Suppose on the contrary that µ+(I,Ω) < ρ1 < ρ2 < λ+(I,Ω). Then we may select
a function v1 satisfying

−Iv1 ≤ ρ1v1 in Ω

and such that v1 ≤ 0 in Rn \ Ω and v1 > 0 somewhere in Ω. We can also select v2

such that v2 > 0 in Ω, v2 ≥ 0 in Rn \ Ω and v2 satisfies

−Iv2 ≥ ρ2v2 in Ω.

Since ρ1v2 < ρ2v2, we may apply Theorem 5.1 to deduce v2 = tv1 for some t > 0.
This implies that

ρ1tv1 ≥ −I(tv1) = −Iv2 ≥ ρ2v2 = ρ2tv1,

and since there exists x0 ∈ Ω such that v1(x0) > 0 we obtain that ρ1 ≥ ρ2, a
contradiction. Hence, λ+(I,Ω) ≤ µ+(I,Ω). By a similar argument, we can obtain
λ−(I,Ω) ≤ µ−(I,Ω).

Finally, we prove that the operator Gρ does not satisfy the minimum principle
in Ω for all large ρ. Choosing a continuous function h ≤ 0, h 6≡ 0 with compact
support in Ω. By Theorem 2.6, there exists a unique solution of the following
problem {

−Iv = h in Ω,

v = 0 in Rn \ Ω.

According to the comparison principle, v ≤ 0 in Ω. Since h 6≡ 0, we have v 6≡ 0.
Hence, v < 0 in Ω by the strong maximum principle. Since h has compact support
in Ω, we may select a constant ρ0 > 0 such that ρ0v ≤ h. Therefore, v satisfies

−Iv ≥ ρ0v in Ω

and so evidently the operator Gρ does not satisfy the minimum principle in Ω, for
any ρ ≥ ρ0. Thus λ−(I,Ω) ≤ ρ0. By a similar argument, we have that λ+(I,Ω) <
∞. �

Next, we prove Theorem 1.2 by using Theorem 5.1.

Proof of Theorem 1.2. Suppose u1 := u satisfies (1.2). Then, we apply Theorem
5.1 with u = φ+

1 and v = u1 and Remark 5.2. �

The proof of Theorem 1.1 follows by using the Krein-Rutman Theorem. In order
to give the proof we introduce some notation and definitions. We set the space

X := {f ∈ C(Rn) : f = 0 in Rn \ Ω},
and we denote K the closed convex cone in X with vertex 0

K := {f ∈ X : f ≥ 0 in Ω}.
The cone K induces an ordering � on X as follows: given f, g ∈ X we say that

f � g ⇐⇒ g − f ∈ K.
Given f ∈ L∞(Rn), let u be a viscosity solution of

(5.1)

{
−Iu = f in Ω

u = 0 in Rn \ Ω.
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Since I is invertible, we define the solution operator T as

T (f) := I−1(−f) = u.

Proof of Theorem 1.1. We check that the hypothesis of Theorem A.1 are ful-
filled.

The operator T is positively 1−homogeneous. Given t > 0, we have that T (tf) =
u where u is a viscosity solution of −I(u) = tf in Ω, u = 0 in Ωc. Since I is
a 1−homogeneous operator it holds that f = −I(t−1u), from where follows that
tT (f) = u.

From Proposition 2.7 it follows that T is a continuous operator on X. Moreover,
by using the Hölder regularity up the boundary of I given in Theorem 3.6 and the
Arzelá-Ascoli theorem, it follows that T is a compact operator on X.

The order � is increasing. Given f, g ∈ X such that f � g, let u and v be
viscosity solutions of −Iu = f , −Iv = g in Ω and u = v = 0 in Ωc. By definition of
the order, we get that −I(u) = f ≥ g = −I(v) in Ω, and u = v = 0 in Ωc. Hence,
by using the Comparison principle given in Lemma 3.4, it follows that u ≤ v in Rn,
from where T (f) � T (g).

Moreover, the order � is strictly increasing. If now f 6= g are functions such
that f ≺ g, by definition of the order, and by using Theorem 2.5, we obtain that

−M−L (v − u) ≥ g − f > 0 in Ω.

Applying the Strong Maximum Principle stated in Theorem 2.8 it follows that
v − u > 0 in Ω, from where T (f) ≺ T (g).

Finally, the (H) Condition below in this context means that there exist a non-
zero function f0 ∈ K, here we take f0 with compact support in Ω and we can take
M large such that f0 �MT (f0). This conditions are possible since T (f0) > 0 in Ω
by applying the Strong Maximum Principle, and f0 has compact support in Ω.

Consequently, there exists a positive eigenfunction f ∈ K of T with correspond-
ing eigenvalue µ, which, for µ 6= 0, satisfies T (f) = µf if and only if −I(f) = λ∗f
for λ∗ = 1

µ .

It is now immediate from the definitions of µ+(I,Ω) and λ+(I,Ω) that µ+(I,Ω) ≤
λ∗ ≤ λ+(I,Ω), and therefore λ∗ = µ+(I,Ω) = λ+(I,Ω) by Lemma 5.3. By a similar
argument, we know λ−(I,Ω) is also the eigenvalue of operator −I. We complete
the proof by using Theorem 3.6 to get the regularity of the eigenfunction.

�

6. An application: Decay estimates for the evolution equation

In this section we are interested in the asymptotic behavior as t → ∞ of the
solutions of a evolution-type equation involving the operator I defined in (1.1). In
order to state our results, it is convenient to define the notion of viscosity solution
in this context.

We denote the cylinder of radius r, height τ and center (x, t) ∈ Rn × R by
Cr,τ (x, t) := Br(x)× (t− τ, τ).

In this settings, we define the space of lower and upper semicontinuous functions
as follows.

Definition 6.1. LSC((t1, t2]→ L1(ωs)) consists of all measurable functions u : Rn×
(t1, t2]→ R such that for every t ∈ (t1, t2],

i) ‖u(·, t)−‖L1(ωs) <∞,



PRINCIPAL EIGENVALUES 17

ii) limτ→0 ‖(u(·, t)− u(·, t− τ))+‖L1(ωs) = 0.

Similarly, u ∈ USC((t1, t2] → L1(ωs)) if −u ∈ LSC((t1, t2] → L1(ωs)). We finally
denote C((t1, t2]→ L1(ωs)) = LSC((t1, t2]→ L1(ωs)) ∩ USC((t1, t2]→ L1(ωs)).

A lower semicontinuous test function is a pair (ϕ,Cr,τ (x, t)) such that

ϕ ∈ C1,1
x C1

t (Cr,τ (x, t)) ∩ LSC((t− τ, τ ]→ L1(ωs)).

Similarly, (ϕ,Cr,τ (x, t)) is an upper semicontinuous test function if the pair (−ϕ,Cr,τ (x, t))
is a lower semicontinuous test function.

Definition 6.2. Given an elliptic operator I, a function u ∈ LSC(Ω × (t1, t2]) ∩
LSC((t1, t2] → L1(ωs)) is said to be a viscosity super solution to ut ≥ Iu in
Ω×(t1, t2], if for every lower semicontinuous test function (ϕ,Cr,τ (x, t)) and (x, t) ∈
Ω× (t1, t2], whatever

i) ϕ(x, t) = u(x, t) and
ii) ϕ(y, s) ≤ u(y, s) for (y, s) ∈ Rn × (t− τ, t],

we have that ϕt(x, t) ≥ Iϕ(x, t).

The definition of u being a viscosity sub solution to ut ≤ Iu in Ω×(t1×t2] is done
similarly to the definition of super solution replacing LSC by USC and reversing
the last two inequalities. Finally, a viscosity solution to ut = Iu in Ω× (t1, t2] is a
function which is a super and sub solution simultaneously.

Let u be a viscosity solution to the parabolic equation
ut = −Iu in Ω× (0,∞),

u(x, 0) = h0(x) in Ω× {0},
u(x, t) = 0 in ∂Ω× (0,∞).

(6.1)

This type of equation is studied in [17] and [18], see also reference therein.
We are interested in the asymptotic behavior, as t → ∞, of the solution h(x, t)

of (6.1). Based on results of the local heat equation, one expects h to decay to zero
exponentially and that the rate of decay and the extinction profile are somehow
connected with the principal eigenvalue λ and the eigenfunction v given in Theorem
1.1, i.e.,

(6.2)

{
−Iv = λv in Ω̃

v = 0 in Rn \ Ω̃.

for a Ω̃ such that Ω is compactly contain in Ω̃.

Proposition 6.3. Let h, v, λ, Ω and Ω̃ be as above. We have that the

h ≤ e−λtv

and

sup
Ω×(0,∞)

h(x, t)

v(x)e−λt
≤ sup

Ω

h+
0 (x)

v(x)
,

where h+
0 = max{h0, 0} denotes the positive part of h0.
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Proof. By replacing h0 with its positive part if necessary, we may assume that the
initial data h0 is non-negative. We define the function w(x) = e−λtv(x). Therefore,
since v is an eigenfunction of (6.2) we get that

(6.3) (w)t = −λv(x)e−λ = −Iv · e−λt = −Iw,

in Ω in the viscosity sense, where we have used that I is 1−homogeneous.
Observe that the eigenfunction v is non-negative in Ω̃ but moreover, by the

Strong maximum principle (Theorem 2.8) it is in fact positive in Ω̃. Since Ω is

compactly contained in Ω̃ we get that v > 0 in Ω. Hence we can normalize v so

that h0 ≤ v and supΩ
h+
0 (x)
v(x) = 1. Using now that h is a viscosity solution of (6.1)

and w of (6.3) we can use the comparison principle (see Theorem 3.7 in [17]) to
deducce that h ≤ w, giving the result. �

Corollary 6.4. Let h be a viscosity solution of (6.1) with h0 ∈ C(Ω̄) and h0 ≥ 0.
Then

sup
Ω
|h(x, t)| = o(e−λt) for all λ < λ1(Ω̃)

being λ1 the principal eigenvalue of (6.2) for any Ω̃ such that Ω is compactly contain

in Ω̃

Appendix A. the Krein–Rutman Theorem

Let X be a real Banach space. Let K be a closed convex cone in X with vertex
0, i.e.,

• 0 ∈ K,
• x ∈ K, t ∈ R+ then tx ∈ K,
• x, y ∈ K then x+ y ∈ K.

We further assume that

K ∩ −K = {0}.

The cone K induces an ordering � on X as follows. Given x, y ∈ X we say that

x � y ⇐⇒ y − x ∈ K.

The ordering � is said to be strict if x � y and x 6= y and this will be denoted by
x ≺ y. A mapping T : X → X is said to be increasing if x � y ⇒ T (x) � T (y), and
it is said to be strictly increasing if x ≺ y implies Tx ≺ Ty. The mapping is said
to be compact if it takes bounded subsets of X into relatively compact subsets of
X. We say that the mapping is positively 1−homogeneous if it satisfies the relation
T (tx) = tT (x) for all x ∈ X and t ∈ R+.

Theorem A.1 (Krein-Rutmann for non-linear operator, [32], [1]). Let T : X →
X be an increasing, positively 1−homogeneous compact continuous operator(non-
linear) on X for which there exists a non-zero u ∈ K and M > 0 such that

(H) u �MTu.

Then, T has a non-zero eigenvector x0 ∈ K.
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