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Cell migration has been a subject of study in a broad variety of biological systems,

from morphogenetic events during development to cancer progression. In this work,

we describe single-cell movement in a modular framework from which we simulate the

collective behavior of glioblastoma cells, the most prevalent and malignant primary brain

tumor. We used the U87 cell line, which can be grown as a monolayer or spatially closely

packed and organized in 3D structures called spheroids. Our integrative model considers

the most relevant mechanisms involved in cell migration: chemotaxis of attractant

factor, mechanical interactions and random movement. The effect of each mechanism

is integrated into the overall probability of the cells to move in a particular direction,

in an automaton-like approach. Our simulations fit and reproduced the emergent

behavior of the spheroids in a set of migration assays where single-cell trajectories

were tracked. We also predicted the effect of migration inhibition on the colonies from

simple experimental characterization of single treated cell tracks. The development

of tools that allow complementing molecular knowledge in migratory cell behavior is

relevant for understanding essential cellular processes, both physiological (such as organ

formation, tissue regeneration among others) and pathological perspectives. Overall, this

is a versatile tool that has been proven to predict individual and collective behavior in U87

cells, but that can be applied to a broad variety of scenarios.

Keywords: fluorescence microscopy, spheroid, cellular automata, migration, image analysis

1. INTRODUCTION

Collective cell motion is a complex feature in biological systems, crucial for morphogenetic events,
where many single-cell level processes are involved. Aberrations in this coordinated behavior is a
hallmark of many pathologies including cancer (Gupta et al., 2011; Stieber et al., 2014; Dirkse et al.,
2019; Prager et al., 2019). Chemotaxis, mechanical interactions (with other cells and extracellular
matrix) and proliferation have been identified as key mechanisms driving cell migration (Kansal
et al., 2000; Khain et al., 2005; Rubenstein and Kaufman, 2008; Charteris and Khain, 2014; Li et al.,
2017; Manini et al., 2018). How these processes individually contribute to the emergent behavior is
not fully understood as we are limited to either observing single cells or the collective behavior at
the multicellular level.

Mathematical models are useful in delineating the role and influence of these individual
processes, otherwise experimentally inaccessible. Early studies tackle single-cell movement as a
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random walker (Fuert, 1920), but this description does not
recapitulate the behavior if cell colonies are analyzed or
microenvironmental conditions are considered. More complex
mathematical frameworks have been developed in continuous
models using differential equations. Although such models are
computationally inexpensive, the output is a density function
that does not reflect single-cell behavior and thus fails to predict
subpopulations and patterns in cell colonies (Hatzikirou et al.,
2005). On the other hand, in cellular automaton discrete models
cells move according to specific rules or probabilities that depend
on the neighboring distribution. This approach would allow us to
describe the social behavior within cell communities at the single-
cell level. However, the rules that drive the automatons are static
and do not consider intracellular and molecular mechanisms
(Tanaka et al., 2009). To the best of our knowledge, there are
no existing models that integrate the broad diversity of biological
mechanisms needed to fully predict cell migration.

We developed a simple, fast, powerful and discrete two-
dimensional approach that accurately predicts cell migration
by considering random movement, proliferation, chemotaxis
and mechanical interactions. The algorithm allows for the
specification of the initial cell number and colony geometry, as
well as the active mechanisms in play. The modular construction
of the algorithm allows the user to tune every single aspect of the
mechanisms, andmake predictions of complex cell arrangements
from single-cell characterization. This makes our algorithm a
powerful tool that can be adapted to simulate a variety of
other complex processes. Wound healing, cell invasion, and
morphogenetic events can be addressed even in systems lacking
spheroid formation.

2. RESULTS

2.1. Single-Cell Behavior Gives Insights
Into Colony-Scale Observations
Glioblastoma (GBM) U87 cells spheroids expressing the nuclei
marker pBABE-H2BGFP, placed in Geltrex coated multiwells
and covered with fresh stem medium, were imaged for 24 h
(Figure 1A, see Material and Methods sections 4.1 and 4.2).
Different profiles have been observed within the range of
spheroid diameters used (60–200 µm). While in smaller colonies
most of the cells detached and migrated, in larger colonies
they remained clustered as reported previously (Figure 1B,
Supplementary Videos 1, 2) (Puliafito et al., 2015).

Furthermore, we saw an elongated morphology in cells
performing migration, interacting with each other, producing
collective migration in a radial protrusion away from the
colony. Other cells did not show protrusions but migrated in
pairs, which reinforced the existence of mechanical interactions
(Figure 1C, Supplementary Video 3). Finally, some other cells
migrated as single cells randomly for the first hours, but then,
radial movement and re-clustering were observed (Figure 1D,
Supplementary Video 4).

Taking together these observations, we proposed that random
movement was not enough to explain the invasive profile of
the colonies. We hypothesized that short-range mechanical

interactions between cells might affect motility, and another
long-range chemotactic process would radially affect migration
direction. Previous studies consider chemotaxis of glucose as an
attractant factor driving cell migration in GBM (Khain et al.,
2005; Bao et al., 2019). We hypothesized that the cells are
dominated by random movement and mechanical interactions
during the early hours of the experiment. Later, the chemical
diffusion and concentration of a chemo-attractant factor self-
generated by the cells would drive re-clustering. This could
explain why in large spheroids there are fewer migrating cells,
considering that the concentration of chemo-attractant is higher.

Notably, thanks to the nuclei marker visualization, fewmitosis
events were observed in our time-lapses. We decided to explore
within the simulations the influence of proliferation. To keep
generality, is a mechanism that cannot be discarded in other
cell lines, longer duration of the experiments or higher cell
number. Therefore, we added it as a fourth mechanism during
cell migration.

2.2. Quantification of Cellular Motility
Reveals Time and Colony Size Dependent
Behavior
To extract quantitative results that validate our observations,
bright field images were segmented to identify the centroid of
the spheroid. Then, the trajectories of single-cells expressing
the nuclei marker pBABE-H2BGFP were obtained, and for
each spheroid, the mean relative radial migration (RRM) was
calculated at every time-point (Figures 2A–F, see Materials and
Methods section 4.3). We chose a nuclear marker because its
morphological structure is stable throughout the cell cycle and
cellular migration (Cliffe et al., 2017). The mean RRM is a
measure of the distribution of cells around the centroid of
the spheroid. Thus, a spheroid that remained clustered has a
mean RRM of 1, while a spheroid whose cells doubled mean
distribution has a mean RRM value of 2.

We observed that for larger spheroids the mean RRM is close
to 1, while smaller spheroids could migrate six times their mean
initial radius. Analyzing the dynamics after 7.5 h of migration
(region of linear increase in RRM), we defined a threshold at
100 µm separating a constant and divergent behavior for large
and small spheroids, respectively. From now on, we will show the
average data on each side of the threshold (Figures 2G,H).

2.3. Single-Cell Model Accurately Predicts
Emergent Colony Behavior
In our model, a single isolated cell in a substrate can migrate
with a random component, where all directions are equally likely
and a diffusion coefficient describes the area covered per unit of
time (Fuert, 1920). To estimate this parameter, we analyzed the
movement of single cells in a low-density monolayer in the same
culture conditions as the spheroids during the migration assays
(see Material and Methods section 4.2). Having single cells apart
from each other, it is possible to quantify the random motion
only without cells interacting mechanically with each other
and having a non-significant concentration of self-generated
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FIGURE 1 | Colony and single cell-level migratory behavior. (A) Lateral and top view diagram of cell migration away from the spheroids. The cells are constrained by

the Geltrex surface to migrate in 2D trajectories. (B) Time-lapse of bright field images where different migration patterns are shown for small and large spheroids. (C)

Time-lapse of spheroid migration where mechanical interactions between cells are evident. The leading cell (red arrow) migrates away from the colony pulling the

second cell (blue arrow). (D) Time-lapse of directed radial behavior of two cells (arrows). In the first frame (8.3 hs) they move away and finally (20 hs) they return to the

colony again. Scale bar 100 µm.

chemoattractant. We obtained a diffusion coefficient of Dcell =

(0.21±0.04)µm2/s (mean± SEM, see Supplementary Figure 1).
Mechanical interactions were included in the model defining

a probability q for two cells to interact with each other at
first (Charteris and Khain, 2014) and second neighbors (can be
extended to further neighbors, see section 4.4.3). Chemotaxis was
modeled by assuming an effective chemo-attractant produced
and consumed by cells with rates c1 and c2, respectively (Keller
and Segel, 1971; Hillen and Painter, 2008). It diffuses with a rate
D = Dchem/Dcell times faster than the cells effectively providing

a mid-range cell-to-cell interaction. This quantity is delimited by
the stability conditions of the chemotaxis equation (see Materials
and methods, section 4.4.2). When this chemical gets to the
membrane of neighboring cells, somemolecules attach to specific
receptors and unchain a signaling pathway to produce migration
in the direction of the chemical gradient (Kim et al., 2009). The
strength of the chemo-attractant to drive cells in a particular
direction is given by the quantity cf . Finally, we also defined α

which is the probability of one cell to undergo division during
the time step defined previously. As we discussed before, there are

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 December 2020 | Volume 8 | Article 615759

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Cuenca et al. Integrative Framework Reproduces Cell Migration

FIGURE 2 | Tracking analysis of individual nuclei. (A–C) Bright field, binary mask with centroid and fluorescence channel of spheroid at time 0. (D,E) Individual cell

tracks and close-up. The track for the last 10 time-points is indicated by a straight line and the final nuclei position with a circle. (F) Diagram of polar coordinates

calculated from the centroid of the spheroid, distribution of radial distances and mean value. (G) Experimental curves of mean RRM for different sizes of spheroids (left)

and RRM after 7.5 hs of migration vs. diameter (right). We can define a threshold around 100 µm (dotted line) where the behavior is constant for larger spheroids. (H)

Average mean RRM for small, large and all sizes of spheroids.

only a few divisions in our migration assays, thus α = 0 unless
stated otherwise. All the mechanisms considered in addition to
random movement are illustrated in Figure 3A.

To computationally run the model, we used a discrete lattice
(matrix) to describe the cell (N) and chemical (U) distribution.
Defining the cell size and time step is sufficient to set the diffusion
coefficient Dcell in N. Each cell is a square of area 100 µm2

(average size of 10 µm). Then, in our simulations, we defined

a time step of 7 min (205 iterations in total for 24 hs in silico
experiment). We also defined a probability r for the cells to
perform random movement. In this way, we were able to alter
Dcell in our simulation without changing the geometry of the cells
and the number of iterations, which would require to re-scale
the other parameters of the model. This might be of interest as
we will discuss further ahead. In our simulations, r = 1 unless
stated otherwise.
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FIGURE 3 | Algorithm architecture and operation. (A) Additional mechanisms considered from experimental observations: Chemotaxis, mechanical interaction

between cells and proliferation. (B) Simulation steps: Initial conditions for U and N are stated. The user select the active mechanisms and its parameters. The time

iterations are performed considering the configuration, obtaining the probability matrix for each cell and simulating the evolution in a differential time step. Then, the

process starts again for as many iterations as needed. Finally, morphological parameters are extracted from each time point. (C) Matrices of cell and chemical

distribution (N and U) at times 0, 10, and 20 h for a small 50 µm (top) and big 160 µm (bottom) geometry. Cells in yellow moved in the last iteration while cells in blue

remained still. Scale bar = 200 µm.

To perform the simulations, we used a modular approach
to combine all the biological processes, translate them into
probabilities, and then, consider each cell as an automaton.
Cell occupancy N and chemo-attractant distribution U was
iteratively evolved according to the described equations (see
sections 4.4.2 and 4.4.5). These probabilities change in each
iteration (time-point) based on the diffusion of the chemical and
cell distribution. The initial conditions, such as cluster (spheroid)
size and geometry N(t = 0), and chemical concentration
U(t = 0), are given by the user (Figures 3B,C). To delimit
the possible values of each parameter, we compared the RRM
results of the simulations with the random movement in silico
and the experimental results. Only the parameters with RRMs
between the experimental and random curves are candidates (see
Supplementary Figure 2).

We could assign different behaviors of the curves to different
parameters. The mechanical parameter q is strongly associated

with the slope or velocity of migration, which makes sense in
a scenario where the cells at t = 0 are cluster together and
the mechanical interactions have a higher impact. While c1 is
associated with the velocity only after ∼2 h, once the chemical
has accumulated. On the other hand, cf changes the final value
of the mean RRM (Figures 4A–C and Supplementary Figure 3).
The diffusion coefficient D showed slight differences in the
emergent behavior only in large spheroids, where the chemical
concentration is higher. In this scenario more diffusion means
a lower chemical gradient in the spheroid, and thus, the cells
can arrange in a wider distribution with higher mean RRM
(Supplementary Figure 2). This value of D = 50 returned a
Dchem = (630 ± 120) µm2/min which encloses, for example,
the diffusion coefficient of glucose in water (Dgluc = 670–700

µm2/min) (Øyaas et al., 1995; Andriesse and Hollestelle, 2001).
This is not enough to conclude which is/are the molecule(s)
involved in the chemotaxis, given the fact that there are probably
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FIGURE 4 | Algorithm behavior and fitting procedure. (A) Dynamic range available for the estimation of parameters in the average of large spheroids. We are confined

to the region between the random movement simulated curve and the experimental curve. (B) Simulated curves for different values of q change their slot. We see that

we can move in the range from 0 to 0.3. (C) Simulated curves for different values of cf change the asymptotic value. The range between 5 and 45 is valid. (D)

Simulated curves for different c1 change the slot above ∼2 h of migration. All the explored range is, in principle, valid. (D) Change in RRM due to the

presence/absence of different mechanisms in the average of all, small and large spheroids: In blue, only random movement was taking place; In orange, mechanic

interactions were added; In green, it is shown the effect of random movement plus chemotaxis. Finally, all the mechanisms together in red. We can see that the

difference between adding chemotactic effects is not significant for small spheroids but remains important for large spheroids (*p-value < 0.05, N = 24 spheroids). (E)

Comparison between experimental curve and simulated curves with and without proliferation.

attractants and repellents. In our model, we are considering an
effective chemotaxis that showed to be positive (attractant).

To determine the influence of each mechanism in the
simulated results, we turn off one mechanism at a time in
the model. Then, we compared the final mean RRM values
with the random movement and the complete model simulated
curve. As hypothesized, the chemotaxis effect had a significant
influence on large spheroids, while it did not change the global
behavior on small clusters (see Figure 4D). This indicates that
the complete model is not only the sum of its components and
that the mechanisms at the single-cell level return emergent
responses in different size-scales. We also test whether the
proliferation affects cell migration pattern setting the probability

α to 0.0007–0.0012 [joint probability between the doubling
rate of 19–30 h (Charteris and Khain, 2014; Rodríguez-Lozano
et al., 2019) and 20% of proliferative cells within the spheroid
(Aaberg-Jessen et al., 2013)], concluding that there is no
significant difference within 24 h (Figure 4E, see Material and
Methods section 4.4.4).

Finally, we found a set of parameters that not only fit the
experimental results in average, but also replicate the behavior in
single spheroids and on each subset of small and large colonies:
D = 50, c1 = 0.035, c2 = c1/2, cf = 20, and q =

0.3 (Figures 5A–C). The algorithm performed each simulation
(total number of spheroids = 24) in 10 min (see Materials and
Methods section 4.4).

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 December 2020 | Volume 8 | Article 615759

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Cuenca et al. Integrative Framework Reproduces Cell Migration

FIGURE 5 | Simulations reproduce migratory behavior and predict drug-assay results. (A) Simulated curves of mean relative radial migration for different size of

spheroids. (B) Average mean RRM for all sizes. Experimental and simulated curve. (C) Average mean RRM for small and large spheroids. Experimental and simulated

curves. (D,E) Single cell trajectories for the diffusion coefficients measured for DMSO and MK-2206 treated cells in monolayer. (F) Modification in the model: Only

(Continued)
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FIGURE 5 | random movement (diffusion) of the cells was altered in the same range indicated by experimental results. (G) Prediction of the model and experimental

results with MK-2206 treatment for all spheroids (left). Prediction and experimental results for small (N = 12) and large (N = 11) spheroids separately. (H) Average

invasion velocity calculated from linear fit of RRM data for each spheroid during the first 7.5 h of invasion. Non-significant differences have been observed for

simulated and experimental data both for MK-2206 treatment and DMSO control. While for DMSO the simulated data corresponds to the optimum set of parameters,

for MK-2206 an uniform distribution of the random parameter r between 0.25 and 0.55 was used.

2.4. Experimental Perturbation on Cellular
Mobility Impacts the Emergent Behavior,
Following the Algorithm Prediction
To test the capability of the model to predict other cell behavior,
we created a perturbation in the random motion mechanism
experimentally. Single cells in a low-density monolayer were
treated with AKT1 allosteric inhibitor MK-2206 (Narayan et al.,
2017). Akt is a major signaling molecule that is highly expressed
and aberrantly activated in GBM, contributing to the malignant
phenotype (Nakada et al., 2013). It is often used in combination
with Notch inhibitors and has been proved to be a migration
inhibitor, without altering proliferation, in a dose-dependent
manner (Jin et al., 2013; Djuzenova et al., 2019).

The diffusion coefficient was quantified from single-cell
trajectories as described previously being just 40 ± 15% (mean
± SEM) of the value of cells treated with the vehicle DMSO
(Figures 5D,E, see Supplementary Figure 1). Thus, instead of
changing the time step of the iterations to modify Dcell, which
would have changed also all the set of parameters found, we
simply changed the probability to perform random movement.
We simulated a set of spheroids in silico with r between 0.25
and 0.55 to obtain an effective Dcell to match the experimental
measurements (Figure 5F). Only then, we treated the spheroids
with the migration inhibitor and proceeded with the analysis
as usual. Modifying only the parameters associated with the
altered mechanism, we observe a good agreement between
the model predictions and experimental results, both for the
average and subsets of data (Figure 5G). Moreover, we calculated
the mean velocity in the first 7.5 hs of simulated spheroid
invasion (linear regime) and obtained non-significant differences
compared to the experimental results for three different size
subsets (Figure 5H). This indicates that not only our model
can fit our experimental data correctly, but also predicts
dynamic and average quantitative parameters related to collective
cell migration.

3. DISCUSSION

The tumor cell migration comprising cell random movement,
mechanical interactions, and chemotaxis is extremely complex
to interpret. Our data from single-cell and colony behavior
analysis allowed us to develop a concise and versatile tool that
contributes toward understanding tumor-associated biological
processes. Our approach is simple and fast, and can be extended
far beyond the GBM model and adapted to other cell lines
and scenarios includingmigration, proliferation, morphogenesis,
and wound healing. We have shown how, from a simple
determination of the cell diffusion coefficient, our model can
replicate a set of migration assays of U87 cellular spheroids.

The only experimental requirement would be a nucleus labeling,
either by staining or retroviral transfection, to determine each
cell position.

We demonstrated the relevance of all the mechanisms
proposed in the model and the influence in the migratory
process. We found that while randommovement andmechanical
interactions have a high impact on the mean RRM, they are not
sufficient to explain the invasive pattern in large spheroids (>100
µm) where chemotaxis becomes significant. Adjusting random
movement of the cells, we were able to make good predictions on
the effects of the migration inhibitor MK-2206, obtaining a good
agreement between the in silico and in vitro cell behavior.

No considerations regarding the mechanical properties of
the environment have been made. Our model assumes that the
rigidity of the substrate is homogeneous and affects the velocity
at the single-cell level. Therefore, it is adequate to determine
experimentally the diffusion coefficient of isolated cells to
encode the mechanical properties. However, the heterogeneous
composition of the “real” tumormicroenvironment couldmodify
(or affect) the diffusion coefficient of individual cells and alter the
emerging behavior of the colonies given by cellular interactions
with the surroundings. Since current cancer treatments do not
address the dynamic regulation of the tumor microenvironment,
primarily responsible for tumor progression and resistance to
treatment; future adaptations to this first base model allowing for
the presence of microglia and different tumor cell identity states
(proliferative, migrating, senescent, etc.) (Tektonidis et al., 2011;
Friedmann-Morvinski, 2014) should be considered to evaluate
and predict with greater fidelity the cellular behavior in vivo.

The traditional therapeutic approach for GBM is surgical
resection, where most of the tumor mass is removed. However,
some residual cells mostly at the invading edge could persist after
treatment (i.e., resection plus chemo and radiation therapy) and
have been hypothesized to be responsible for the recurrences
observed in patients (Swanson et al., 2000; Stupp et al.,
2005). Tumor stem-like cells have been identified as one of
the main subpopulation responsible for the tumor recurrence,
and though some gene markers and molecular pathways have
been recently identified (Wang et al., 2016; Minata et al.,
2019), the area is still under investigation. Our finding could
contribute to understanding how the different mechanisms
considered impact at different colony-size scales and regulate
the migratory behavior of tumors. Our results could also be
used to integrate with new findings in the area of research
and explore the impact of new biomarkers and test future
therapeutic interventions.

The cell line used in this study (U87), has been chosen as a
model of GBM in over 2000 publications since they reproduce
the oncogenic cell signaling in the original tumor (Lenting
et al., 2017). Future studies using other GBM and tumor cells
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(commercial lines, and cells derived from patients), will be
necessary to expand the generality of our observations. The use
of these cells will also be useful to better understand the impact
and scope of themodel, as well as the possibility of proposing new
questions, given that patient-derived cells better represent tumor
biology and the heterogeneity found daily in the clinic.

The results and the model characterized in two dimensions
from spheres culture here are the first approaches to extract
the biological parameters, to validate the mechanisms proposed,
and to obtain predictions of drug assay experiments in vitro.
Scaling into the third dimension is an important upcoming
step to further predict invasive behavior in vivo. Therefore, our
contribution will be relevant in the field in order to move forward
to try to understand the complex tumor migration and cancer.

4. MATERIALS AND METHODS

The steps involved in producing the experimental and
corresponding simulated results were performed in the following
order: (i) migration assay experiments with GBM spheroids,
(ii) image analysis and data processing, (iii) selection of the
biological actuators, (iv) identification of mathematical analogs
for the simulations, (v) experimental and in silico determination
of parameters, (vi) prediction of drug assay response, and (vii)
test the predictions experimentally.

4.1. Cell Culture and Viral Infection
Cell line U87MG was acquired from ATCC, kept frozen
immediately after receipt or used in culture <2 months
and routinely tested negative for mycoplasma. ATCC cells
are characterized by Short Tandem Repeat (STR) profiling
(Ferreyra-Solari et al., 2016). U87 cells were cultured
in DMEM supplemented with 10% fetal bovine serum,
Penicillin/Streptomycin, and L-Glutamine to express several
of GBM markers as determined previously (Lenting et al.,
2017). Cells were kept at 37◦C under 5% CO2 humidified
air. The plasmid pBABE-H2BGFP was a gift from Fred Dick
(Addgene plasmid # 26790; http://n2t.net/addgene:26790;
RRMD:Addgene_26790). Retrovirus was created using standard
protocols and introduced into U87 cells. Briefly, viruses were
harvested at 48 and 72 h, cleared of cell debris. To establish
the stable U87-H2GFP cell line, monolayers were subjected
to 2 rounds of infection. After retroviral transduction, GFP-
positive cells were sorted by FACS, collected for amplification
and maintained with puromycin (1 µg/ml). For neurosphere
induction, U87 GBM cells were grown to 90% confluence,
trypsinized, and plated in ultra-low adhesion multi-well plates
(Corning) in neural stem cell (NSC) medium or DMEM F12
supplemented with B27, N2, 20 ng/ml bFGF, 20 ng/ml EGF, 2
mM L-glutamine, 2 mM non-essential amino acids, 50 U/ml
penicillin/streptomycin (Sigma, USA). After 5 days, the number
of spheroids was quantified using 10× magnifications under
a phase contrast microscope (Carl-Zeiss, AxioObserverZ1),
an AxioCam(HRm) camera (Carl-Zeiss, Germany) and Zen
pro2011. It is considered a spheroid, a cell cluster bigger than 40
µm in diameter (Sart et al., 2017; Bodgi et al., 2019).

4.2. Migration Assays, Migration Inhibition,
and Microscopy
Twelve well plates were coated with 400 µl of LDEV-Free
Reduced Growth Factor Geltrex (Invitrogen), adding 1 ml of
serum-free fresh medium with spheroids in suspension on top.
After half an hour, spheroids were attached to the coating.
Bright field images were taken every 10 min for 24 h in a Zeiss
AxioObserverZ1 inverted microscope with Live Imaging System.

To inhibit migration the process was the same as described
above, but Akt1 inhibitor MK-2206 (Cayman Chemical #11593)
was added to the fresh medium. A concentration of 7 µM
was used to inhibit migration, without altering proliferation
and cell viability as described before (Jin et al., 2013). Control
experiments were performed with the vehicle, DMSO in this case.
To determine cell’s diffusion coefficient a low-density monolayer
was cultured in the same conditions as the spheroids, with
MK-2206 and the vehicle.

Registration in all cases was performed using 10×
magnification under a phase contrast microscope (Carl-Zeiss,
AxioObserverZ1) with Live Imaging system, an AxioCam(HRm)
camera (Carl-Zeiss, Germany) and Zen pro2011. Bright field and
fluorescent images were obtained every 10 min for 24 h.

4.3. Image and Statistical Analysis
Analysis of time-lapses was performed in a custom built Python
pipeline and Fiji (Schindelin et al., 2012). First, a binary
segmentation based on Otsu’s criteria was performed after a
Gaussian filtering using the Scikit-Image library (van der Walt
et al., 2014) on the bright field images.Morphological parameters,
such as the centroid and diameter were extracted from these
binary images. Fluorescent nuclei positions were tracked using
the Fiji plugin TrackMate (Tinevez et al., 2017). The radial
position from the centroid was quantified for each cell in the
spheroid, averaged and normalized to obtain the mean relative
radial migration

meanRRM(tj) =
〈

√

(xi(tj)− xc)2 + (yi(tj)− yc)2〉i

〈
√

(xi(t0)− xc)2 + (yi(t0)− yc)2〉i
,

where xi(t), yi(t) is the position of the ith-cell at each time-point
and xc, yc is the centroid of the spheroid. Note that the average is
over the number of cells and not over time.

In single cells, the diffusion coefficient was calculated from
single trajectories as

dcell =
1

4T

N
∑

j=1

[(x(tj)− x(tj−1))
2 + (y(tj)− y(tj−1))

2],

where T is the total duration of the trajectory and N is the
total amount of time-points. Then, dcell values for all cells
were averaged to obtain DCell. To analyze the data, Pandas
package was used (McKinney, 2010). The statistical test used was
the non-parametric Kolmogorov-Smirnov analysis to compare
cumulative distributions.
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4.4. Mathematical Modeling
A discrete approach was used to simulate the cell clusters.
Basically, a squared lattice, represented by a matrix N, was filled
with zeros (for empty spaces) and ones (for occupied spaces).
The squared lattice has cells of the same size than the actual U87
cells average size, in this case, 10µm. Consistently, dimensionless
quantities were only considered in the matrix. Then, N is a
m × m matrix, being m an appropriate size for the cells to
migrate without reaching the borders. In this case, m = 200
(which is equal to 2,000 µm) was considered enough. The initial
condition for N(t = 0) is a d × d cluster (d << m) of one
values centered in the matrix, surrounded by zero values. The
value of d will vary from 5 to 15 approximately (50–150 µm),
which is the range of the real diameters of the spheroids. The
approach is two-dimensional in the vertical and horizontal axes
(y and x, respectively), represented by i and jmatrix indexes (rows
and columns).

The evolution of this matrix will be computed based on
four different biological actuators considered of relevance after
analyzing the experimental results. The first one is random
movement or Brownian motion of the cells. The second one
is the chemotaxis generated by some chemo-attractant/repellent
factor segregated by the cells. Finally, mechanical interaction
between the cells will be considered. With these three processes,
a probability matrix P ∈ ℜ3×3 will be calculated for each cell
in the grid. That matrix will represent the probability of the cell
to remain in the same place (P[2,2]) or moving to a neighboring
space. After selecting the direction of movement, the cell will
move toward that space only if it is free, and will remain in the
same space if it is occupied. Cells can also proliferate with a
given probability α, and in that case, they will not move. After
obtaining the new matrix N(t = dt), the process starts again (see
Figure 4B).

The time step dt should reflect the time in which one cell is
able to move its own diameter. In other words, it is linked with its
diffusion coefficient directly. In this case, it was determined to be
∼7 min. To move forward a dimensionless quantity, we defined
the total unity of time as 24 h. Then, dt = 7min/24h ∼ 0.0048.
We could have considered a unity of time of 12 h, but it would
have an influence on the stability of the chemotaxis equation (see
section 4.4.2) restricting the diffusion constant D and it would
have doubled the computing time.

Using a processor Intel(R) Core(TM) i7-6500U and 8 GB of
RAM, reproducing a complete experiment (a total of 24 spheroids
of different sizes) took 10 min.

4.4.1. Random Movement

The random component of the probability matrix for all the cells
will be a Gaussian kernel G ∈ ℜ3×3 with standard deviation
σ = 2 spaces. The central value of this matrix G[2,2] was set
to zero, so the cell is enhanced to move away, and the rest is
re-normalized so

∑

k,l

G[k,l] = 1.

4.4.2. Chemotaxis

The movement of a single cell toward the direction of a chemical
gradient is called chemotaxis. If the chemical is an attractant,
the cell will move toward the positive gradient. But, if it
is a repellent factor, the cell will move toward the negative
gradient. Based on the approach used in Charteris and Khain
(2014), we also describe the chemical concentration in a discrete
squared lattice, represented by the matrix U. The evolution of
the chemical concentration in two dimensions is ruled by the
differential equation

∂u

∂t
= D

∂2u

∂x2
+ D

∂2u

∂y2
+ c1n− c2nu,

where u and n are continuous variables describing the chemical
and cell concentration, D = Dchem/Dcell is the dimensionless
diffusion coefficient, c1 is the generation constant, and c2 is
the degradation constant. In this case the production term is
proportional to the concentration of cells, because the chemical
is being produced by the cells, and the degradation term is
proportional to the concentration of the chemical.

The initial condition is u = 0 in all the space, and the way
to proceed is to solve the differential equation using the initial
cell concentration to find u(t = dt). But we have a discrete N
so, in order to solve the equation, we performed finite differences
to find the discrete chemical concentration U, a matrix with the
same size as N. At the end, we obtained

U[t + dt] = MU[t]+ U[t]M + c1dtN[t]− c2dtU[t] ∗ N[t]

where dt is the discrete time.
M is a tridiagonal matrix given by

M =











1
21 λ 0 . . . 0

−λ 1
21 λ . . . 0

...
...

...
. . .

...

0 0 0 . . . 1
21











,

where 1 = 1 − 4λ, λ = Ddt/h2 and h is the discrete step in
length (h = 1, in this case). The condition for the stability of the
solutions is dt ≤ h2/2D.

In each iteration, the cell will sense the neighboring
chemical concentration in both directions and compute the
weighted gradient

µx =
U[i,j+1] − U[i,j−1]

(1+ 3u)2

µy =
U[i+1,j] − U[i−1,j]

(1+ 3u)2
.

The equation reflects how the chemotaxis effect is lower
for higher concentrations of the chemical, which produces a
saturation of the cell membrane receptors. Also, we can see how
the effect is larger for higher gradients.

In the end, the probability of moving toward the gradient
is given by |µ|. And thus, the probability matrix C will be
filled with zero values except for the index with maximum
gradient modulus.
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4.4.3. Mechanical Interaction

Based on observations of the collective behavior of the cells in the
spheroids, a mechanical interaction between cells was added. In
this case, cells can interact with the first neighbors by performing
a convolution between N and a 3 × 3 matrix O filled with ones.
The size of the matrix filled with ones should be changed in order
to consider further neighbor interactions. After convolvingN and
O, we cut thematrix in small 3×3matrices around each occupied
space. To avoid the simulated cells to interact with themselves, we
subtract the matrix O and normalize to obtain I ∈ ℜ3×3, a map
of forces at first neighbors.

4.4.4. Proliferation

A probability per unit of time α can be assigned to consider
proliferation. In this case, for each iteration and cell, the
algorithm will decide whether if proliferation will take place
or the cell is going to move. If it chooses to proliferate, then
a free space must be available. The mother cell will remain
still and a daughter cell will be assigned randomly to one of
the free neighboring spaces. The proliferation probability is
associated with the life cycle (∼19–30 h). Then, the probability
per unit of time, considering our time step, is the ratio
step/cycle∼0.004–0.006.

In our scenario, not all the cells are proliferative. Only
around 15–20 % of the cells will divide. Then we have to
calculate the joint probability of the cells to be proliferative
and undergo division per unit of time. In other words, we had
to calculate

α = P(A ∩ B) = P(A|B)P(B)

where A represents the process of dividing and B represents a
proliferative cell. Then, considering P(A|B) = 0.004− 0.006 and
P(B) = 0.15− 0.2, we obtained α = 0.0007− 0.001.

4.4.5. Complete Model

All the interactions and processes described above can be
switched on and off. When they act at the same time,
the combined probability matrix for each cell is given by
P′ = r ∗ G+ cf ∗ C + q ∗ I. The parameters r and q are numbers
between 0 and 1 indicating the proportion of influence of
the random motion to the total probabilities and strength
of mechanical interactions between cells. While cf is the
chemotaxis coefficient, that indicates the nature (cf < 0 if
repellent, > 0 if attractant) and strength of the chemical.
In all the simulations r = 1 unless specified otherwise.
Finally, P′ is normalized to obtain P. Be aware that if only
random movement is taking place, the last normalization is
not needed.
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