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frontal asymmetry in sadness, underpinning interest in the transcranial stimulation of left dorsolateral prefrontal
cortex as an antidepressant target. Neuroimaging studies — including meta-analyses — indicate that sadness is
associated with reduced cortical activation, which may contribute to reduced parasympathetic inhibitory control
over medullary cardioacceleratory circuits. Reduced cardiac control may — in part — contribute to epidemiolo-
gical reports of reduced life expectancy in affective disorders, effects equivalent to heavy smoking. We suggest
that the field may be moving toward a theoretical consensus, in which different models relating to basic emotion
theory and psychological constructionism may be considered as complementary, working at different levels of
the phylogenetic hierarchy.

When I go musing all alone, Thinking of divers things fore-known, When
I build castles in the air, Void of sorrow and void of fear, Pleasing myself
with phantasms sweet, Methinks the time runs very fleet. All my joys to
this are folly, Naught so sweet as Melancholy.

“A dialogue between pleasure and pain”

(Burton, 1857)

1. Introduction
1.1. Background and context

Sadness is a commonly experienced emotion, impacting on body
and mind, which may last anywhere from a few seconds to several
hours. It is an adaptive emotion that may have been conserved by
evolution along the phylum as it has an adaptive function, allowing us
to cope with losses such as losing resources, status, friends, children or
romantic partners (Nesse, 1990). In humans, sadness is characterised by
specific behaviours (social withdrawal, lower reward seeking, slow
gait), a typical facial expression (drooping eyelids, downcast eyes,
lowered lip corners, slanting inner eyebrows), physiological changes
(heart rate, skin conductance) as well as cognitive/subjective processes.
Sadness may also sometimes be described as a psychological pain ac-
companied by additional feelings of loneliness, distress, depression,
anxiety, grief and anguish (we discuss the linguistic complexity of
sadness further in section 1.5). Paradoxically, the experience of sadness
may also lead to pleasant affective states. For instance, listening to sad
music is often described as an enjoyable and a ‘moving’ experience
(Sachs et al., 2015), especially when perceived as non-threatening and
aesthetically pleasing.

In its mild form, sadness may afford considerable benefits including
a more accommodating, vigilant and externally-focused response style
(Forgas, 2017). By contrast, depressive rumination (Nolen-Hoeksema
et al., 2008) may lead to more prolonged mood states associated with a
broader syndrome consisting of negative views about the self, the
world, and the future (Beck, 2008), characteristic of depressive dis-
orders, which have no clear evolutionary value. It is acknowledged
however, that sadness is distinct from depressive disorders, as these are
heterogeneous and involve other features including anhedonia, feelings
of worthlessness or guilt, suicidal ideation, fatigue, changes in sleep,
appetite and weight, and cognitive impairment (Malhi and Mann,
2018). Some researchers have characterised sadness - especially in
humans - as a constructed emotion (Barrett, 2017a) arising from do-
main-general systems in the brain, once information from the body and
the external environment has been contextualised by representations of
prior experience. This constructionist perspective may be attributable
in part, to the wide application of functional magnetic resonance ima-
ging to understand the emotions in human beings, a technique that
imposes limitations on conclusions able to be drawn relating to the
neurobiological basis of emotions. For instance, it is not clear whether
typically weak emotional stimuli used in the scanner evoke sufficiently
strong and specific emotional states. By contrast, sadness has also been
described as a ‘basic emotion’ with a strong evolutionary basis
(Panksepp, 1982a). This ongoing debate is one which we pay particular
attention to in our paper (see section 6). Our own view is that the field
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may be moving toward a theoretical consensus, in which different
models may be considered as complementary, working at different le-
vels of phylogenetic hierarchy.

The emotion of sadness impacts on the body as well as the mind.
Historically, it has been considered to be one of six ‘basic’ emotion facial
expressions, along with happiness, anger, surprise, fear, and disgust. The
characteristic facial expression of sadness contribute to what Charles
Darwin described as the 'grief muscles', including the “omega melanch-
olicum” and Veraguth’s folds (Greden et al., 1985). These expressions
were provocatively captured by the camera lens of Dorothea Lange in
1932 as she photographed the 32-year old ‘Migrant Mother’, on which
Fig. 3 in this paper has been based. While such expressions may be
characteristic of sadness, recent data suggest that faces often fail to re-
flect self-reported experience (Russell and Fernandez Dols, 2017) (see
also Gendron et al., 2018). The experience of sadness is also associated
with a slumped posture and slowed walking speed (Johannes Michalak
et al., 2009a, 2009b) and may or may not co-occur with crying. Crying-
related sadness is associated with increased heart rate and increased skin
conductance (Gross et al., 1994), while noncrying sadness is associated
with a reduction in heart rate, reduced skin conductance, and increased
respiration (Gross et al., 1994; Rottenberg et al., 2003). Chronic sadness
is often (mis)diagnosed as a depressive disorder (Horwitz and Wakefield,
2007), and parallel bodies of literature linked psychological distress and
depressive disorder to higher risk of chronic physical conditions
(Bhattacharya et al., 2014) and premature mortality (Russ et al., 2012),
with effects comparable to or larger than the effects of heavy smoking
(Chesney et al., 2014). Readers interested in underlying mechanisms are
referred to recent theoretical work that has characterised potential
pathways from chronic negative emotions to future morbidity and
mortality from a host of conditions and disorders (Kemp, 2019; Kemp
et al., 2017b, 2017a; Kiecolt-Glaser and Wilson, 2016; Penninx, 2017;
Stapelberg et al., 2019; Wulsin et al., 2018). This work including ongoing
debate reinforces a need for an up-to-date review of the neuropsycho-
biological correlates underpinning the emotion of sadness. This is the aim
of the current paper.

Consistent with the neuroevolutionary origins proposed by Jaak
Panksepp, the emotion of sadness has been described in animals as well
as humans. In his latest book (de Waal, 2019), primatologist Frans de
Waal describes how different animals grieve, admittedly a more complex
emotion than sadness that also encompasses surprise, fear, anger, and
denial. After losing a mate, the prairie vole becomes passive in the face of
danger, not caring whether they will live or die. The dog lays near her
dead best friend with ‘meltingly sad eyes and furrowed brow’. The
adolescent wild female chimpanzee gazed at the body of a dead male for
over an hour without interruption. Elephants gather the bones of a dead
herd member, holding pieces in their trunks, and passing them around to
other members of the herd. Even the humble rodent is believed to "ex-
press anguish through narrowed eyes, flattened ears, and swollen
cheeks.” It is also interesting to observe that affective states beyond
freedom from fear and distress are now included in scholarly discussions
about animal welfare (Mellor, 2017). These authors emphasise that there
is now good neuroscientific evidence to cautiously distinguish between
states of depression, anxiety, fear, panic, frustration, and anger in ani-
mals. Also relevant here is the application of this knowledge to better
understand the pathogenesis of depressive disorders and mechanisms for
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antidepressant action using a variety of paradigms including social de-
feat, behavioural despair, and learned helplessness (Krishnan and
Nestler, 2011; Planchez et al., 2019). While detailed discussion of the
issues around these intriguing accounts of the emotional lives of animals
is beyond the scope of the present paper, we note them here to emphasise
the importance of neurobiological accounts that extend beyond human
egocentricity. These considerations further highlight the need to discuss
the ongoing debate between basic emotion theorists and the psycholo-
gical constructionists, which we do in section 6.

Our paper is organized as follows: In the next section, we briefly report
on key milestones in emotion theory with implications for the neu-
roscience of sadness, focusing on the current debate between two major
theories: Basic Emotion Theory and Psychological Constructionism. We
then consider the role of interoceptive awareness and embodiment before
proceeding to explore the linguistic properties of sadness (linguistic fra-
mework - Siddharthan et al., 2020). Following this, we begin our multi-
disciplinary synthesis and collaborative review of the neuroscience of
sadness. Specifically, we address the role of genetics and epigenetics that
may in part underpin the emotion of sadness, as well as the physiology,
neural correlates, and individual differences. We conclude by drawing
some conclusions on the reviewed literature and identify opportunities for
future research activity. While a detailed review of the literature in each of
these domains is beyond the scope of the current paper, we hope that our
contribution will provide a reasonably comprehensive review on the topic
of sadness that will provide useful guidance to future researchers.

1.2. A brief history of milestones in emotion theory

We now briefly describe the development of emotion theory and
summarize key milestones in Fig. 1 to help provide the historical back-
ground and context within which our present review paper was written.
This section also provides some context to the ongoing theoretical debate
over emotions (and sadness specifically), which we pick up in detail in the
next section as well as section 6 of the current paper. The topic of emotion
has received considerable attention from modern science, including the
disciplines of psychology and human neuroscience. In the 19 century,
Charles Darwin initiated the debate over the physiological basis of emo-
tional life with the publication of ‘The Expression of Emotions in Man and
Animals’ (Darwin, 1872), emphasizing the origins of human emotions in
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human behavior; an emphasis that contrasted with the philosophical se-
paration of body and mind that was characteristic of western philosophy at
the time. This publication concentrated on six core human emotions, in-
cluding sadness. In his chapter on low spirits, anxiety, grief, dejection and
despair, Darwin notes: “the most conspicuous result of the opposed contraction
of the [orbiculars, corrugators, and pyramidals of the nose] is exhibited by the
peculiar furrows formed on the forehead. These muscles, when thus in conjoint
yet opposed action, may be called, for the sake of brevity, the grief-muscles”
(p-179). It is interesting to note that the debate over mind-body separation
remains a topic of much debate, as characterized by David Chalmers’ so-
called ‘hard problem’ (Chalmers, 1995).

In 1884 and 1885 respectively, William James and Carl Lange in-
dependently developed what is now called the ‘James-Lange Theory’,
which presents ‘emotion’ as an experience of physiological arousal.
Eliciting stimuli lead to a complex bodily response that is interpreted as
an emotional feeling, in which the “object-simply-apprehended” is
transformed into an “object-emotionally-felt” (James, 1884). Following
stimulus perception, currents run down to the muscles and organs,
creating a complex response that subsequently courses back to the
cortex where it is transformed from simple perception into an emo-
tional feeling. Soon after, Walter B. Cannon (1871-1945) and Philip
Bard (1898-1977) severed afferent nerves from the sympathetic branch
of the autonomic nervous system in cats which — according to the
James-Lange theory — should result in loss of emotional experience.
However, the cats continued to display characteristic signs of rage,
including retraction of the ears, showing of teeth and hissing in the
presence of a barking dog, indicating that visceral feedback from the
periphery was unnecessary for the production of emotional responses
(Cannon, 1927; Cannon et al., 1927). Cannon and Bard then conducted
a series of experiments in which “animal brains were longitudinally sec-
tioned in the diencephalon in consecutive inferior anatomical planes” (Roxo
et al.,, 2011, pp. 2433-2434), resulting in the identification of the
thalamic region and caudal half of the hypothalamus as relays for ex-
ternal information and essential regions for the emotional brain
(LeDoux, 1987). These experiments led to the proposal of the Cannon-
Bard Theory, with later developments in the theory also establishing a
pivotal role of the neocortex for inhibitory control (Cannon, 1931).

In 1937, James Papez (1883-1958) subsequently proposed the
‘Papez Circuit’ theory of emotion, arguing that sensory inputs are

estones in Emotion Theory

The ongoing emotion debate has been likened to the Hundred
Years’ War between England and France. Here are some important
milestones:
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Fig. 1. A brief history of emotion theory with implications for sadness.
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processed by the thalamus, which are subsequently transmitted to the
sensory cortices through one of two processing streams: one for
‘thought’ and one for ‘feeling’ (Papez, 1937). According to this model,
the cingulate cortex integrates information from the hypothalamus and
sensory cortices, with projections from the cingulate cortex towards the
hypothalamus allowing for the cortical regulation of emotion. Despite
its limitations, we now know that several regions, including the hy-
pothalamus and the cingulate cortex, are important contributors to
emotional processing (Franklin and Mansuy, 2013). In 1949, Paul
MacLean (1913-2007) proposed his model of the triune brain, a model
of brain evolution and functioning which distinguishes three brain re-
gions: an evolutionary primitive “reptilian brain”, responsible for the
behaviours directly related to survival (e.g. dominance, competition...)
and other basic physiological functions (e.g. breath, heartbeat...) ; a
“paleo-mammalian or limbic brain”, responsible for emotional experi-
ences such as the expression of emotional states that promote pro-
creation, feeding, parental caring, and further cognitive processes such
as memory consolidation; and a “neo-mammalian brain”, comprised of
the neocortex and responsible for integrating emotion-cognition pro-
cesses, top-down regulation of emotional responses and the use of
highly complex mechanisms such as language, abstraction, and con-
ceptualization (MacLean, 1973, 1949). MacLean proposed that sensory
information from the outside world leads to physiological changes
which subsequently provoke the experience of emotion (Dalgleish,
2004). MacLean hypothesized that this integration was carried out by
the visceral brain, which he then named “the limbic system”. Although
a widely used term in the twentieth century, MacLean did not establish
criteria to determine what regions should be included in the limbic
system, and therefore, its relevance to modern neuroscience has been
questioned (Franklin and Mansuy, 2013).

Schachter and Singer (1962) proposed that emotional states are a
function of two processes: physiological arousal and an associated
cognitive state that helps to contextualize experience. According to this
perspective, we search the environment for emotionally relevant cues in
order to label and interpret otherwise undifferentiated physiological
arousal, resulting in an emotional experience. In 1982, Jaak Panksepp
(1982) proposed that emotions arise from deep subcortical neural cir-
cuitry, the basis for Basic Emotion Theory (explained further in the next
section). Subsequently, Ekman proposed that certain 'basic emotions'
including sadness, can be distinguished autonomically regardless of
cultural influences (Ekman et al., 1983). Other authors argue for al-
ternative approaches built upon principles of evolutionary theory (e.g.
Behavioral Ecology Theory), highlighting the importance of social
context to the facial representation of emotion (Crivelli and Fridlund,
2018; Fridlund, 2014). In this regard, Lisa Feldman Barrett (2006) has
argued that ‘basic emotions’ do not exist, suggesting instead that
emotions are context-dependent and created from domain-general
systems in the brain, a proposal labelled as ‘Psychological Con-
structionism”. This fascinating topic is one to which we return to in
more detail in section 6 of our paper.

On the basis of a series of electrophysiological studies highlighting the
role of anterior cerebral asymmetries in emotion reactivity, Richard

Table 1
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Davidson (1992) proposed the ‘Approach-Withdrawal Model’. These ideas
have since led to alternative treatments for major depressive disorder such
as stimulation of left prefrontal cortex by transcranial magnetic stimula-
tion (TMS) and transcranial direct current stimulation (tDCS) (Boggio
et al., 2008; Pascual-Leone et al., 1996). Building on these insights, Helen
S. Mayberg et al. (1999) examined interactions between limbic and neo-
cortical regions in individuals with normal sadness and depressive dis-
orders using positron emission tomography techniques, finding that sad-
ness was associated with increases in paralimbic blood flow and decreases
in dorsal neocortical blood flow. Concurrent inhibition of overactive
paralimbic regions and normalization of hypofunctioning dorsal cortical
sites characterized remission of clinical depression.

In 1994, Antonio Damasio proposed the ‘somatic marker hypoth-
esis’, the proposal that “marker signals” influence responses to stimuli
at multiple operational levels (Damasio and Sutherland, 1994). The
reason why these markers are termed “somatic” is because they arise
from the brain’s representation of the body (Damasio et al., 1996).
Markers arise from bioregulatory processes including, but not limited
to, processes which express themselves as emotions and feelings. Im-
portantly, Damasio differentiates between an emotion and the feeling of
an emotion, with the latter interpreted as a cognitive response to the
stimuli or thought that elicits the emotion, combined with the reali-
zation of this cause-effect relationship (Franklin and Mansuy, 2013).
According to this hypothesis, somatic responses to thoughts may trigger
an unconscious “gut reaction”, supporting decision-making, (Franklin
and Mansuy, 2013) (for a discussion, see Dunn et al., 2006).

Building on the role of visceral afferent contributions to emotional
experience, Stephen Porges proposed his polyvagal theory (Porges,
1995) which highlights a role for the (myelinated) vagal nerve in in-
dividual sensitivity to stress. This model has now been further devel-
oped and expanded, highlighting roles for the vagus nerve in emotion
and social communication (Porges, 2011), and its clinical implications
(Porges and Dana, 2018). In 2009, Porges (2009) presented evidence of
changes in cardiac function after long-term social isolation, high-
lighting an important relationship between mental wellbeing and
physical health. While the autonomic nervous system is one of several
response systems that contribute to stress-related mood disorders, the
vagus may play a regulatory role over many of these including the
sympathetic nervous system (Deuchars et al., 2018; Porges, 2011),
hypothalamic-pituitary-adrenal (HPA) axis (Porges, 2011),
flammatory pathways (Kolcun et al., 2017; Tracey, 2007, 2002), me-
tabolism including glucose regulation (Berthoud, 2008; Dienel, 2019;
Malbert et al., 2017; Pavlov and Tracey, 2012), brain-gut interactions
(Bonaz et al., 2018), and even neurogenesis and epigenetic mechanisms
(Biggio et al., 2009; Follesa et al., 2007). Such findings have led to
theoretical frameworks spanning the life course, including the ‘neuro-
visceral integration across the continuum of time’ (or NIACT) model
(Kemp et al., 2017b) and the GENIAL [genomics-environment-vagus
nerve-social interaction-allostatic regulation-longevity] model (Kemp
et al., 2017a), both of which explicitly link emotional states and well-
being, mediated by the vagus nerve. For more comprehensive reviews
on the history of emotion theory, readers may wish to consult the

in-

Fundamental differences between Basic Emotion Theory and Psychological Constructionism.

BASIC EMOTION THEORY

PSYCHOLOGICAL CONSTRUCTIONISM

Location of Emotion
Categories of Emotion

Number of Emotions

Emotional processes are the reflection of activity in specific neural systems.

Humans exhibit primitive emotional processes which are similar to the
ones present in non-human mammals and some other vertebrates.
There is a limited number of fundamental emotional circuits, yet their

intertwined activity along with social learning produce richer

phenomenology.
Sources of Insights
based on the human and non-human brain.

The scientific understanding of how emotional processes work must be

A category of emotion has no distinct brain location. Instances of emotion
are constructed through domain-general networks.

Variation is norm. Emotion categories lack a biological fingerprint as each
emotion category is a diverse population of situated instances.

Emotions are not inborn and if they are universal, it is due to shared
concepts.

Emotion is a product of social reality and context. Language also affects
mental representations of emotions.
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recently published book by Boddice (2018). Interested readers are also
referred to section six, which describes the debate between basic
emotion theorists and psychological constructionists.

1.3. Ongoing debate

Recent and ongoing debate has focused on Basic Emotion Theory
versus Psychological Constructionism (see Table 1). Heavily influenced
by the work of ethologist Jaak Panksepp (Panksepp, 1998, 1989), Basic
Emotion Theory (or Natural Kinds Theory) presents emotions as natural
entities preserved by evolution, ingrained in mammalian nervous sys-
tems. From this perspective, emotions are essentially natural entities
that emerge from ancient sub-neocortical neural systems (Ekman et al.,
1969; Panksepp, 1982b) that respond to major environmental chal-
lenges (MacLean, 1990; Panksepp, 1998). For this reason, Panksepp
(2003a, 1998) argued that subcortical organization (and in turn,
functionality; Panksepp, 1992, 1982a, 1982b) in humans and other
mammals are strikingly similar, with differences most evident at cog-
nitive levels (Hauser, 2001). Furthermore, Panksepp (2005, 2000) de-
scribed seven emotional action systems characterizing the emotional
apparatus of mammals, including: SEEKING, RAGE, FEAR, LUST, CARE,
PANIC/GRIEF, and PLAY (in capital letters to differentiate them from
the common words they are named after). Even though few action
emotion systems are proposed, their interaction with social learning
processing is hypothesized to result in much richer phenomenology.

From a basic emotion approach, sadness is described as an emotion
resulting from the activity of the PANIC/GRIEF system, a system which
has presumably evolved from more general pain mechanisms (Panksepp,
2003b). Sustained activation of the PANIC/GRIEF system provokes a
cascade of psychological despair that, if persistent, leads from normal
sadness to depressive disorders. In this context, the first acute phase of
the PANIC/GRIEF system includes SEEKING arousal, and if this were to
continue, a “despair phase” characterized by diminished SEEKING ac-
tivity and emotional shutdown may follow (Panksepp and Watt, 2011a).
Studies in comparative neurobiology show that while areas crucial for
sadness are present along the phylum in vertebrates (Paxinos and
Franklin, 2012; Paxinos and Watson, 2014; Vogt and Paxinos, 2014),
areas enabling conscious experience are only present in mammals, or
even in primates (Elston, 2007). In any case, studies show that the be-
havior, function, and neural systems of sadness are adaptive and con-
served by evolution. Such is the case for regions involved in sadness,
including the amygdala and hippocampus (Abellan et al., 2014; Herold
et al., 2014; Janak and Tye, 2015; Martinez-Garcia et al., 2002; Reiner
et al., 2004), supporting the basic emotion theoretical framework.

In contrast, psychological constructionism differs from Basic
Emotion Theory in several ways. First, variation is the norm; emotion
categories have no biological fingerprint per se. Thus, one instance of
sadness does not necessarily feel or present like another (Barrett,
2017b, 2013). Second, constructionists argue that categories of emotion
cannot be localized and that specific emotions have no single, dedicated
brain region. In line with the concept of degeneracy, constructionist
theory argues that the same instance or experience of the same emotion
category can be produced in multiple ways (Clark-Polner et al., 2016a).
Third, construction argues that emotion results from the activity of
domain-general systems combining in complex ways. According to this
approach, an instance of emotion is constructed when physical changes
in the body are made psychologically meaningful, and it is only when
we perceive these sensations as being causally related to our changing
external environment that an emotional episode is constructed (Barrett,
2013; Clore and Ortony, 2013). In other words, emotions are con-
structions of the world; not reactions to it.

One of the most essential of these domain-general systems is the
core ‘affective’ system — consisting of “neurobiological states that can be
described as pleasant or unpleasant with some degree of arousal” (Barrett,
2011, p.363). This system integrates sensory information from the ex-
ternal world with homeostatic and interoceptive information from the
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body. In order to make sense of this integration, affect needs to become
meaningful through the use of concepts. This occurs by means of the
‘conceptual’ domain-general system, which is created and shaped by
our prior experience, allowing fluctuating core affect to be categorized
into a discrete emotional experience. Therefore, sadness involves ca-
tegorization of core affect using conceptual knowledge of sadness. For
instance, sadness involves frowning, crying, moping, a monotonous
tone of voice and so forth, and whilst every instance and experience
varies, these descriptors are nevertheless inherent to sadness. Simula-
tions of an emotion such as ‘sadness’ are engrained in the mental con-
cept of what ‘sadness’ is, and therefore, ‘sadness’ is arguably a collection
of neural patterns in the brain (Barsalou, 2008; Barsalou et al., 2003).
The ability to form emotion concepts to make physical sensations
meaningful may be universal, but theories specific concepts are learnt
from culture. Therefore, emotional concepts are hypothesized to be
determined by social reality.

In addition to core ‘affect’ and ‘conceptual’ systems, additional ‘in-
gredients’, including attentional and language domain-general core
systems, shape the experience of emotion (Barrett, 2009; Barrett et al.,
2004) as well as a perceiver’s goals, values, desires, and intentions
(Cunningham et al., 2007).

1.4. Visceral contributions to the experience of sadness

Pivotal to emotional experience is the ability to integrate informa-
tion from the external world with interoceptive information from the
body, including a range of sensations which provide an integrated sense
of the body's physiological condition (Craig, 2003). This internal body
state modulates emotional experience (Couto et al., 2015a, 2015b) via
visceral-interoceptive signals which interact with emotional mechan-
isms (Adolfi et al., 2017; Garfinkel and Critchley, 2013). Some of the
key sources of interoceptive signals related to emotion are the heartbeat
(Couto et al., 2015a, 2015b), autonomic changes (e.g. increases in heart
rate), and other interoceptive processes (Adolfi et al., 2017). Sadness
has been directly linked to interoceptive abilities. For example, in-
dividuals with higher IS, as measured by a heartbeat detection task,
have been shown to be more sensitive to other's emotions, especially for
expressions of sadness (Terasawa et al., 2014). Additionally, IS has been
shown to moderate the effect of social rejection on affect, with Pollatos
et al. (2015) finding higher IS scores to be associated with lower levels
of distress and sadness, and positively associated with better emotion
regulation abilities. Therefore, IS may modulate the intensity of the
subjective experience of sadness and facilitate the down regulation of
affect-related arousal (Fustos et al., 2013; Goldin et al., 2008). Con-
verging evidence from lesion studies of stroke and neurodegeneration
have shown that selective insular damage is associated with impair-
ments in negative emotion recognition (including sadness), inter-
oceptive dimensions, and related networks (Adolfi et al., 2017; Baez
et al., 2015; Blas Couto et al., 2015a, 2015b; Couto et al., 2013; Garcia-
Cordero et al., 2016, 2015; Ibanez et al., 2010; Ibanez et al., 2013;
Sedefio et al., 2017, 2016; Terasawa et al., 2015). Many of the neuro-
biological substrates thought to underpin sadness have also been im-
plicated in interoception, including the insula and the anterior cingu-
late cortex (Paulus and Stein, 2010).

In addition to interoceptive awareness, internal body states can also
influence human emotion through the process of “embodiment”. This
term refers to the notion that knowledge is "embodied" or grounded in
bodily states and in the brain's modality-specific systems (Garcia and
Ibéaniez, 2016; Ibanez and Garcia, 2018; Niedenthal, 2007). As reported
by Rouby et al. (2016): “these theories suggest that perceiving and thinking
about emotion involve perceptual, somato-visceral, and motor re-experien-
cing of the relevant emotion in the self” (p. 76). Thus, individuals process
emotion-related information by reactivating neural states involved in
their own prior perceptual and affective experiences (Niedenthal,
2007). Some studies have tested such theories of emotion applied to
sadness. For instance, Duclos et al. (1989) tested whether multiple
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facial expressions could elicit specific emotions, covertly manipulated
with instructions from the experimenter. After forming each facial ex-
pression for six seconds, participants filled out a questionnaire to assess
their emotional state, with results finding significantly higher sadness
ratings compared to other emotion conditions. Consistent with this, as
well as Ekman and Friesen’s (1978) research on prototypical facial
expressions of emotion, more recent research has shown that both
hearing and reproducing vocalizations of emotions, including sadness,
results in congruent self-reported emotions and specific facial beha-
viors. For instance, Hawk et al. (2012) found that ‘lip corner depressor’
facial behaviour was significantly more likely to occur in the sadness
block, with additional research showing how motor execution, ob-
servation, and imagery of movements when expressing sadness can also
enhance the corresponding affective state (Shafir et al., 2015, 2013). In
other words, motor execution and imagery, as well as the observation of
whole-body dynamic expressions of sadness, increase the subjective
feeling of sadness in the observer (Shafir et al., 2013).

Furthermore, studies have also demonstrated how body posture
may impact upon emotional states. Adopting an upright seated posture
in the face of stress can maintain self-esteem and increase positive affect
(Nair, Sagar, Sollers, Consedine, & Broadbent, 2015; Wilkes et al.,
2017). In contrast, slumped individuals show increased negative mood
and use more words associated with sadness (Nair et al., 2015). These
findings are consistent with theories of embodied cognition, which
argue that muscular states influence, and are influenced by, emotional
responses. In line with this, some gait patterns have been associated
with sadness (e.g., reduced walking speed, arm swing, and vertical head
movements), supporting the notion that sadness is embodied in the way
people walk (Michalak et al., 2009a, 2009b). Nevertheless, theories of
embodied emotion have been subject to heavy criticism. For instance,
Carney et al. (2010) concluded that high-power nonverbal bodily dis-
plays produce characteristic neuroendocrine and behavioral changes
(i.e., increases in testosterone, decreases in cortisol, higher levels of
subjective self-confidence), a pattern which was the opposite of low-
power nonverbal displays. However, despite enormous public famil-
iarity with this publication, subsequent attempts to replicate the find-
ings have been unsuccessful (e.g. Ranehill et al., 2015).

1.5. The linguistic complexity of sadness

We now review the feelings allocated to the General Wellbeing ca-
tegory by the Human Affectome Taskforce, exploring the language
people use to convey sadness in particular. Specifically, we examined
whether, and if so, how different aspects of sadness have been ad-
dressed by neuroscientists. A total of 95 words relating to sadness were
identified by the linguistic task team, raising the question of whether
these are simply synonyms for sadness or whether these words refer to
distinct variants. As noted previously, sadness is typically considered
one of the six basic emotions recognizable from the face, facilitating the
receipt of emotional support from attentive others. The feelings asso-
ciated with the emotion of sadness (see Annex 1) vary considerably in
intensity, ranging from “low” and “dreary”, to more intense states such
as “distress” and those associated with sadness in its extreme form (e.g.
“miserable”, “grief”, “anguish”). These words also refer to feelings that
vary in duration, spanning brief emotional states (e.g. “displeased”) to
longer term mood states (e.g. “somber”, “dour”), including those that
may coincide with clinical depression (e.g. “melancholic”).

Based on findings from animal research, Jaak Panksepp made a
distinction between primary-, secondary-, and tertiary-process emo-
tions, which refer to primary-process action tendencies — the ‘ancestral
tools for living’ — that are then refined by learning (i.e., secondary-
process) and higher-order cognitions (i.e., tertiary-process) (Panksepp,
2010). In this hierarchy of emotional states, primary-process emotions
are capitalized to reflect fundamental or basic emotional states arising
from direct electrical or chemical stimulation of the brain. Some of the

identified words in our list (e.g. “dysphoric”, “distress”, “lonely”) may
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arise directly from primary-process emotions (e.g. SEEKING/desire
system, GRIEF/separation distress). For instance, dysphoria may arise
from reduced activity in the medial forebrain bundle (the SEEKING/
desire system), while loneliness and distress may arise from neural
circuitry extending from the dorsal periaqueductal gray (PAG) to
anterior cingulate (GRIEF/separation distress system). In recent papers
(Davis and Panksepp, 2011) Panksepp has even labelled the GRIEF/
separation distress system using the capitalized word, SADNESS,
highlighting the evolutionary foundations on which states commonly
labelled as ‘sadness’ and ‘depression’ may arise. According to Panksepp,
the primary emotional system of SADNESS is responsible for generating
separation distress, loneliness, and crying.

Other words in our list reflect tertiary-process emotions, such as
“displeasure”, “homesickness”, and “being unsatisfied”; all of which
involve higher psychological processes including thought and aware-
ness. According to Panksepp, psychologists and human neuroscientists
typically focus on higher-level emotional issues (tertiary-process emo-
tions) affected by cognitive attributions and appraisals. This is an
especially important consideration in regard to the longstanding debate
between basic emotion theorists and psychological constructionists, and
is especially relevant here given that Panksepp himself claimed that
“with regard to the construction of higher mental functions, [I am an] ul-
traconstructivist.” (Jaak Panksepp, 2015, p. 2).

Based on the above, we consider the neurobiological correlates of
sadness and its disorders, focusing on major depressive disorder in
particular as an expression of sadness in an extreme form. According to
Panksepp, clinical depression may involve the manifestation of changes
in other primary emotional systems including reduced action within the
brain’s PLAY and SEEKING networks, in addition to SADNESS. Specific
neural substrates for PLAY include the parafascicular complex and
posterior dorsomedial thalamic nuclei, while the SEEKING/desire
system is subserved by the medial forebrain bundle, traditionally de-
scribed as the “brain reward system”. Deep brain stimulation in humans
for clinical depression specifically targets the subcallosal cingulate
gyrus (SCG), including Brodmann area 25 (Choi et al., 2015; Hamani
et al., 2009). This region is considered to be the command centre of a
vast network of regions (Insel, 2010), including the hypothalamus and
brain stem (implicated in appetite, sleep and energy), amygdala and
insular (motivation and interoception), hippocampus (memory and
attention) and prefrontal cortex (thought, action, and the regulation of
emotion), all of which are affected in clinical depression.

Whilst sadness is often conceptualized along a continuum, we em-
phasize here that those feelings typically associated with clinical de-
pression, such as mental “anguish” and psychological “pain”, may often
be features of normal sadness. Take, for example, the loss of a valued
job or the ending of a passionate romantic relationship. The extent to
which “anguish” and “pain” are aspects of extreme normal sadness or
symptoms of a clinical disorder is typically dependent on context or the
circumstance within which these feelings arise. This is the argument
made by Allan Horwitz and Jerome Wakefield in ‘The Loss of Sadness’
(Horwitz and Wakefield, 2007). Since the release of the DSM-5 in 2013,
major depressive disorder now includes what used to be an important
exclusion to a diagnosis of major depression: bereavement. Proponents
for the elimination of the bereavement exclusion criterion emphasized
the need for patients to receive appropriate clinical attention, treatment
and strategies to prevent possible suicide (e.g. Ajdacic-Gross et al.,
2008; Stroebe et al., 2005). It remains very possible therefore, that the
neurobiological findings reported in studies of clinical depression, in-
cluding those described in our review (sections 3 and 4), overlap with
those for normal sadness. Indeed, Helen Mayberg and colleagues have
demonstrated exactly this (e.g. Helen S. Mayberg, 2009; Helen S.
Mayberg et al., 1999).

It is also interesting to observe the link between sadness and words
such as “anguish”, which refers to mental or physical pain. Intriguingly,
Naomi Eisenberger (Eisenberger, 2012) demonstrated that the neural
correlates of social pain - defined as the unpleasant experience
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associated with social disconnection resulting from social exclusion,
rejection, negative evaluation or loss — overlap with the neural corre-
lates associated with the affective component of physical pain. Key
regions include the dorsal anterior cingulate cortex (involved in social
motivation) and anterior insula (feelings and consciousness). Studies
have also demonstrated that the subgenual anterior cingulate cortex
(ACC) (including BA25) - a region now targeted in treatment resistant
depression using deep brain stimulation - is also activated during social
exclusion. Although, responses are higher in adolescents and decrease
with age, perhaps reflecting increased capacity for regulation of this
region by prefrontal circuitry, at least in non-depressed individuals
(Eisenberger, 2012; Gunther Moor et al., 2012). It is especially relevant
to emphasize here that psychological distress is associated with in-
creased risk of premature mortality in a dose-response relationship
regardless of clinical diagnosis (Russ et al., 2012), highlighting the
consequences of not learning to appropriately regulate ones emotions.

We would like to emphasize the utility of the word list identified in
our linguistic categorization task for sadness. The word list has fa-
cilitated our review of the literature, enabling different aspects of
sadness as an emotion, mood state (i.e., “depression”), and features of
psychiatric illness (“melancholic”) to be reviewed and described. It also
allowed us to consider potential interactions with other domains
identified by the linguistic categorization workgroup. While focusing on
all twelve topics presented in this special issue is beyond the scope of
the current section — this is the focus of the Human Affectome capstone
paper — we now turn our attention to examining the words related to
sadness and their interaction with three topics that have been addressed
extensively in the literature; fear, happiness, and anger.

When sadness is both intense and prolonged, impairment in the social
and occupational sphere may lead to disorders of sadness (e.g., MDD)
when other characteristic features of the disorder are also present. A
common clinical observation in depressed individuals is co-occurring
anxiety, present in as many as 60 % of individuals with depression
(Kessler et al., 2005). For instance, generalized anxiety disorder (GAD),
characterized by anxious “apprehension” as well as uncontrollable and
persistent “worry”, frequently presents alongside MDD. Anxiety, appre-
hension and worry all overlap with the words “anguish”, “distress”, and
“haunted”, highlighting important interactions with the “fear” topic area,
especially for when sadness is more intense or extreme.

The primary-process emotion of FEAR is another one of Panksepp’s
seven basic emotions from which anxiety, worry, difficulty making
decisions, rumination, feeling tense, and losing sleep may arise. The
neural substrates underpinning these feelings include the central and
lateral amygdala, medial hypothalamus, and dorsal PAG (Panksepp,
2011). Electrical stimulation of these regions elicits a variety of
symptoms including vigilance, startle, increased heart rate, as well as
decreased salivation and freezing behaviors (Panksepp et al., 2011).
According to theoretical models (e.g., Watson et al., 1995b, 1995a),
“distress” is a non-specific feeling that links feelings of “depression” and
“anxiety”, while depression is distinguished by feelings of “anhedonia”,
while “anxiety” is distinguished by heightened arousal. Neurobiological
models (e.g., Davidson, 1992; Heller, 1993), including approach-with-
drawal and valence-arousal, further highlight a role for left-right
asymmetry and rostral-caudal activation, findings largely derived from
research using scalp electroencephalography. Although Panksepp has
criticized such models as “experimental convenience” based on the
diverse languages of emotion (i.e., tertiary processes) (Panksepp,
2010), these models have nevertheless led to specific treatments such as
stimulation of the left dorsolateral prefrontal cortex of individuals with
major depressive disorder using TMS and tDCS (Boggio et al., 2008;
Pascual-Leone et al., 1996). While the role of the left prefrontal cortex
in positive emotion has been questioned, modern variants of approach-
withdrawal and valence-arousal models continue to be proposed (e.g.
Bud Craig’s the homeostatic sensorimotor model of emotion; Strigo and
Craig (2016)), highlighting a role for brain asymmetry in controlling
affective behavior and associated autonomic nervous system function.
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The relationship between sadness and happiness has also been the
subject of investigation, with important implications for our under-
standing of mental health and the treatment of emotion disorders.
Emotions have been defined using various conceptual frameworks, in-
cluding basic emotion theory in which sadness and happiness are
viewed as discrete individual emotions (Ekman et al., 1969; Panksepp,
1998, 1989), and dimensional models which conceptualize sadness and
happiness as lying on a single dimension of pleasantness (i.e., the va-
lence-arousal model) (Russell, 1980) or on independent dimensions
(i.e., positive affect and negative affect) that implicitly communicate
activation or arousal (Watson and Tellegen, 1985b). Further, basic af-
fective neuroscience research in animals has identified distinct primary-
process emotional systems subserving happiness (i.e., PLAY, involving
the ventral striatal dopamine system in particular) as well as sadness
(i.e., SADNESS) (Davis and Panksepp, 2011). While the SADNESS
system is considered to underpin feelings of separation distress and
loneliness, the PLAY system appears to give rise to laughter, humor, and
social joy. Although studies on human emotions have been character-
ized by contradictory reports and the observation of overlapping neural
correlates, it remains uncertain whether neuroimaging technology —
especially functional magnetic resonance imaging (fMRI) — is capable of
capturing basic emotion experience due to use of often weak emotional
stimuli and artificial recording environments leading to suppression of
emotional responses (Harmon-Jones et al., 2011), as well as the in-
volvement of secondary (i.e., learning) and tertiary-processes (i.e.,
emotion regulation). Nevertheless, it is important to appreciate the
major impacts human affective neuroscience has had on the develop-
ment of treatments in psychiatry such as TMS and tDCS of left dorso-
lateral prefrontal cortex (PFC) and deep brain stimulation (DBS) of
subgenual ACC in major depressive disorder.

The relationship between sadness and anger has also been subject to
considerable research. Based on Bud Craig’s (2011) research proposing
that the posterior insula encodes primary bodily feelings while the
anterior insula represents integrated feelings, Zhan et al. (2018, 2015)
tested the hypothesis that sadness could counteract anger as a homeo-
static mechanism. Their results showed that the posterior insula, su-
perior temporal gyrus, superior frontal gyrus, and medial prefrontal
cortex were more significantly activated during sadness induction, and
that the level of activation in these areas could negatively predict
subsequent feelings of subjective anger in a simulated provocation.
Psychological research exploring this relationship by studying children
facing a blocked goal, suggests that sadness may serve to shift attention
away from goals that cannot be attained (Tan and Smith, 2018).

In summary, our review of the linguistic framework above highlights
numerous interactions between sadness and other topics under review
for the Human Affectome Project. While we only touch on three topics
here (fear, happiness, and anger), these interactions are addressed in
further detail in the capstone paper. We now turn our attention towards
recent research on the emotion of sadness while considering its im-
plications with regards to the conflict between Basic Emotion Theory and
Psychological Constructionism. With this aim, the following sections
present an interdisciplinary review of findings coming from different
fields, including genetics, epigenetics, psychophysiology, affective neu-
roscience, cognitive neuropsychiatry, and cultural psychology.

2. Role of genetic and epigenetic factors in sadness

Sadness is a complex psychobiological state whose subjective ex-
perience relies on the activity of one or more brain networks. Measuring
the transient experience of sadness is difficult, thus, it should come as
no surprise that genetic studies have been unable to identify a “sadness
gene”. Instead, a more fruitful approach has been to investigate the
predisposition to feeling sad, which is likely to be associated with the
structure and function of the — to be reviewed — brain circuits whose
development and activity is largely under genetic control (Bishop and
Forster, 2013).
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2.1. The heritability of sadness

Two lines of research potentially offering important insights con-
cerning the genetics of sadness are: (1) negative emotionality (NE),
referring to the tendency to be quickly and easily aroused, and con-
ceptualized as the opposite of emotional stability (Ormel et al., 2012),
and (2) neuroticism, encompassing cognitive and behavioral tendencies
associated with the experience of negative emotions (e.g., pessimism,
withdrawal, and avoidance). Closely related to NE, neuroticism is also
strongly associated with the tendency to experience negative emotions
(e.g. sadness) (Stewart et al., 2005; Watson and Clark, 1992) and with a
number of internalizing psychopathologies (e.g. MDD, social anxiety
disorder, GAD, obsessive-compulsive disorder, and panic disorder)
(Barlow et al., 2014).

Neuroticism is also thought to underpin high levels of comorbidity
between internalizing disorders such as depression and anxiety, with
one study finding a correlation of r = 0.98 between trait neuroticism
and a measure of internalization (Griffith et al., 2010). Therefore, ra-
ther than a specific tendency to experience sadness, such evidence
suggests that a broader proclivity towards experiencing negative emo-
tions may be inherited. In support of this, sadness, fear, and anger have
been found to load onto a single NE factor (Clifford et al., 2015), with
estimates of the precise heritability of this NE factor ranging from 40
%-70 % (Mullineaux et al., 2009; Singh and Waldman, 2010; Tackett
etal., 2011). In addition, when employing the NEO PI-R which includes
separate subscales for anxiety, hostility, and depression, heritability
estimates for neuroticism range from 41 %-50 % (Jang et al., 1996;
Lake et al., 2000). Taken together, these findings suggest that while
there may be a genetic component to sadness, it may be non-specific,
related instead to a tendency to experience negative emotions in gen-
eral. Thus, in cases of psychopathology, it is likely that environmental
factors are crucial for shaping whether sadness becomes the dominant
negative emotion experienced compared to other emotions such as fear
or anger. For example, an environment characterized by learned help-
lessness is known to predispose individuals to prolonged and intense
sadness in the form of depressive disorders (Maier and Seligman, 2016).

Nevertheless, numerous attempts have been made to identify spe-
cific genes that may underlie the propensity to experience sadness,
including examination of the Brain-Derived Neurotrophic Factor
(BDNF); a growth factor that regulates synaptic plasticity and neuro-
genesis and whose segregation is encoded by the BDNF gene (Leal et al.,
2014; Lu et al., 2014; Poo, 2001). For example, a number of studies
have investigated a specific single nucleotide polymorphism (SNP) at
codon 66 of the BDNF gene and its relationship with NE. A point mu-
tation at this coding sequence results in a valine-to-methionine sub-
stitution, with the Val allele associated with increased degradation of
BDNF mRNA, reduced transport of mRNA to dendrites, and reduced
secretion of BDNF (Baj et al., 2013). Hayden et al. (2010) found that
children with at least one Met allele exhibited higher levels of NE (i.e.,
greater emotional liability and proclivity towards experiencing negative
emotions) when a parent had a history of depression or when re-
lationship discord was reported by a parent. In contrast, when parental
depression and relationship discord was absent, children with at least
one Met allele reported particularly low levels of NE (i.e., greater
emotional stability and decreased proclivity towards experiencing ne-
gative emotions). Although perplexing at first, these results suggest that
the Met allele may increase child environmental sensitivity to both
positive and negative familial influences, impacting in turn on their
tendency to experience emotions in daily life. In other words, the
Met allele of the BDNF gene may predispose individuals to display in-
creased sadness and negative emotionality generally under environ-
mental conditions that foster and elicit such feelings.

In addition, Sen et al. (2003) found that the BDNF genotype was
particularly associated with the depression facet of neuroticism. How-
ever, and similar to findings in NE, inconsistent findings have been
reported. Frustaci et al. (2008) found some evidence that the Met allele
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is associated with lower levels of neuroticism in a dose-dependent
manner, whereas Willis-Owen et al. (2005) observed no significant
association between BDNF genotype and neuroticism. Such incon-
sistency could be attributable to interactions between BDNF and other
genes associated with neuroticism (i.e., serotonin transporter SLC6A4;
see Outhred and Kemp, 2012; and Outhred et al., 2012), as well as
gene-environment interactions and epigenetic mechanisms affecting
gene transcription (see below and Booij et al. (2013)). Equally, it is also
important to acknowledge that BDNF is known to be involved in many
other cognitive, emotional, and pathophysiological processes than
those referenced above (Baker-Andresen et al., 2013; Makhathini et al.,
2017; Ortiz et al., 2018; Xu et al., 2018).

Other studies have focused on the serotonin transporter, a protein
responsible for the reuptake of serotonin from the synaptic cleft which
is expressed in a number of brain regions implicated in emotion reg-
ulation (Booij et al., 2015). Research on the serotonin transporter has
focused predominantly on a particular polymorphism in the promoter
region (5-HTTLPR), the binding site of transcription factors. Two po-
tential alleles at this SNP have been commonly studied; a Short allele
(S) and a Long allele (L), with the short allele associated with decreased
transcriptional activity and decreased protein production as a result
(Lesch et al., 1996). Interestingly, Wang et al. (2012) found that carriers
of at least one 5-HTTLPR S allele or one BDNF Met allele exhibited
stronger amygdala activation to sad stimuli, with BDNF carriers also
exhibiting decreased activation in the dorsolateral and dorsomedial
prefrontal cortices in response to attentional targets. In addition, car-
riers of both the S and Met allele showed increased activation to sad
stimuli in the subgenual and posterior cingulate, suggesting that 5-
HTTLPR S and BDNF Met allele may increase reactivity to sadness in-
dividually or in combination. However, findings are inconsistent,
raising the possibility that other genes and environmental factors may
further interact with the BDNF genotype to determine one’s predis-
position towards sadness and other negative emotions. For instance,
Terracciano et al. (2010) found that 5-HTTLPR carriers scored lower on
a measure of neuroticism when the BDNF Val variant was present, but
scored higher in the presence of the BDNF Met variant. In contrast,
another study found that LL carriers of the 5-HTTLPR gene with at least
one Met allele display decreased cognitive reactivity to a sad mood
provocation in healthy adults. Although longitudinal data are needed,
this latter finding suggests that the LL phenotype may be associated
with an enhanced tendency to think more negatively when in a sad
mood, with the BDNF Met variant serving to protect LL homozygotes
from dysfunctional thinking after a sad mood provocation (Wells et al.,
2010). Further, another study suggests that both 5-HTTLPR and BDNF
Val gene variants might mediate the relationship between life stress and
rumination (Clasen et al., 2011), which is known to be a risk factor for
the development of sadness-related disorders. Taken together, these
studies suggest that further research on how multiple candidate genes
interact is necessary before a more complete understanding of the ge-
netic basis of sadness and associated traits can be achieved.

The oxytocin receptor (OXTR) gene is another candidate which
might contribute to sadness. The oxytocin receptor is an endogenous
receptor for oxytocin, a neurohormone released during positive social
interactions which is thought to be important for social bonding (Bartz
et al., 2011). One research group found that a specific combination of
alleles at 3 SNPs in the OXTR gene (rs53576, rs2254298 m, rs2228485)
was associated with increased negative affect and emotional loneliness
(Lucht et al., 2009). Further, Montag et al. (2011) found a significant
interaction between the OXTR and 5-HTTLPR genotypes, with in-
dividuals homozygous for the L allele at the serotonin transporter
promoter and the T variant at the rs2268498 polymorphism at the
OXTR gene displaying lower sadness scores and lower NE more broadly.
This suggests that variation in the OXTR genotype, like the SLC6A4 and
BDNF genes, may also be associated with NE.

It is also possible that the Catechol-O-methyltransferase (COMT)
and Monoamine oxidase A (MAOA) genes may also drive neuroticism,
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as both code for proteins involved in the degradation of neuro-
transmitters relevant to the biological systems thought to relate to
neuroticism (i.e., norepinephrine, dopamine, and serotonin). However,
only relatively weak associations have been found between poly-
morphic variation in the COMT and MAOA genes and neuroticism (Eley
et al., 2003; Kotyuk et al., 2015; Samochowiec et al., 2004; Stein et al.,
2005; Wray et al., 2008). In addition, the G-703T polymorphism of the
gene that codes for the rate-limiting enzyme for the synthesis of ser-
otonin - tryptophan hydroxylase 2 (TPH2) - (Ottenhof et al., 2018), the
serotonin 1A receptor HTRIA gene variant C-1019 T (Strobel et al.,
2003), the Dopamine Receptor D4 gene (DRD4) (Ellis et al., 2011), and
genes regulating gamma-aminobutyric acid (GABA) (Arias et al., 2012)
have also been associated with traits linked to sadness. However, given
the limited number of studies focusing specifically on neuroticism,
negative emotionality, and/or sadness, further discussion goes beyond
the scope of this review.

Finally, a number of genome wide association studies have also
been conducted (Amin et al., 2012; De Moor et al., 2012, 2015; Okbay
et al., 2016; Smith et al., 2016), and even though the results of these
studies have so far been inconclusive, a number of genes warrant fur-
ther attention. For example, the MAGII gene and other genes involved
in glutamate and corticotrophin-releasing hormone receptor activity
(De Moor et al., 2015; Smith et al., 2016). These genes require further
study before their association with negative emotions, and sadness in
particular, can be better understood. However, it should again be ac-
knowledged that such genes are also associated with many other
emotional, cognitive, physiological, and brain processes; highlighting
the complexity of potential associations with the emotion of sadness.
Lastly, genome-wide association studies investigating disorders char-
acterized by persistent feelings of sadness, such as depression, also in-
form our understanding. For example, in a recent genome-wide asso-
ciation meta-analysis of 135,458 individuals with MDD and 344,901
controls, 44 risk variants were associated with major depression. This
included genes coding for the dopamine D2 receptor as well as neuronal
growth regulator 1 (NEGR1), a protein implicated in synaptic plasticity
in the cortex, hypothalamus, and hippocampus (Wray et al., 2018).
However, it is important to distinguish between mechanisms which
might underlie a prolonged state of low mood compared to normal
variation in sadness.

2.2. Epigenetics of sadness

Although the genetic code may be immutable, the rate at which
gene products are formed can be regulated by environmental factors
through a series of processes referred to as epigenetics (Szyf, 2009).
Epigenetics have been defined as the study of inheritable changes in
gene expression that do not involve alterations in the DNA sequence
(Meaney and Ferguson-Smith, 2010). The most commonly studied
epigenetic mechanism is DNA methylation, a process which leads to an
alteration of gene expression by changing the 3-D structure of chro-
matin and thus inhibiting the binding of transcription factors; the
proteins responsible for reading the genetic code. This process can alter
gene expression in a way that is stable, but also reversible, allowing for
long-term programming and re-programming of gene expression
(Bestor, 1998; Bird, 2002).

In addition to findings that individual genotypic variation is linked
to the experience of sadness as well as negative emotionality broadly, it
might also be expected that DNA methylation at these same genes could
be related to such constructs. An increasing number of studies have
examined this process in relation to SCL6A4 and BDNF genes (Januar
et al., 2015). For instance, variation in SLC6A4 methylation has been
associated with variation in depressive symptoms as measured by the
Beck Depression Inventory (BDI) (Zhao et al., 2013). Specifically, a 10
% increase in the mean difference in SLC6A4 methylation levels in
monozygotic twin pairs was associated with a 4.4 point increase in the
difference in BDI score. A number of other studies have found
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statistically significant positive associations or trends between periph-
eral SLC6A4 promoter methylation and depressive symptoms (e.g., van
der Knaap et al.,, 2015). However, specific links to sadness are un-
known.

BDNF methylation also appears to be associated with depressive
symptoms, with peripheral BDNF methylation profiles capable of dis-
tinguishing individuals with major depression from healthy controls
(Fuchikami et al., 2011). Similarly, in a sample of older women,
Chagnon et al. (2015) found higher levels of BDNF methylation in de-
pressed/anxious individuals compared to controls, but only in those
with the AA genotype rs53576. Together, these studies suggest that the
variation in both SLC6A4 and BDNF methylation might account for
variation in depressive symptoms, including sadness.

Further evidence for epigenetic regulation of sadness comes from
epigenetic imaging studies where participants undergo an fMRI scan
while completing an emotion processing task and DNA methylation is
assessed. For instance, differences in SLC6A4 methylation have been
linked to differences in frontal-limbic responses to sad faces, as well as
to fearful faces, in healthy non-depressed monozygotic twins
(Ismaylova et al., 2018). In contrast, Ismaylova et al. (2017) did not
find any association between SLC6A4 methylation and sad stimuli or
other types of emotional stimuli in a sample of healthy adults. Collec-
tively, such evidence suggests that DNA methylation in specific genes is
likely associated with depressive symptomatology, including sadness,
as well as the neural processes that likely underlie it. However, further
research is needed in order to fully elucidate how these interactions
might work. Specifically, large-scale genome-wide (epi)genetic ap-
proaches are needed to confirm proposed candidate (epi)genetic var-
iants and to identify which other (epi)genetic variants may be involved
in sadness and related depressive symptomatology.

3. Physiology of sadness and its disorders

In this section, we review physiological responses to sadness and its
associated disorders based on data collected from numerous techniques,
including facial electromyogram, electrodermal activity, cardiac func-
tion, respiration, and electroencephalogram. We will also examine
whether physiological responses collected from these techniques are
able to distinguish between different categories of emotion.

3.1. Facial electromyogram

Studies using electromyogram (EMG) show that imagining negative
emotional events are associated with increased activity in the corru-
gator supercilii (a small and pyramidal muscle located in the medial
end of the eyebrow known as the “frowning muscle”), whereas ima-
gined positive emotional events are associated with increased zygo-
matic major activity (Lundqvist, 1995). Increased EMG activity at the
corrugator region has also been observed while individuals are acting
out expressions of sadness (Hu and Wan, 2003). In addition, studies
reveal that when people are exposed to emotional facial expressions,
they spontaneously react with distinct facial EMG reactions in emotion-
relevant facial muscles. Specifically, sad faces evoke significantly larger
reactions from the corrugator region (Hess and Blairy, 2001; Lars-Olov,
1995) and lower activity of the orbicularis oculi muscle (Hess and
Blairy, 2001). However, increased corrugator supercilii activity has also
been observed when viewing fearful and angry faces (Lars-Olov, 1995;
Lundqvist, 1995) or portraying such emotional expressions (Hu and
Wan, 2003). However, angry faces also elicit increased activity in the
depressor supercilii (Lundqvist, 1995) and negative emotions, including
disgust, seem to be characterized by additional EMG reactions (e.g.,
increased activity in the levator labii region; Hu and Wan, 2003;
Lundqvist, 1995).

Changes in facial EMG reactions to sadness have also been observed
in numerous clinical groups. For example, individuals suffering from
MDD have been found to show less EMG modulation during affective
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imagery in the horizontal corrugator and zygomatic muscles (Greden
et al., 1986), and less facial reactivity in response to expressive facial
stimuli compared to their non-depressed counterparts (Wexler et al.,
1994). Furthermore, even when self-reported emotion does not differ
across groups, reduced facial muscle activity has been observed in de-
pressed versus non-depressed individuals (Gehricke and Shapiro, 2000).
Similarly, individuals with Parkinson’s Disease show weaker cor-
rugator and medial frontalis reactions in response to sad faces, and
almost no reactions from the orbicularis and the zygomaticus in re-
sponse to happy faces (Livingstone et al., 2016). Such facial reactions
could be linked to hypomimia, a term used to capture the decreased
facial expressivity commonly observed in Parkinson’s (Jankovic, 2008).
Finally, boys with disruptive behaviour disorders have also been re-
ported to display a smaller increase in corrugator activity during sad-
ness-inducing film clips compared to controls (De Wied et al., 2009).

3.2. Electroencephalography

Electroencephalogram (EEG) has also been employed to measure
physiological responses to sadness (Ibanez et al., 2012), with evidence
suggesting specific temporal profiles for basic emotions (Costa et al.,
2014). Balconi and Pozzoli (2003) found that while all emotional faces
elicited a negative deflection that peaks around 230 ms (N230), event-
related potential (ERP) responses varied according to the affective va-
lence and arousal properties of the stimulus. Very similar potentials
were observed for fear, anger, and surprise, but a more positive peak
characterized happiness, low-arousal expressions (i.e., sadness), and
neutral stimuli. Batty and Taylor (2003) also observed global emotion
effects from 90 ms (P1) and amplitude and latency differences across
emotion categories from around 140 ms (N170). However, compared to
both positive and neutral emotional facial expressions, N170 s were
longer for negative emotional facial expressions such as sadness.
Overall, the authors argued that slower N170 latencies may reflect
activation of a sub-cortical pathway for negative emotions, “sending
information rapidly to different levels of the central pathway” (p. 617).
Similar findings have also been reported by Hot and Sequeira (2013),
and Costa et al. (2014) found further evidence to suggest that sadness
triggers an ERP response “with one long sequence of contiguous time seg-
ments” (p. 4), for which “the putative neural generators for this response
are thought to be located in occipitotemporal visual areas, the left inferior
parietal lobe, left insula, right paracentral lobule, left supplementary motor
area and right dorsolateral prefrontal cortex” (p. 7).

Preliminary evidence also suggests that ERP responses to sadness
may differ according to gender. When asked to judge the emotion
shown on a face, Luo et al. (2015) found significantly increased P2
amplitudes in response to sad than neutral facial expressions in women
compared to men. This finding might suggest an improved ability to
recognize and share the emotions of others in women. In contrast, when
asked to evaluate their own affective emotions in response to facial
expressions of emotion, only men exhibited larger P2 amplitudes to
sadness, suggesting the possibility of an earlier distinction between the
processing of self-versus others’ emotions in men.

Cortical responses to sadness may also be affected by clinical dis-
orders. Deveney and Deldin (2004) found that non-depressed in-
dividuals displayed a marked reduction in slow wave amplitude to sad
facial stimuli compared to those with depression. In contrast, in-
dividuals with MDD exhibited equivalent slow wave amplitudes for
both happy and sad facial stimuli. In addition, MDD has also been as-
sociated with task-relevant increased attention toward negative in-
formation and reduced attention toward positive information. In a
sample of young adults with risk factors for depression (i.e., past de-
pression, current dysphoria), Bistricky et al. (2014) found that previous
depression was associated with greater P3 amplitudes following sad
targets, and that individuals with dysphoria inhibited responses to sad
distractors in an oddball task less effectively. Individuals with recurrent
MDD have also been reported to exhibit both lower N170 amplitudes
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and longer latencies when identifying happy and neutral faces com-
pared to controls, but higher N170 amplitudes and shorter latencies
when identifying sad faces (Chen et al., 2014). Furthermore, a sig-
nificant negative relationship has been observed between the severity
of reported depression and N170 amplitudes. As summarized by Chen
et al. (2014), such evidence suggests “that having recurrent depressive
episodes are likely to aggravate the abnormal processing of emotional facial
expressions in patients with depression” (p. 1). In addition, it seems fea-
sible to suggest that the N170 amplitude for sad face identification
could be viewed as a potential biomarker for recurrent MDD.

While relatively less left frontal and right parietal activity has been
reported in depressive disorders (Allen et al., 2004), there have been
inconsistent findings pointing to the importance of mediating variables
such as gender, comorbidity with anxiety disorders, and methodolo-
gical differences (see Bruder et al., 2017 for a review). For instance,
depressed patients with a comorbid anxiety disorder (i.e., social phobia
or panic disorder) were found to differ from those with a depressive
disorder alone in their frontal and parietal alpha asymmetry (Bruder
et al.,, 1997). Findings in depression have also been more consistent
when EEG is measured during emotional tasks (Stewart et al., 2014),
such that individuals with current and past depression display less left
frontal activity than healthy controls across several emotions (anger,
fear and sadness). Consistent with this finding, Zotev et al. (2016)
combined real-time fMRI neurofeedback training (rtfMRI-nf) with si-
multaneous and passive EEG recordings, to investigate the effects
neurofeedback on frontal EEG alpha asymmetry in patients with de-
pression. Average individual changes in frontal EEG asymmetry during
the rtfMRI-nf task showed a significant positive correlation with de-
pression severity. Moreover, temporal correlations between frontal EEG
asymmetry and amygdala activity enhanced during the rtfMRI-nf task.
These findings demonstrate an important link between amygdala ac-
tivity and frontal EEG asymmetry during emotion regulation (Zotev
et al., 2016).

In addition, behavioral and ERP studies have provided evidence for
right brain involvement in emotional processing and its dysfunction in
MDD. For instance, a study using emotional dichotic listening tasks
(Bruder et al., 2015) found that individuals with a lifetime diagnosis of
MDD had a smaller right hemisphere advantage than healthy controls.
Notably, the left ear (right hemisphere) advantage for emotional re-
cognition in individuals without a lifetime diagnosis of MDD was pre-
sent for angry, sad, and happy emotions, but it was largest for the ne-
gative emotions and not present at all for neutral items. Individuals
having a lifetime diagnosis of MDD had markedly smaller left ear ad-
vantage for sad items compared to those without MDD. Consistent with
this finding, several studies using EEG measures of hemispheric asym-
metry have reported evidence of abnormal brain laterality in patients
with depressive disorders. Specifically, it has been shown (Deldin et al.,
2000; Kayser et al., 2000) reduced right-lateralized responsivity to
emotional stimuli in parietotemporal cortex in depressed patients. A
study (Kayser et al., 2000) investigating ERPs during passive viewing of
negative pictures in patients with depression and healthy controls, also
showed that controls exhibited greater amplitude of late positive P3
potential to negative stimuli, and this enhancement was more evident
over right parietal regions. Patients with depression failed to show this
increased late P3 over either hemisphere.

Additional evidence supporting the hypothesis of right par-
ietotemporal hypoactivation in MDD has been provided by multi-
generational studies. Kayser et al. (2017, 2000) found that distinct ERPs
reflecting different stages in processing of emotional stimuli are af-
fected by risk of depression. Enhanced activation of right occipito-
temporal cortex to negative emotional stimuli, peaking at around 200
ms after stimulus onset (N2), is less evident in high risk than low risk
individuals and this right-lateralized reduction was even stronger in
individuals with lifetime history of MDD. Furthermore, there was a
bilateral emotion-related activation of posterior cingulate cortex,
peaking around 400 ms (P3 source), which was weaker in high-risk
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individuals and those with lifetime MDD. During a subsequent proces-
sing stage (around 600 ms), there was also a bilateral reduction of
emotion-related activation in inferior temporal cortex and anterior in-
sula in high-risk individuals. Consistent with this evidence, magne-
toencephalographic responses in right parietotemporal cortex related to
emotional arousal were markedly reduced in depressed patients. This
reduction w most evident in depressed patients with at least one parent
with MDD (Moratti et al., 2015). Overall, the above findings are con-
sistent with the hypothesis of right parietotemporal hypoactivation in
MDD patients and individuals at risk of depression, which is related to
difficulty activating attention-related brain regions during processing of
emotionally arousing stimuli (Kayser et al., 2017, 2000; Moratti et al.,
2015).

3.3. Autonomic responses

Regarding autonomic nervous activity, different techniques have
been employed to elicit and investigate sadness, with mixed outcomes
across studies depending on the mood induction methodology em-
ployed. Biographical and personalized recall of sadness has been shown
to result in increased heart rate (HR), along with increased (Ekman
et al., 1983; Rainville et al., 2006; Rochman et al., 2008) or unchanged
(Marci et al., 2007) skin conductance level (SCL), increased systolic and
diastolic blood pressures (Neumann and Waldstein, 2001; Prkachin
et al., 1999), unchanged or reduced finger temperature (Prkachin et al.,
1999; Rochman et al., 2008), and increased respiration and variability
in respiration period (Rainville et al., 2006). The effect of sadness over
heart rate variability (HRV) is more equivocal (Marci et al., 2007;
Rainville et al., 2006; Rochman et al., 2008), with different outcomes
between crying-related and non-crying sadness (Gross et al., 1994;
Rottenberg et al., 2003).

Video-clips to induce sadness similarly result in increased SCL
(Vianna et al., 2006), respiration rate (Kunzmann and Gruhn, 2005;
Rottenberg et al., 2005), or increased/unchanged HR (Kunzmann and
Gruhn, 2005; Vianna et al., 2006), with increased blood pressure
(Averill, 1969; Kreibig et al., 2007) and decreased finger pulse ampli-
tude and temperature also observed (Kreibig et al., 2007; Kunzmann
and Gruhn, 2005). However, such physiological changes differ across
genders (Fernandez et al., 2012), with additional evidence suggesting
that sadness reactivity may increase with age (Seider et al., 2011) even
though such changes are often unaccompanied by parallel increases in
expressive behaviour (Kunzmann and Gruhn, 2005).

Sadness elicited through the use of standardized imagery also ap-
pears to be related with decreased or small increases in HR (Gehricke
and Fridlund, 2002), unchanged SCL (Gehricke and Fridlund, 2002;
Witvliet and Vrana, 1995), as well as decreased respiration rate, ven-
tilation, and oxygen consumption (Van Diest et al., 2001). In addition,
unchanged HR and decreased SCL in response to sadness has been ob-
served during an emotion self-generation task (Hess et al., 1992). Fi-
nally, sadness induced by music is reported to be characterized by de-
creased HR (Etzel et al., 2006) and decreased (Krumhansl, 1997) or
unchanged (Khalfa et al., 2008) respiration rate. Picture viewing for
sadness induction has been reported to lead to increased respiration
rate, as well as both decreased finger temperature and SCL (Collet et al.,
1997).

Some autonomic responses appear to be specific to the experience of
sadness. For instance, systolic and diastolic blood pressure during
sadness was found to be greater than during other negative emotions
(i.e., anger and fear) (Prkachin et al., 1999). Increased SCL is higher in
sadness compared to anger, fear, and disgust (Ekman et al., 1983).
Decreased HRV has been reported in sadness, but no changes have been
observed in anger (Rainville et al., 2006). Respiration period and
variability in respiration period are increased in sadness, while they
decrease in fear and anger (Rainville et al., 2006). In addition, a more
recent study (Kreibig et al., 2007) assessing responses to fear- and
sadness-inducing films showed that HR accelerated in fear and
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decelerated in sadness, and that diastolic blood pressure was elevated in
fear and did not deviate from baseline in sadness. However, other re-
ported autonomic changes during sadness are similar to other negative
emotions. Specifically, increased HR in sadness may be similar to fear
and anger (Ekman et al., 1983), whereas reduced finger temperature
seems to be characteristic of both sadness and fear (Krumhansl, 1997).

3.4. Summary of the evidence

The evidence presented above suggests that physiological responses
to sadness may vary depending on the method employed to elicit sad-
ness. However, variable findings may also reflect the observation that
researchers often consider sadness as a homogeneous emotion, rather
than related emotions and features (e.g., dejection, depression, personal
failure). For example, Shirai and Suzuki (2017) investigated physiolo-
gical responses to sadness using an imagery task across two conditions:
the loss of someone and failure to achieve a goal. Even though SCL
increased during the imagery task in both conditions, restoration to
baseline SCL took longer in the loss condition. Furthermore, tear ratings
correlated with blood pressure ratings in the loss condition, while
sadness intensity correlated with blood pressure ratings in the failure
condition. Similarly, Davydov et al. (2011) found evidence for different
physiological responses depending on the affective content of films that
led to sadness. Specifically, they found increases in HR and SCL when
film content was related to avoidance, but decreases when related to
attachment/tenderness.

In summary, autonomic nervous system activity associated with
sadness appears to be characterized by a “heterogeneous pattern of
sympathetic-parasympathetic coactivation” (Kreibig, 2010, p. 404) that
can be captured through two broad classes of physiological activity: (1)
an activating sadness response characterized by increased cardiovas-
cular sympathetic control and changed respiratory activity, and (2) a
deactivating sadness response characterized predominantly by sympa-
thetic withdrawal. However, few studies have considered mediating
variables and many have not examined response patterns according to
cry-status (see Kreibig, 2010, for a full review).

4. Neuroimaging of sadness and its disorders

Here we review findings from neuroimaging studies of sadness and
its disorders. We focus on MDD as an exemplar of extreme sadness for at
least six reasons. First, Jaak Panksepp’s work emphasizes the primary
neurobiological emotional system of SADNESS as the neural source
from which states such as sadness and depression both arise (Panksepp,
1982a). Second, according to the depressive continuum hypothesis,
chronic sadness may be considered an intermediate state between
wellbeing and MDD (Tebeka et al., 2018), and a marker of psychiatric
vulnerability (Mouchet-Mages and Baylé, 2008). Third, research has
shown that ‘sadness rumination’ — a maladaptive affect regulation
strategy that involves repetitive thinking about sadness — predicts de-
pressed mood even in a non-clinical sample (Peled and Moretti, 2010),
highlighting a specific link between the transient experience of sadness
and depressed mood. Fourth, the work of Jerome Wakefield (Horwitz
and Wakefield, 2007) suggests that many individuals meeting DSM
criteria for MDD present with uncomplicated depression, an intense
extreme version of sadness. Fifth, the pioneering work of Helen May-
berg (Mayberg et al., 1999) demonstrated considerable overlap in
patterns of activity in healthy sadness and MDD, involving limbic me-
tabolic increases and neocortical decreases. Finally, the ground-
breaking work of Richard Davidson (summarised in: Begley and
Davidson, 2012) and others (Allen and Reznik, 2015) emphasize a role
for reduced left relative to right in sadness, leading to transcranial
stimulation of left dorsolateral prefrontal cortex as an antidepressant
target (Fitzgerald and Daskalakis, 2012). It is important to emphasise
however that MDD is a heterogeneous condition (Quinn et al., 2012)
that requires one of two core symptoms (i.e., depressed mood or loss of
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interest) and the presence of five or more symptoms relating to eating,
sleeping, and cognition. There are multiple potential combinations of
clinical features that do not necessarily represent distinct biological
subtypes (but see, Drysdale et al., 2016; Maglanoc et al., 2019;
Williams, 2016).

4.1. Normal sadness

In a recent meta-analysis, Wager et al. (2015) sought to account for
the heterogeneity of reported findings, both in terms of study popula-
tion (e.g., age, sex, ethnicity) and methodology (e.g., visual, auditory,
imagery, and memory recall) — and formulated highly generalizable
brain-emotion associations. Using novel statistical learning techniques
that probe for provisional relationships (i.e., machine learning), unique
and prototypical patterns of activity (and connectivity) across multiple
brain systems were revealed for five basic emotions — sadness, fear,
anger, disgust, and happiness. While all basic emotions were char-
acterized by involvement of domain-general brain networks, including
the salience, default mode, frontoparietal control, and visceromotor
networks, sadness was uniquely represented by functional patterns that
prioritized interoceptive and homeostatic information processing (see
Fig. 2 & Table 2).

Sadness involves pronounced and preferential recruitment of cin-
gulate, insular, and somatosensory nodes of the Salience network
(Wager et al., 2015), which among other things, serve as target regions
for interoceptive pathways conveying information on the internal
milieu and somatovisceral sensations (Barrett and Satpute, 2013; Seeley
et al.,, 2007). As the salience network, and its cingulate and insular
nodes in particular, can orient the brain’s processing capacity and
network configuration towards the most motivationally relevant in-
formation (Bressler and Menon, 2010; Menon, 2011; Seeley et al.,
2007), a general bias for internally-directed neurocognitive processes
seems to arise (Wager et al., 2015). On a network-level, this is best
illustrated in recruitment of default mode network nodes (i.e.,
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ventromedial prefrontal cortex, hippocampus) that mainly serve self-
related sociocognitive processes (internal reflection, autobiographical
memory, emotional inferences/awareness) (Andrews-Hanna, 2012),
which further amplifies the internal focus during sadness (Wager et al.,
2015). Second, and perhaps more pertinent, sadness also seems to in-
volve largely isolated brain networks, with reduced connectivity be-
tween major systems (Wager et al., 2015). Specifically, sadness includes
dramatically reduced co-activations within the cortex, between cortical
and subcortical as well as cerebellar systems, while co-activations
within the cerebellar/brainstem systems were maintained, a finding
that was distinct from other emotions (Wager et al., 2015). This pattern
may reflect reduction of cortical control over evolutionarily ancient
hindbrain systems mediating visceroaffective responding and learning,
resulting in highly localized, inflexible, and context-ignorant affective
processing (Grau, 2014; Roy et al., 2014; Wager et al., 2015).

This may explain why psychopathologies involving chronic feelings
of sadness, including MDD, often coincide with impaired ability to
describe emotional experiences in a fine-grained, contextualized
manner (Demiralp et al., 2012; Wager et al., 2015). It may also partly
clarify therapeutic effects (e.g., reduced sadness) associated with sti-
mulation of subgenual anterior cingulate in chronic depression
(Mayberg et al., 2005), as this region comprises the densest projections
from the cortex to the cerebellum/brainstem territory (Price, 1999;
Vogt, 2016; Wager et al., 2015). The profound isolation of cerebellar/
brainstem systems in sadness may also help to explain why sadness is
often accompanied by somatomotor inactivity and de-energization
(Nummenmaa et al., 2014), as these hindbrain systems govern adaptive
somatomotor function through interactions with cortical and limbic
systems (Buckner, 2013).

Other studies with substantially smaller samples, heterogeneous
paradigms and imaging methodology (see Table 3) are similarly char-
acterised by functional patterns across distributed brain systems that
collectively prioritize interoceptive information processing (Harrison
et al., 2008). For instance, sad mood induction via movies and mental
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Fig. 2. Neurocircuitry of basic emotions. (A) Lateral and medial views of the unique and prototypical representation of sadness in comparison to other basic emotions
across multiple brain regions, including those associated to Salience (e.g., anterior cingulate and insula), Default Mode (e.g., medial prefrontal and hippocampus),
Frontoparietal (e.g., lateral prefrontal and dorsal anterior cingulate), and Visceromotor (e.g., cerebellum/brainstem) systems. (B) Connectional profiles associated to
each emotion category in anatomical space of the brain. The nodes (circles) are regions or networks, color-coded by anatomical system. The edges (lines) reflect co-
activation between pairs of regions or networks. The size of each circle reflects its betweenness-centrality, a measure of how strongly it connects disparate networks.
One location is depicted for each cortical network for visualization purposes, though the networks were distributed across regions (see A). Compared to other
emotions, sadness involves largely isolated brain networks, with large-scale connectivity among major systems essentially lacking. Specifically, sadness includes
dramatically reduced connectivity within the cortex, and between cortical and subcortical systems, while connectivity within cerebellar/brainstem systems seems
rather exaggerated. These network functional patterns seemingly link sadness to a neurocognitive profile inclined/biased towards interoceptive and homeostatic
information processing. Reprinted with permission from PLoS Publishing: PLoS Computational Biology (Wager et al., 2015).
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Table 2
Meta-analysis derived brain network features specific to sadness.
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Network Brain Regions Included Network Configuration

Neurocognitive Effect

Salience Anterior Cingulate Cortex

sensations.
Anterior Insular Cortex
Somatosensory Cortices
Ventromedial Prefrontal
Cortex

Default Mode

Preferential recruitment of Salience network nodes that serve as interoceptive
pathways conveying information on the internal milieu and somatovisceral

Salience network-mediated recruitment of Default Mode network nodes that
mainly serve self-related sociocognitive processes (internal reflection,

General bias for internally-directed
neurocognitive processes.

Further amplifies the internal focus

autobiographical memory, emotional inferences/awareness)

Hippocampus
Medial Temporal Lobe

Frontoparietal = Lateral Prefrontal Cortex Diminished recruitment of frontoparietal control system governing executive
control and exogenously-cued information processing.
Anterior Cingulate Cortex
Visceromotor Cerebellum Exaggerated connectivity between cerebellar/brainstem nodes of the visceromotor
system, along with decoupling of these nodes from cortical regulatory systems.
Brainstem

Suggestive of decreased goal-directed
attention towards the external environment.

Highly localized, inflexible, and context-
ignorant visceroaffective processing.

imagery in healthy participants impacts salience and default mode
function, with particularly strong effects on key network nodes im-
plicated in interoceptive awareness (Harrison et al., 2008; Saarimaki
et al., 2016). High levels of self-reported sadness in healthy volunteers
also predict diminished recruitment of frontoparietal brain networks
supporting executive functions and exogenously-cued information
processing, ostensibly suggesting decreased goal-directed attention to-
wards the external environment (Petrican et al., 2015). This pattern is
even more pronounced in healthy volunteers with subclinical levels of
depression, which lends further support to the apparent neurocognitive
inclination/bias towards the internal environment, as a function of in-
creasing sadness (Petrican et al., 2015).

4.2. Clinical depression as an exemplar of a disorder of sadness

We now describe neuroimaging findings reported for clinical de-
pression — and MDD in particular — which we present as an exemplar of
a disorder of sadness. Owing to the vast number of published meta-
analytic and systematic reviews, a detailed overview of the literature is
beyond the scope of this section. Instead, we focus on synthesizing the
outcomes from a representative selection of key reviews and published

Table 3
Key evidence on neural substrates of sadness in healthy individuals.

studies. In particular, we pay attention to reported common and distinct
patterns of activity in normal sadness and clinical depression, and
emphasize the potential impact of disorder heterogeneity on marker
profiles.

First, it is intriguing to note that heightened activity in the sub-
genual prefrontal cortex (sgPFC) has been observed across the spectrum
of sadness severity under a wide-range of experimental conditions. This
region is also referred to as Broadman’s Area 25 (BA25) or the sub-
callosal cingulate (SCC) and has a role in affective state shifting
(Fellows, 2003; Lane et al., 2013) as well as in regulating cardiac vagal
control during emotional and cognitive tasks (Thayer et al., 2012).
Heightened activity has been observed in non-depressed persons fol-
lowing sad mood induction using autobiographical scripts (Mayberg
et al., 1999) and inflammation challenge (Harrison et al., 2009) as well
as clinically depressed patients during resting state (Drevets et al.,
1997; Mayberg et al., 1999) and negative affective challenge (Laxton
et al., 2013). The sgPFC is also a major target of deep brain stimulation
for treatment-resistant depression (Holtzheimer et al., 2012; Johansen-
Berg et al., 2008; Lozano et al., 2012; Mayberg et al., 2005). Based on
the work of Helen S. Mayberg et al. (1999) sadness is associated with
increases in paralimbic blood flow and decreases in dorsal neocortical

Authors Methodology Key Finding

Barrett (2017) Literature review

Large-scale functional brain networks performing basic psychological operations interactively produce affective

states, including sadness.

Harrison et al. (2008) Mood induction & resting-state

Sad mood impacts Salience and Default Mode network connectivity patterns, prioritizing interoceptive

Kragel et al. (2016)

Kassam et al. (2013)
Lindquist and Barrett (2012)
Lindquist et al. (2012)
Murphy et al. (2003)
Petrican et al. (2015)
Saariméki et al. (2016)
Touroutoglou et al. (2015)
Vytal and Hamann (2010)

Wager et al. (2015)

fMRI
Literature review

Task fMRI

Literature review
Meta-analysis

Meta-analysis

Resting-state fMRI

Mood induction & task fMRI
Resting-state fMRI
Meta-analysis

Meta-analysis

information processing.

Pattern analyses of neuroimaging data show that affective dimensions and emotion categories are uniquely
represented in the activity of distributed neural systems that span cortical and subcortical regions.

Machine learning techniques reveal brain network signatures for sadness, which are reliably activated across
episodes and individuals.

Large-scale functional brain networks performing basic psychological operations interactively produce affective
states, including sadness.

Little evidence that discrete emotion categories can be consistently localized to distinct brain regions. Affective
states arise from large-scale brain networks performing basic psychological operations.

No consistent and specific correspondence between sadness and neural activity in a particular brain region or
circuit. Though some association for other negative emotions are reported.

Self-reported sadness predicts diminished recruitment of frontoparietal brain networks supporting exogenously-
cued information processing. May point to neurocognitive bias towards the internal environment.

Sad mood impacts Salience and Default Mode network connectivity patterns, prioritizing interoceptive
information processing.

Specific networks for each emotion do not exist within the architecture of the human brain. Instead,
interactions within and between domain general networks are deemed to spur affective states.

Neural activity patterns associated with sadness were labeled as “discrete”, but this was not a consistent and
specific correspondence.

Machine learning techniques reveal that emotion categories such as sadness are not contained within any
region or system, but are represented as configurations across multiple, domain general brain systems.
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blood flow, while remitted clinical depression is associated with con-
current inhibition of overactive paralimbic regions and normalization
of hypofunctioning dorsal cortical sites. This work has led to brain-
based models of depression characterized by impaired coordination of
interactions within and between segregated limbic and cortical neural
circuits (Mayberg, 2003, 1997), and deep brain stimulation of key re-
gions within this circuitry including sgPFC in particular (Holtzheimer
et al., 2012; Johansen-Berg et al., 2008; Lozano et al., 2012; Mayberg
et al., 2005).

Another body of work on depression has focused on the default mode
network (DMN), a region including the medial prefrontal cortex, the
posterior cingulate cortex and anterior precuneus, and the tempor-
o-parietal junction (TPJ). The DMN is characterised by higher levels of
activity during relative rest, mind-wandering and inward-directed
mental activity (Northoff et al., 2006), and depressed relative to non-
depressed persons have displayed heightened activity within this region,
underpinning features like negative self-focus and ruminative tendencies
(Hamilton et al., 2011; Northoff et al., 2006) [but see also (Hamilton
et al., 2015)]. It is especially noteworthy here that depressive rumination
may facilitate the transition from transient sadness to more intense and
prolonged sad mood states including depression (Bonanno et al., 2008;
Nolen-Hoeksema et al., 2008; Peled and Moretti, 2010). Disrupted DMN
functioning in depression, including findings of heightened activity and
failure of deactivation, may be related both to overactive internally di-
rected processes of pathological introspection and rumination and the
difficulties displayed by depressed patients when attempting to perform
externally focused tasks (Park et al., 2019; Rayner et al., 2016). A sys-
tematic review (Kerestes et al., 2014) on resting state fMRI (rs-fMRI)
studies (n = 4) in adolescents and young adults with depression reported
a consistent pattern of abnormally increased activity in DMN compo-
nents, including the pregenual ACC, subgenual ACC (sgACC), dorsome-
dial PFC (dmPFC), and ventromedial PFC (vinPFC) in comparison to
healthy controls. These rs-fMRI studies of depression in youth have re-
ported findings generally aligned to those obtained in adult samples.
Research (Knyazev et al., 2016) has even demonstrated that non-clinical
depression symptoms — based on the Beck Depression Inventory (Beck
et al., 1996) - is associated with a predominance of DMN over the fronto-
parietal attention system, a ‘task-positive network’ (TPN). These findings
were interpreted as reflecting the ‘hijacking of higher cortical functions’
such as medial PFC (mPFC) by subcortical emotional systems including
temporal lobe and insula. It is noteworthy that although heightened
activity within the DMN has not been replicated in other studies (e.g.,
Hamilton et al., 2015), research reviewed by Mulders et al. (2015)
generally supported the notion that pharmacological treatments for de-
pression act towards the normalization of resting-state functional con-
nectivity (RSFC) in the DMN.

Extending on this body of work, meta-analysis has demonstrated
that increased functional connectivity between sgPFC and DMN is
predictive of higher levels of depressive rumination (Hamilton et al.,
2015). Additional meta-analysis in this study further demonstrated that
although reliable increases in regional cerebral blood flow were ob-
served in sgPFC, these patterns were not observed in DMN. Together,
findings from studies highlighting a role for sgPFC and the DMN in
sadness and negative self-focus, as well as results from the reported
additional meta-analysis (Hamilton et al., 2015) led to a neural model
of depressive rumination (Hamilton et al., 2015), in which the DMN is
functionally united with sgPFC, brain function that contributes to de-
pressive rumination. Another meta-analysis (Kaiser et al., 2015) on 25
resting-state functional connectivity studies has characterised MDD
with large-scale brain-network dysfunction including hyperconnectivity
within the DMN, and hypoconnectivity between regions involved in
top-down regulation. These findings provide further evidence for brain
dysfunction that may underpin depressive biases towards internal
thoughts as well as patients’ difficulties in regulating mood, over-
lapping with research described above in the previous section on the
neuroimaging of sadness.

212

Neuroscience and Biobehavioral Reviews 111 (2020) 199-228

Another line of enquiry in the clinical neuroscience of depression
has employed task-related fMRI (tr-fMRI). In their review of 64 tr-fMRI
studies exploring neural activity in MDD during affective information
processing tasks (e.g., facial expression, film clips), Jaworska, Yang,
Knott, & MacQueen (2015) concluded that depressed patients have
increased activation to emotive, particularly negative, visual stimuli in
regions involved in affective processing. However, notable hetero-
geneity in the direction of functional abnormalities across separate
brain regions was also observed. Increased ventro-rostral/subgenual
ACC (vrACC/sgACC) activity was observed during negative emotion
processing, with some evidence of decreased dorsal ACC activity during
emotional processing of negative, neutral, and fearful stimuli. Increased
amygdala activation was also found to occur after negative and
arousing stimuli, with increased/decreased basal ganglia/thalamic ac-
tivity in response to negative and positive emotions, respectively.

Remarkable heterogeneity in the localization and direction of altered
activity has typically been reported in prefrontal areas, with both frontal
hypo- and hyperactivity reported in MDD (e.g., Diener et al., 2012;
Fitzgerald et al., 2006; Hamilton et al., 2012). Such ambiguous neural re-
sponding seems to be driven, at least in part, by the emotional valence of
stimuli. For example, in their coordinate-based analysis of 44 tr-fMRI stu-
dies, Groenewold, Opmeer, de Jonge, Aleman, & Costafreda (2013) found
that individuals with MDD displayed reduced activity in the dorsolateral
PFC (dIPFC) during negative, but greater activity in the medial orbito-
frontal cortex (mOFC) during positive, emotional processing. Activation in
the right amygdala, striatum, dorsal ACC (dACC) and parahippocampal/
fusiform gyri was found to differ depending to the affective valence of
stimuli, with negative and positive emotional processing associated with
increased and decreased activation, respectively. Similarly, Hamilton et al.
(2012) also found hypoactivation in the dIPFC in response to negative
stimuli, as well as hyperactivity in the amygdala, dACC, and insula/su-
perior temporal gyrus (STG) in individuals with MDD relative to controls.

In addition to emotional valence, Diener et al. (2012) found hypo-
and hyperactivity in frontal regions, with activity patterns differing
depending on the emotional and cognitive demands of the task, as well
as medication status. Frontal hyperactivity was evident in medicated
(right inferior frontal BA9, right superior frontal BA6) as well as non-
medicated MDD patients (left middle frontal BA9) during both execu-
tive control and induced sadness and negative mood congruent pro-
cessing. In contrast, frontal hypoactivity was found in non-medicated
MDD patients during affective switching (left inferior frontal/precentral
BA9) tasks and those capturing mood-congruent processing towards
negatively valenced emotional stimuli (left medial frontal BA6, right
paracentral lobule, left inferior frontal/paracentral BA9). The authors
argued that hypersensitivity to negatively valenced stimuli is associated
with a lack of prefrontal control in the left hemisphere, enhancing at-
tention to negative stimuli and impairing approach related processing
towards appetitive stimuli. They also found hyperactivation in the left
middle frontal BA9 during executive processes in MDD subjects com-
pared to controls, an effect driven by non-medicated subjects. In con-
trast to previous research (e.g., Delaveau et al., 2011; Fitzgerald et al.,
2008), hyperactivity in inferior (BA9) and superior (BA6) prefrontal
regions highlight their involvement in negative emotional states and
reduced mental adaptation during emotional-cognitive tasks.

In contrast to the findings of Hamilton et al. (2012); Groenewold
et al. (2013), and Jaworska et al. (2015); Diener et al. (2012) also re-
ported no hyperactivation of the hippocampus or amygdala directly,
possibly because they combined data from both emotional and cogni-
tive stimuli, rather than prioritizing the investigation of emotional re-
sponses. Even so, their analysis generally confirmed a predominantly
hypoactive cluster in the anterior insular and rostral anterior cingulate
cortex linked to affectively biased information processing and poor
cognitive control. For instance, they found generalized hypoactivity in
the right insula in both medicated and non-medicated patients with
MDD in response to tasks involving negatively biased information
processing, attention, and cognitive control.
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To synthesize these tr-fMRI findings, while methodology differs
substantially across neuroimaging studies, the literature reveals a dis-
ruption of emotional processing among individuals with MDD, possibly
due to a failure of prefrontal, ACC, and insular areas to down-regulate
hyperactivity of caudal limbic areas, such as the amygdala. Again, this
is consistent with contemporary limbic-cortical network models for
sadness and depression, which emphasize characteristic patterns within
and between segregated limbic and cortical neural circuits (Mayberg,
2003, 1997).

Task-related activity involving ACC and insular areas may also be
related to brain-body abnormalities involved in depression. These two
brain regions are involved in the mapping of bodily responses related to
emotional reactions (Craig, 2002; Critchley, 2005; Drevets et al., 1997).
While the ACC is relevant to the generation of autonomic arousal, the
insula modulates internal visceral responses that accompanies emo-
tional processing (Bechara et al., 1997). Somatic markers generated in
the context of emotional processing are thought to be relevant to de-
cision-making in complex situations (Del-Ben et al., 2005; Harmer
et al., 2006; Norbury et al., 2007), a process known to be disturbed in
MDD (Bell and D’Zurilla, 2009; Lee et al., 2012; Rock et al., 2014;
Trivedi and Greer, 2014). Also, the tr-fMRI studies reviewed herein
indicate that the neural correlates of negative and positive emotional
processing are distinct from one another in MDD. Finally, the existing
resting state and tr-fMRI literature point to a core involvement of the
ACC in MDD. This is consistent with findings of reduced volume in ACC
among depressed groups reported in structural magnetic resonance
imaging (MRI) studies (Bora et al., 2012), as well as with models that
highlight the role of the ACC in emotion dysregulation in MDD
(Northoff et al., 2011). The salience of findings involving the ACC in
studies of MDD also converge with therapeutic effects of neuromodu-
lation in this region for treatment of depression (Milev et al., 2016).

In summary, there are clear overlaps between the neural features of
sadness and the neural correlates in clinical depression, including
characteristic patterns of activation within fronto-limbic circuitry and
the default mode network. Although we present MDD as an exemplar of
the disorders of sadness, it is important to emphasize that MDD is
heterogeneous, and this heterogeneity has implications for marker
profiles (Kemp et al., 2014). In this regard, recent work (Drysdale et al.,
2016; Maglanoc et al., 2019) has employed a data-driven clustering
approach on symptom profiles and identified differential brain-con-
nectivity patterns within limbic and frontotemporal networks. How-
ever, the extent to which such ‘biotypes’ are able to be replicated, re-
mains a matter of debate (Dinga et al., 2019). Another clarification is
that mood and anxiety disorders are often comorbid (Kessler et al.,
2010b; Lamers et al., 2011), although common and distinct perturba-
tions have been observed (Beesdo et al., 2009; Demenescu et al., 2011;
van Tol et al., 2010) [See also Kemp and Felmingham (2008) for dis-
cussion]. Interested readers are also referred to outcomes from The
Netherlands Study of Depression and Anxiety (NESDA) (see: https://
www.nesda.nl/nesda-english/), which is investigating the specific
overlap between depression, anxiety, and its comorbidity. Similarly,
there is also evidence pointing towards distinct and specific con-
nectivity patterns for fear and anxiety (Cohodes and Gee, 2017). Other
authors have proposed taxonomies for mood and anxiety disorders that
cut across traditional diagnostic boundaries, consistent with a trans-
diagnostic approach and Research Domain Criteria (RDoC) framework
(Nusslock et al., 2015; Williams, 2016). Given the focus of the current
review it is noteworthy that these approaches have emphasized biolo-
gical signatures for rumination, anhedonia, and depressed mood, all of
which have clear relationships with the emotion of sadness.

5. Individual differences and contributors to the experience of
sadness

Individual differences can modulate the perception and experience
of sadness, and may contribute to contradictory findings. Here we focus
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on the evidence-base relating to sex, age, culture, and social environ-
ment, in particular.

5.1. Sex differences

Epidemiological studies almost universally indicate that risk of de-
pression in females is double that of males (Kessler, 2003). Indeed, the
prevalence of internalizing symptoms has been found to be higher in
girls compared to boys from a young age (Bask, 2015; Chaplin and
Aldao, 2013), although other research suggests that levels of inter-
nalizing symptoms in females, including symptoms of depression, do
not begin to exceed symptom levels in males until early to mid-ado-
lescence (de Ruiter et al., 2007; Natsuaki et al., 2009). Increased long-
term risk amongst females is likely attributable to a combination of
biological and environmental factors (Albert, 2015; Kessler, 2003).
Fluctuations in estrogen across the female lifespan may also play a role
in increasing depressive symptoms (Albert, 2015), which may interact
with BDNF, hippocampal, and cerebellum functioning to increase vul-
nerability to mood disorders (McEwen and Milner, 2017). However, it
is also worth noting that feelings of sadness or depression may more
readily manifest as external behaviors in males, such as poor impulse
control and greater risk for alcohol or substance use (Cavanagh et al.,
2017). Consistent with this, males have been found to report greater
rates of externalizing disorders than females (Boyd et al., 2015). Fe-
males are also exposed to greater environmental vulnerabilities, in-
cluding socioeconomic factors like lower education and income, as well
as traumatic events such as abuse, which may increase risk. Interest-
ingly however, being female poses less risk in lower-income countries
compared to high-income countries (Rai et al., 2013). Other factors will
further moderate these sex differences, including ruminative regulation
styles (Nolen-Hoeksema, 2012), and degree of neuroticism, behavioural
inhibition, mastery, and physical health (Leach et al., 2008).

There has been surprisingly little empirical investigation of sex
differences in relation to the perception, processing, and experience of
sadness. However, from the limited literature that is available, females
appear to exhibit stronger corrugator muscle activation (i.e., frown
muscle) during the experience of negative emotions in particular, but
these findings are not specific to sadness (Schwartz et al., 1980). This is
supported by neuroimaging research reporting over-engagement in
corticolimbic circuitry, including the amygdala, thalamus, anterior
cingulate, and medial PFC, to all emotional stimuli in females relative
to their male counterparts (Kemp et al., 2004; Stevens and Hamann,
2012).

During the perception of masked sad faces (relative to masked
happy faces), stronger activation in subgenual anterior cingulate and
right hippocampus regions have been reported in females, suggesting
implicit emotion processing biases that may increase vulnerability to
depression (Victor et al., 2017). Female adolescents also display more
empathetic sadness than male adolescents, with males showing more
empathy towards the other-sex, while females display more towards the
same-sex (Stuijfzand et al., 2016). In addition, an ERP study (Luo et al.,
2015) found sex differences during empathic neural responses to others’
sadness in which females displayed increased P2 amplitudes to sad
expressions compared with neutral expressions, relative to males. This
finding might be associated with an improved ability in females to re-
cognize and share the emotions of others.

Finally, studies exploring physiological reactivity to emotional sti-
muli (including sadness) have provided some evidence that females
may respond more intensely than males, evidenced by significantly
greater SCL and heart rate (HR) responses (Fernandez et al., 2012).
Similarly, previous research has reported greater corrugator EMG ac-
tivity to unpleasant and arousing pictures in females compared to males
(Bradley and Lang, 2020), but increased reactivity (SCL) to pleasant
pictures (e.g. erotica) in males. McManis et al. (2001) found that pre-
pubescent girls were generally more reactive to unpleasant pictures
than boys as captured by a variety of physiologically based measures
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(i.e., skin conductance, HR, EMG activity). However, a more recent
investigation (Deng et al., 2016) exploring gender differences in both
emotional experience (measured by HR) and expressivity (valence,
arousal, motivation), found that gender differences appear to depend on
emotional valence. For example, with the exception of arousal ratings,
no significant gender differences were found for sadness. In contrast,
when watching videos eliciting feelings of anger, amusement, and
pleasure, males showed larger decreases in HR whereas females re-
ported higher levels of arousal. Thus, when watching videos to induce
an emotional experience, the authors argued that males often have a
more intense emotional experience, whereas females tend to have high
emotional expressivity.

5.2. Age differences

Affective experiences change over the lifespan in accordance with
life challenges and developmental stage, and it is possible therefore that
there are effects of aging on sadness (Kunzmann and Gruhn, 2005;
Seider et al., 2011). However, findings differ markedly across the lit-
erature, with contradictory evidence reported. Population studies have
shown that the number of sad, depressed or ‘blue’ days are less frequent
in older groups (aged 60-84 years) (Kobau et al., 2004). Prevalence
rates for depression reduce with older age (Hasin et al., 2005; Jorm,
2000), with older adults being less likely to endorse clinically sig-
nificant sadness or mood disturbance symptoms than younger adults
(Fiske et al., 2009; Thomas et al., 2016), suggesting that the capacity to
effectively regulate sadness may be an important protective factor. By
contrast, longitudinal work conducted in Germany found that while the
frequency of anger diminishes between young adulthood and older age,
the prevalence of sadness increases in older age (Kunzmann et al.,
2013). A number of empirical studies in older adults have demonstrated
equal or higher reactions to sadness-inducing films, scenarios or
memories, relative to younger groups (Charles et al., 2001; Kunzmann
et al., 2017; Kunzmann and Gruhn, 2005; Seider et al., 2011), as well as
linear increases in sadness with age (Kunzmann and Richter, 2009). It is
important to distinguish between normal and disordered sadness ex-
perience here, and that older individuals may be more able to effec-
tively regulate affective experience. Indeed, empirical studies have re-
ported increased medial prefrontal cortical engagement during negative
information processing with age, indicative of more effective emotion
regulation (Williams et al., 2006). Specific effects of age on sadness may
also depend on life experiences.

The most prominent theoretical model for understanding the effects
of aging on the experience of sadness is the socioemotional selectivity
theory (SST) (Carstensen, 2006). This theory posits that it is not
chronological age that impacts on affective shifts per se, but rather
changes in the perception of time, which shapes goals and motivations
and regulation of emotional states. For instance, younger adults hold
future-oriented goals, with a focus on acquiring new skills with a high
perception of control; as such, barriers to achieving these goals may be
met with anger. By contrast, older adults may be more oriented towards
present-focused goals that have emotional significance because they
perceive themselves as having less control over life events. Moreover,
the experience of irrevocable loss is more common - including loss of
loved ones, social connections, physical abilities, which may increase
the incidence of sadness. While events may be appraised as more sad as
one gets older, this may also be met with greater ability to disengage
from emotionally-affecting situations (Charles and Carstensen, 2008);
suggesting more successful emotion regulation — particularly positive
reappraisal and attentional manipulation strategies (Lohani and
Issacowitz, 2014). This is supported by evidence that sad auto-
biographical memories are retained less over the life span (Berntsen and
Rubin, 2002), showing a positive bias in favor of remembering more
positive events(Carstensen and Mikels, 2005). Therefore, while sadness
may become more prevalent as we age, it may exert less impact on our
wellbeing. We note however, that although the rate of depression is
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lower in older cohorts in high-income countries (Thomas et al., 2016),
higher rates have been reported in low-middle income countries (LMIC)
(Jorm, 2000; Kessler et al., 2010a; Liddell et al., 2013). Cultural dif-
ferences in the progression of sadness and depression across the lifespan
may help to explain some of the inconsistencies reported in the litera-
ture, a topic we turn to next.

5.3. Cultural differences

Culture is a critical determinant of the emotional lives of humans,
shaping psychological functioning, cognition, and the brain (Han and
Ma, 2014; Markus and Kitayama, 2010). Models suggest that culture is
central to self-identity and deriving meaning from the external world,
including social relationships (Kitayama and Uskul, 2011). Most cul-
tural psychology and neuroscience studies have investigated cultural
differences by comparing groups from diverse cultural backgrounds —
predominantly those with Western-Caucasian and East Asian back-
grounds. Such studies indicate that Western groups value an in-
dependent self, individual achievement, high self-esteem, and au-
tonomy; whereas East Asian groups place stronger values on
interdependence and collectivistic self-representation, highlighting the
importance of social harmony and the group. According to the situated-
cognition model, humans instinctively adapt their self-representation to
their sociocultural context. This means that specific cultural environ-
ments reinforce particular social, emotional, and cognitive patterns of
behavior (Oyserman, 2011). This is consistent with a psychological
constructionist approach to emotion, which recognizes that emotions
are constructions of the world around us, including the influence of
cultural practices and value systems (Barrett, 2013).

Consistent with this, numerous studies have shown substantial
cultural group differences in the operation and underlying mechanisms
of emotion perception, expression, and regulation processes (Ford and
Mauss, 2015; Liddell and Jobson, 2016; Tsai et al., 2006). It is unlikely
however, that there are specific effects on sadness per se.

Although mental representations of the six basic emotional facial
expressions have long thought to be universal, recent evidence suggests
that emotion perception may be shaped by cultural influences. The
visual extraction of information from facial cues - including sad faces —
differs across cultural groups, with East Asian cohorts focusing on the
eye region, and Western-Caucasian groups adopting an inverted tri-
angle eye gaze pattern that incorporates the mouth (Adams et al., 2010;
Blais et al., 2008). Western-Caucasian groups may exhibit more distinct
patterns relating to facial muscles and the temporal unfolding of events
when deciphering facial expressions compared to East Asian groups,
where there is greater similarity between emotions, particularly sad-
ness, fear, anger, disgust, and surprise (Jack et al., 2012). These may be
partially related to dialectical variations across cultural groups, where
there is an in-group advantage to discerning ambiguous in-group ex-
pressions (Elfenbein et al., 2007).

Use of more contextual cues may also differentiate cultures in terms
of emotion perception, including sadness. For example, Japanese par-
ticipants were found to draw more on background social cues to inform
their judgment of target sad faces compared to American participants
(Masuda et al., 2008). Another study (Kafetsios and Hess, 2015) re-
ported that sad expressions were judged as less sad in a ‘collectivistic’
priming condition, and that neutral expressions were judged as more
sad in an ‘individualistic’ priming condition, thus supporting the view
of culture as situated cognition (Oyserman, 2011).

Cultural groups also differ in the experience of emotions. For in-
stance, East Asian cultural groups exhibit a preference towards low-
arousal emotional states (e.g. calmness, quiet stillness) (Tsai et al.,
2006) and socially engaging emotions (e.g. shame) (Kitayama and
Markus, 2000). In contrast, Western cohorts appear to prefer high-
arousal emotions (e.g. excitement, distress) and social-disengaging
emotions (e.g. anger). Interestingly, the discrepancy between ideal and
actual affect observed in both cultural groups was smaller for low-
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medium arousing emotions like sadness and loneliness, compared to
high arousing negative and positive emotions (Tsai et al., 2006). Cul-
tural groups may differ on which negative events are perceived to be
more distressing, consistent with dominant self-representations. For
example, one study found that that a group of Asian American parti-
cipants reported greater distress when reflecting on a personal experi-
ence of social rejection, relative to European Americans — suggesting
greater cultural sensitivity to interpersonal failures (Tsai and Lau,
2013). In a study that induced feelings of social exclusion, Japanese
participants who were more collectivistic than the American group in
the study, reported more negative affect following the exclusion which
was specific to feelings of sadness (Kitayama and Park, 2010). Other
studies have found that levels of collectivism are associated with
stronger emotional complexity, such as the capacity to either experi-
ence multiple affective states simultaneously (e.g. happy and sad) or
with stronger differentiation between affective states (Grossmann et al.,
2016). Cultural groups also appear to differ in the use of emotion
regulation strategies, particularly in the regulation of strong negative or
distressing states (Butler et al., 2007; Ford and Mauss, 2015; Matsumoto
et al., 2008; Mesquita and Albert, 2007). Taken together, these findings
suggest that culture has an important influence on the contexts in which
sadness is experienced.

5.4. Social environment and structural factors

Social factors are also critical determinants of a person’s emotional
state, behavior, health, and wellbeing. Features of the social environ-
ment in which individuals are immersed, such as connectedness to
others, community cohesion, socioeconomic status, and social equality,
have a particularly important impact and contribute to overall mor-
tality risks. Individuals with supportive social relationships are reported
to have a 50 % greater likelihood of survival than those with less
supportive relationships (Holt-Lunstad et al., 2010); findings that re-
mained consistent across age, sex, health status, cause of death, and
follow-up period. Despite some contradictory evidence (e.g., Uchino
et al., 2012), social ties and social support buffer, alleviate and protect
from stressful experiences (Cohen, 2004). On the contrary, loneliness
and social isolation have been linked to a variety of health complica-
tions, including alterations in systemic inflammation levels (Yang et al.,
2016), increases in coronary heart disease and stroke (Valtorta et al.,
2016), and increased risk for mortality over a 7-year period (Steptoe
et al., 2013).

Early work emphasized a relationship between loneliness and a
variety of psychopathological symptoms. For instance, after controlling
for possible confounding variables, Jackson and Cochran (1991) re-
ported associations between loneliness, self-esteem, and signs of de-
pression. More recent publications from cross-sectional and long-
itudinal analyses of middle-aged to older adults suggest a causal
relationship between loneliness and depressive symptomatology
(Cacioppo et al., 2006) that persists after controlling for a host of
variables including age, gender, ethnicity, education, income, marital
status, self-reported stress levels, and social support networks. These
findings are consistent with investigations in smaller populations, such
as the results published by Heikkinen and Kauppinen (2004) regarding
psychological health in older Finish populations, as well as other in-
vestigations on the causes of depressive symptomatology carried out on
cohort studies (Cacioppo et al., 2010; Richard et al., 2017).

Occupational status has also been linked to differential health out-
comes, indexing social inequality due to differences in salary, subjective
ratings of an occupation’s prestige, and income. Using data from the
Wisconsin Longitudinal Survey, the Whitehall II Study, and the
National Survey of Families and Households, Marmot et al. (1997)
found that scores in the Duncan Socioeconomic Index — a commonly
used measure of occupational status combining subjective and objective
measures — were associated with self-reported wellbeing and depressive
symptomatology. Specifically, individuals from lower social classes
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exhibited higher levels of depression and reduced health and wellbeing.
These results highlight the potential for socio-economic factors relevant
to education and occupational status to mediate the experience of
sadness and its disorders. Similar findings have been reported by other
research groups focusing on the effects of inequality over psychological
health outcomes - including depressive disorders — in large cohort
studies (Frank et al., 2003). The ubiquitous conclusion of these pub-
lications is that lower socio-economic status decreases psychological
wellbeing, and increases risk of morbidity and mortality from a host of
conditions and disorders (Godoy et al., 2006; Marmot et al., 1997).
Other authors have focused on the implications of inequality for human
health, highlighting the necessity of improving what has been called
“Environmental Justice” (Wilson, 2009) — a term that refers to the need
to reduce exposure of disadvantaged populations to environmental and
socioeconomic hazards, reducing social inequality to promote psycho-
logical wellbeing.

Features of the social environment are critical determinants of
mental and physical health, and available evidence has led to life course
models such as the GENIAL model (Kemp et al., 2017a), spanning the
domains of psychological science, epidemiology, and public health.
According to this model, the function of the vagus nerve plays a reg-
ulatory role over the functioning of allostatic systems, which subse-
quently contribute to individual health and wellbeing. Genetic, en-
vironmental, and socio-structural factors modulate vagal tone, which
underpins capacity for social engagement, itself impacting on health
outcomes. Socio-structural factors including community cohesion, low
socioeconomic status, and poverty will therefore have major repercus-
sions on vagal functioning, with implications for social relationships,
allostatic systems, and ultimately, health outcomes. The influence of
social ties on the reduction of mortality risk cannot be underestimated,
and is in fact comparable to smoking cessation and its influence has
greater impact than that of moderate alcohol consumption and physical
activity (Holt-Lunstad et al., 2010).

Despite the impacts of one’s social environment on human emotion
with clear implications for human health and wellbeing, western cul-
ture is characterized by increasing individualism and self-interest
(Twenge and Foster, 2010). National census data from the United States
(Vespa et al., 2013) and the United Kingdom (Statistics, 2012) reveal a
situation in which a quarter of households are comprised of people
living alone, and the European Quality of Life survey report that more
than 1 in 10 people feel lonely all, most, or more than half of the time
(Beutel et al., 2017; Siegler, 2015). In response, researchers in health
and social care are now advocating for the implementation of pre-
ventive solutions, including for example, social prescription, task
shifting, and partnership with social enterprise. Major initiatives in-
cluding the ‘Down to Earth’ project (https://www.downtoearthproject.
org.uk/), the ‘Happy City Initiative’ (http://www.happycity.org.uk/),
and the Transition Network (https://transitionnetwork.org/) are ex-
amples of local, regional, and international commitment to tackling the
increasing burden of common mental disorders on society - including
the disorders of sadness - by promoting positive social environments to
improve mental wellbeing and physical health at scale.

6. Is sadness a basic or constructed emotion?

We now consider the question of whether sadness is a basic or
constructed emotion. Recent debate initiated by Barrett (2006), has
questioned the previously accepted theory of Basic Emotions, sug-
gesting that position is characterized by a misinterpretation of the
evidence, an error of arbitrary aggregation. This debate continued with
Izard (2007), who argued that basic emotions remain a viable research
hypothesis, and Panksepp (2007b) who argued that basic emotion ap-
proaches do not neglect psychological constructionism, later explaining
that both Panksepp and Izard are ultraconstructivists with regard to
human higher order cognitive functions (Panksepp, 2015). Barrett et al.
(2007) replied to both Izard and Panksepp, arguing that there are no
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categories of emotions which “cut nature at its joints” and that those
approaches had outlived their usefulness. Given this context, we now
turn our attention to the most recent research on sadness and examine
what insights can be extracted from this ongoing debate.

6.1. Sadness and basic emotion theory

Coenen et al. (2011) proposed that MDD may result from un-
balanced activity between two complementary networks: dysregulation
of the system subserving positive affect, characterized by chronic
under-arousal of the SEEKING system, combined with over-arousal of
the GRIEF system. Depression therefore involves dysregulation of the
emotional systems underlying wellbeing and emotional homeostasis.
Despite limitations with neuroimaging techniques, earlier studies an-
ticipated the existence of a dichotomy between the SEEKING and GRIEF
systems (Alcaro et al., 2007), arguing for the potential benefits of DBS
as a solution for “rebooting” these systems to bring them back into
homeostasis and healthy balance. The work of Coenen et al. (2011) is
consistent with a role of predetermined neural networks providing the
foundation for emotion generation and its disorders, supporting Basic
Emotion Theory.

Furthermore, in a study of twin-sibling design, Christian Montag
et al. (2016) investigated the extent to which genetic and environ-
mental factors are critical for individual differences in primary emo-
tionality, as measured by the Affective Neuroscience Personality Scales
(ANPS). Based on their analysis of 795 participants, they concluded that
every ANPS scale was influenced by genetics, and more specifically, the
SADNESS system was associated with heritability estimates ranging
from 31 to 40%. Christian Montag et al. (2016) argued that such
findings imply a common set of genes influencing different primary
emotional systems (single additive genetic component) combined with
independent genetic factors which only influence specific emotional
systems. The remaining variance is then explained by a set of non-
shared environmental factors. Such findings are consistent with Basic
Emotion Theory, in which specific genetic variability is considered to
influence specific emotion systems. In addition, the findings from this
study suggest that psychopathologies derived from dysregulation of
these systems (e.g., over-activation of the SADNESS system — separation
distress and psychological pain — and the resulting reduction of
SEEKING system activity as a major cause of MDD) have an important
genetic factor, opening the door to novel psychopharmacological
treatments and genetic therapy.

A further example is a meta-analysis conducted by Saarimaki et al.
(2016) who used multivariate pattern analysis (MVPA) to explore the
results of three experiments using fMRI. In these experiments, emotions
were elicited by means of short movies and mental imagery while the
subjects’ brain activity was recorded. Later, the authors sought to
classify brain activity patterns for 6 basic emotions: disgust, fear,
happiness, sadness, anger, and surprise, applying MVPA to whole-brain
data to search for large-scale cortical and subcortical circuits char-
acterizing concrete emotions. Statistical analysis of each of these basic
emotions showed different and characteristic neural “fingerprints” -
defined as stable activation patterns of neural networks within specific
brain regions - evidenced by high accuracy in the classification process
using hemodynamic brain signals. The authors report that brain regions
which contributed most to classification accuracy included lateral PFCs,
frontal pole, pre- and postcentral gyri, precuneus, and PCC, whose ac-
tivity would be integrated in the midline frontal and parietal regions,
acting as a structural link between changes derived from emotion and
changes on self-awareness. Authors argue that the results of this meta-
analysis provide support for the existence of characteristic and discrete
neural signatures of different instances of emotion, and in turn, also
support the fundamental principles of Basic Emotion theory.
Nevertheless, supporters of theories of constructed emotion countered
that these conclusions are flawed and that the obtained results are ac-
tually in line with psychological constructionist views (Clark-Polner
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et al., 2016).

In another meta-analytic study of neuroimaging data from the
BrainMap database (Kirby and Robinson, 2017, activation likelihood
estimation ALE maps displayed activation within the right inferior
frontal gyrus for all emotions and within the amygdala for five out of
seven emotions analyzed. For sadness, the analysis drew on data re-
ported in 54 publications across 1078 individuals, 139 experiments,
and 840 nodes, with results showing a remarkable amount of prefrontal
activity compared to other emotions. Specifically, cortical activation
patterns for sadness in the right inferior frontal gyrus BA 45, left middle
frontal gyrus BA9/47, the left medial frontal gyrus BA 9, the right
precentral gyrus BA 44, and the bilateral frontal gyrus were observed.
In addition, activation of subcortical regions, including the left anterior
cingulate cortex BA 32, the right insula BA 13, the left medial globus
pallidus LMGP, right putamen, and the left thalamus was also observed.
The authors interpreted these findings as providing strong support for a
multi-system model of emotion basic emotions approach, including
primitive subcortical components for emotion processing as well as
more specific networks for each different emotion analyzed. However,
the authors also acknowledged the need for more extensive meta-ana-
lysis and for specific connectivity analysis of identified areas in order to
create reliable functional profiles of each basic emotion.

6.2. Sadness and the psychological constructionism theory

We now turn our attention towards reviewing the most recent
publications supporting constructionist approaches.

Jastorff et al. (2015) investigated functional brain connectivity in
response to viewing a walking avatar presenting four emotions: anger,
happiness, fear, and sadness. They identified a general emotion network
connecting core affect, conceptualization, language, and executive
control networks that was identical for all four emotions. Several nodes
of this general network contained information capable of dis-
criminating between the four individual emotions, although twenty-
eight additional domain-general pathways were required for successful
differentiation. Findings were interpreted as providing support for
psychological constructionism, as several regions (e.g., amygdala,
anterior dorsal cingulate cortex) appeared as common features in fun-
damental processes associated with the construction of emotions. The
authors also reported a lack of specificity in the activation of certain
regions such as insula activation, which was not unique to any one
emotion. Interestingly, the connection between the insula and sub-
genual anterior cingulate was specifically associated with the proces-
sing of sad facial expressions.

In a similar study, Raz et al. (2016) examined the dynamic inter-
actions between domain-general neural networks known to be im-
plicated in emotion generation and processing (i.e., salience network
and amygdala-based networks) in four samples of healthy volunteers
with no known psychiatric or neurological history. Participants were
instructed to passively view a series of film clips (sadness, fear, and
anger) and pay attention to cinematic events whilst their brain activity
was recorded using fMRI. Once completed, participants were then
asked to provide a detailed account of their emotional experience by
completing a detailed emotion category label inventory. Raz et al.
(2016) hypothesized that emotions would be the result of interactions
between domain-general networks implicated in processes which are
not specialized in emotional processes (i.e., brain networks supporting
the experience of different processes and not emotion alone). In ac-
cordance with this, they found that enhanced connectivity between the
medial amygdala network and dorsal salience network was associated
with more intense ratings of emotional experience across all six in-
stances of the three emotions explored. In addition, enhanced con-
nectivity between the ventrolateral amygdala network and the dorsal
salience network was also associated with more intense ratings of
emotional experience across five of the six emotion exemplars. Thus,
such findings are consistent with psychological constructionism as a
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variety of emotional experiences were associated with dynamic inter-
actions of domain-general networks. However, several considerations
have to be made regarding the efficiency and specificity of the imagery
and movie sets with regards to eliciting single emotions, such as the
influence of contextual parameters, the variability among the subjects’
sensitivity to selected stimuli, stimuli validity, and so on (Coan and
Allen, 2007). It is not our intention to undermine a well-stablished tool
that is regularly used by affective neuroscience researchers, but to
highlight the potential limitations, and also to prompt the reader to
cautiously consider research whose conclusions are based on eliciting
responses by means of passive observation, which may not be sufficient
to induce specific emotional states.

We have already mentioned that the identification of “neural fin-
gerprints” corresponding with specific instances of emotions (i.e.,

Facial features
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dPOA Dorsal preoptic area

BN Bed Nucleus of the stria terminalis
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PAG Periaqueductal grey
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anger, fear, disgust, happiness, sadness, and surprise) by Saarimaki
et al. (2016). However, these results were questioned that same year by
Clark-Polner, Johnson, & Barrett (2016) who argued that the paper
contained important flaws: “a pattern that successfully distinguishes the
members of one category from the members of another (...) is not a fin-
gerprint” (p.1945) and that the results of the study were more consistent
with a constructionist than basic emotion approach. The constructionist
approach argues that changes in central nervous system (CNS) and
autonomic nervous system (ANS) activity during the occurrence of an
emotion are case-sensitive and dependent on specific circumstances,
which led to that emotion, thus lacking a specific “fingerprint”. This
dichotomy between the fingerprint hypothesis (in line with the Basic
Emotion Theory) and the population hypothesis (i.e., activity de-
termined by a population of context-dependent variables, in line with a
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Fig. 3. Integrative illustration of the neurobiology of sadness. Facial features include Veraguth’s folds (%) and Omega melancholicum (Q), also known as Darwin’s
grief muscles. Key regions identified in animal research and implicated in the SADNESS circuit include the VS, dPOA, BN, DMT, AC, and PAG. Cortical regions
identified in human neuroimaging studies include the cingulate cortex and insular cortex (involved in internally-directed cognitive processes); vimPFC and STG
(responsible for further amplifying internal focus); dIPFC and vIPFC (goal-directed attention towards the environment), dmPFC (essential part of the central executive
system), and OFC. Other regions relevant for the emotion of sadness (thalamus, midbrain, pons, amygdala, hippocampus, parahippocampal gyrus, and cerebellum)
are also represented. The GENIAL model emphasizes a key role for vagal nerve inhibitory function over the heart — emerging from the medulla oblongata — given its
mediation of psychological moments and regulation of downstream allostatic systems, and promotion of longevity or premature mortality if dysregulated (Kemp,
Arias & Fisher, 2017). (Illustration by Irene de Diego, 2018; airin.dd@gmail.com).
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constructionist approach) was thoroughly tested in a recent meta-ana-
lysis (Siegel et al., 2018). This multilevel meta-analysis contained 202
studies exploring ANS activity changes (e.g., heart rate and variability,
respiration rate, skin conductance) during the elicitation of different
emotions, including anger, fear, happiness, sadness, and disgust. In
order to determine whether a consistent and regular set of changes
arose during specific emotions, a meta-analytic multivariate pattern
classification analysis (MPCA) was performed to determine whether
emotion categories could be distinguished by means of ANS activity
changes. Results indicated that none of the ANS changes were specific
to a particular instance of emotion or could be used to identify an
emotion category. More specifically, instances of sadness (87 studies)
resulted in increased heart rate (HR), diastolic blood pressure (DBP),
systolic blood pressure (SBP), and respiratory rate (RR). However,
mean effect sizes were very heterogeneous and only RR showed some
evidence of consistency. These results were interpreted as being broadly
consistent with the population hypothesis, and therefore, in support of
psychological constructionism.

7. Limitations

The neuroscience of sadness is not without limitations. These in-
clude small sample sizes that may not be generalizable beyond in-
dividual studies, especially for expensive neuroimaging techniques.
There is also substantial variability in the methods used even when
considering those methods used in human research to induce emotion
and mood states in the lab (e.g., processing of various types of emo-
tional stimuli versus script-driven mood states without active rumina-
tion), which may lead to discrepant findings. These issues have led to
difficulties and disparities in assessing, labelling and measuring sadness
in and outside the laboratory. It also impacts on researchers’ capacity to
formulate widely-accepted and overarching theories of sadness. While
large-scale, sophisticated meta-analyses have been conducted on
human neuroimaging studies to circumvent some of these issues, con-
clusions drawn may still be limited to tertiary-level processes, con-
siderably limiting the conclusions able to be drawn by psychological
constructionists. Unfortunately, there is limited evidence of partnership
working between, for example, researchers conducting ‘basic’ neu-
roscientific research in rats and those affective neuroscience researchers
focusing on higher level affective processes in humans, highlighting a
need for specific funding schemes that encourage transdisciplinary
science. Typically, research findings are interpreted from the vantage
point of one’s own discipline leading to the so-called ‘disciplinary di-
lemma’. Other limitations include issues associated with meta-science,
including a lack of successful replication of previously published find-
ings, a general lack of support from competitive funding bodies for
replication science as well as limited recognition by institutional pro-
motion pathways of such efforts. There is a need for a multi-pronged
approach to better understand the emotion of sadness and its disorders
including greater recognition of the structural challenges imposed on
researchers that contribute to various limitations. Innovative funding
schemes are needed to facilitate partnership working between animal
and human researchers as well as collaborative science that draws on
contributions from multiple laboratories, facilitating recruitment of
larger samples.

8. Discussion

We have summarized the neuroscientific evidence related to sadness
and its disorders, commenting specifically on developments in the “Big
Debate on Emotion”. We have provided an extensive, multidisciplinary
synthesis spanning findings from fields including genetics and epige-
netics, psychophysiology, affective and cognitive neuroscience, neu-
ropsychiatry, and cultural psychology. The question over whether
sadness is a ‘natural kind’ or a psychological construct that is dependent
on domain general neural systems remains a matter of heated debate.
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Initial neuroimaging studies on humans were viewed as evidence sup-
porting a basic emotion approach, with sadness underpinned by activity
in the subgenual anterior cingulate, and to some extent by insular, or-
bitofrontal, and amygdalar activation (Murphy et al., 2003; Vytal and
Hamann, 2010). However, more recent studies have shown key brain
regions to be activated in response to other emotions (e.g., fear, disgust,
anger) as well as non-affective processes (Barrett, 2017b; Kragel and
LaBar, 2016; LeDoux, 2012; Lindquist et al., 2012; Lindquist and
Barrett, 2012; Wager et al., 2015; Yarkoni et al., 2011). Recent meta-
analyses of human neuroimaging studies have also failed to demon-
strate a specific correspondence between basic emotions like sadness
and neural activity in a particular brain region or circuit (Lindquist
et al., 2012; Lindquist and Barrett, 2012; Wager et al., 2015).

These developments contrast with more convincing data from an-
imal research in which basic emotions have been more easily mapped
onto specific brain regions (Panksepp, 2016, 2010; Panksepp et al.,
2017), including the emotion of sadness, whose PANIC/GRIEF system
has been comprehensively described in several articles (Jaak Panksepp,
2003; Panksepp and Watt, 2011a) (see also Fig. 3). In recent papers
(Davis and Panksepp, 2011) Panksepp has even labelled this distress
system using the capitalized word, SADNESS, highlighting the evolu-
tionary foundations on which states commonly labelled as ‘sadness’ and
‘depression’ may arise. Bearing in mind the complexity of human
emotion and associated methodological difficulties in identifying un-
derlying networks, further dialogue and collaboration between human
and animal affective neuroscientists is required, as has been argued on
multiple occasions (Panksepp, 2015, 2003a, 1992). We recommend a
need for innovative funding schemes that facilitate cross-disciplinary
working, with an eye towards establishing a transdisciplinary science of
sadness.

Basic emotion theorists have proposed that the subcortical struc-
tures that we share with other mammals are the neural foundations for
all emotional life (Panksepp, 2007; Panksepp and Watt, 2011b). Animal
neuroanatomy indicates stratification in which ancient systems are lo-
cated in a medial-caudal position, while more recently developed sys-
tems are located laterally and rostrally. This organization leads to a
three-level system of consciousness formed by: (1) a primary-process
system arising from ancient subcortical regions, (2) a secondary-process
system responsible for emotional learning, and (3) a tertiary-process
system responsible for complex cognitive-affective synergies emerging
from the interaction between neocortical regions and paralimbic and
limbic structures (Panksepp, 2005, 1992, 1982b). Basic Emotion ap-
proaches support the existence of networks which conform to the pri-
mary level of emotion elaboration (i.e., SEEKING, RAGE, FEAR, LUST,
CARE, PANIC/GRIEF, and PLAY systems), while most of the research
supporting psychological constructionism focuses on the processes be-
longing to the higher tertiary level. Interactions between the primary-
process system and higher networks contribute to a richer emotional
experience that will be case-sensitive and dependent on circumstance
and context, as argued by the psychological constructionists. It is
somewhat surprising that the animal literature and the nuanced argu-
ments of Jaak Panksepp are often dismissed by human neuroscientists,
highlighting the ‘disciplinary dilemma’ that arises as a result of working
in disciplinary silos. Critically, Panksepp repeatedly emphasized that
Basic Emotion Theory does not neglect constructionist assumptions
(see, for example: Panksepp, 2007a), instead placing importance on the
complex contextual and sociocultural features associated with the
emotional life of the human species, emphasizing that “those develop-
mental/epigenetic cortical achievements are built upon cross-mammalian,
subcortical, primary-process, affective homologies” (Panksepp, 2015, p. 1).
In the present review, we do not consider it desirable, nor even ne-
cessary to claim the victory of either theory. Instead, like Panksepp, we
view both theories as simultaneously correct, although on different
levels of a phylogenetic hierarchy (Chiao, 2015; Panksepp, 2015).
Consequently, basic emotion and constructionist approaches may be
considered as complementary, facilitating a better understanding of
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human affective processes (e.g., normal sadness) and its disorders (e.g.,
major depressive disorder). In light of evidence reviewed, we agree
with Panksepp and Watt (2011b) who argued that remaining ambi-
guities are the result of “(...) nonsubstantial differences among in-
vestigators working at different levels of analysis.” (p. 1). We suggest that
the conflict between Psychological Constructionism and Basic Emotion
Theory may now be scientifically sterile, and that the hundred-year war
on emotion may be moving toward its end. This does not neglect the
need for further cross-disciplinary collaborative research in this area as
there remains an urgent need to better understand the link between the
emotion of sadness and its disorders.

Animal researchers have argued that sadness emerges from activity
within the PANIC/GRIEF system (Panksepp, 2003b), a network that
includes the dorsomedial thalamus, the anterior cingulate, and the
periaqueductal gray among other regions (see Fig. 3). Sustained acti-
vation of the PANIC/GRIEF system may lead to chronic negative
emotionality, transforming normal sadness into a clinical disorder, as-
sociated with loneliness, despair, avoidance, persistent negative cog-
nitions, and behavioural disruption (Bonanno et al., 2008; Leventhal,
2008). But what might trigger the transition from normal sadness to a
disorder such as MDD, comorbidity with a host of disorders and con-
ditions, and premature mortality? Transdisciplinary life course models
such as GENIAL (Kemp et al., 2017a) and NIACT (Kemp et al., 2017b)
spanning the domains of psychological science, epidemiology, and
public health (see also Kemp, 2019), highlight a mediating role for
vagal function, which if deregulated may lead to adverse effects on
downstream allostatic mechanisms ultimately leading to increased risk
for morbidity and premature mortality from a host of conditions and
diseases (see Fig. 3). A meta-review of the literature concluded that a
single depressive episode or recurrent depressive disorder are re-
sponsible for reductions in life expectancy of between 7 and 11 years
(Chesney et al., 2014), findings equivalent to the effects of heavy
smoking. Other research reporting on outcomes from meta-analysis of
293 studies including 1,813,733 participants (135,007 depressed and
1,678,726 nondepressed) from 35 countries (Cuijpers et al., 2014) re-
ported that overall relative risk of excess mortality — after adjustment
for publication bias — was 1.52 (95 % CI = 1.45-1.59). By contrast,
other research (Steptoe et al., 2015) has demonstrated eudemonic
wellbeing - that is, wellbeing associated with meaning and purpose in
life — is associated with increased survival. Over an 8.5-year follow-up
period, 29.3 % of those in the lowest wellbeing tertile died, while only
9.3 % of those in the highest tertile did so. These findings were based on
9,050 core members of the English Longitudinal Study of Ageing, and
were independent of age, sex, demographic factors, and baseline mental
and physical health.

Our models emphasize a key mediating role of the vagus nerve —
often indexed using heart rate variability — through the cholinergic anti-
inflammatory reflex (Sternberg, 2006; Tracey, 2002), which if dysre-
gulated may increase risk for morbidity and premature mortality
(Chesney et al., 2014; Penninx et al., 2013, 2001). There is a growing
body of evidence demonstrating vagal regulation of downstream allo-
static processes known to contribute to important health outcomes. For
instance, recent studies have shown that reductions in heart rate
variability predict increased level of C-reactive protein four years later
(Jarczok et al., 2014), mediate insulin resistance, thickening of the
carotid arteries and subsequent cognitive impairment (Kemp et al.,
2016) — a marker of ill-being — and has been shown to precede incident
depressive symptoms at 10-year follow-up (Jandackova et al., 2016).
While the autonomic nervous system is one of several response systems
that contribute to stress-related mood disorders, the vagus has a reg-
ulatory role over many of these including the sympathetic nervous
system (Deuchars et al., 2018; Porges, 2011), hypothalamic-pituitary-
adrenal (HPA) axis (Porges, 2011), inflammatory pathways (Kolcun
et al., 2017; Tracey, 2007, 2002), metabolism including glucose reg-
ulation (Berthoud, 2008; Dienel, 2019; Malbert et al., 2017; Pavlov and
Tracey, 2012), brain-gut interactions (Bonaz et al., 2018) and even
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neurogenesis and epigenetic mechanisms (Biggio et al., 2009; Follesa
et al., 2007). It is important to note here that there is also evidence that
various response systems such as inflammatory pathways and HPA-axis
function may also impact on ANS functioning, thus the vagus nerve
affects and is affected by other response systems in a bidirectional re-
lationship, as we have described previously (Kemp et al., 2017a)(Kemp
et al., 2017b). Despite increasing evidence for a regulatory role of vagal
function, we acknowledge significant debate in the literature, including
published correspondence, some of which has been written by authors
of the current review (AHK and BWJHP) (e.g. Brunoni et al., 2012;
Kemp, 2012; Kemp et al., 2011b, 2011a; Licht et al., 2011b, 2011a).
Future research is needed, striving for a more mechanistic and causal
description of how discrete patterns of activity and connectivity across
the brain give rise to emotions such as sadness, and under what con-
ditions brain and body processes underpinning sadness may trigger its
disorders such as MDD, associated morbidity and premature mortality.
Finally, recent developments in science — such as the Open Science
Framework — provide a platform for collaborative research and part-
nership working across laboratories and disciplines, laying a foundation
for a future transdisciplinary science of sadness and its disorders. We
sincerely hope that dedicated funding will become available to facil-
itate more collaborative and transdisciplinary opportunities.
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