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Abstract

Particulate air pollution in cities comprises aiggr of harmful compounds, including fine
iron rich particles, which can persist in the aor fong time, increasing the adverse
exposure of humans and living things to them. Widistl street tree (among other species,
Cordyline australisFraxinus excelsioandF. pensylvanicabarks as biological collectors
of these ubiquitous airborne particles in citiesoderties were determined by the
environmental magnetism method, inductively couplgthsma optical emission
spectrometry and scanning electron microscopy, aralyzed by geostatistical methods.
Trapped particles are characterized as low-cogyciineants.d. value of remanent
coercivity H, = 37.0 £ 2.4 mT) magnetite minerals produced bgoemmon pollution
source identified as traffic derived emissions. Mafsthese Fe rich particles are inhalable
(PM5), as determined by the anhysteretic rggigv/y (0.1 — 1 um) and scanning electron
microscopy (< 1 um), and host a variety of potéiytimxic elements (Cr, Mo, Ni, and V).
Contents of magnetic particles vary in the studsaaas observed by magnetic proxies for
pollution, mass specific magnetic susceptibiljty18.4 — 218 x1® m*® kg?) and in situ
magnetic susceptibilityis (0.2 — 20.2 x18 SI). The last parameter allows us doing in situ
magnetic biomonitoring, being convenient becausspafties preservation, measurement

time, and fast data processing for producing ptegianaps of magnetic particle pollution.
Keywords: air pollution; biomonitor; environmental magnetisgeostatistical method;
magnetic proxy; magnetite

Capsule: “magnetic biomonitoring using street tree barkcisnvenient because of
measurement time and fast data processing for miodunaps of particle air pollution”
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1. Introduction

Air pollution in urban areas is a serious humarbfmm and hence a subject of increasing
global concern. Although clear signals of this pealb are distinctly evident in large and
megacities (Karagulian et al., 2015; Gargiulo et 2016), smaller cities, towns, and even
small human settlements in remote Antarctica (Chapet al., 2007) experience pollution
signals as well. This is true because of a critpzat of gases and particulate matter (PM)
spreading over cities are emitted by mobile sousiesh as motor vehicles. Such PM
emissions come from combustion engines, generakln@irrosion, and mechanical
abrasion of road material, tires and brake syst@@mgren et al., 2003; Chan and
Stachowiak, 2004; Chaparro et al., 2010; Gietl let 2010). These emissions include
inhalable iron oxides (ferro- and ferrimagnetic enetls) and potentially toxic elements
(PTE), among other potentially harmful compoundadAnore important, they comprise
micro- to nanoparticles that can reach vital huroagans —lungs, heart and brain— via the
respiratory, blood circulation and olfactory sysserfMaher et al., 2016; Calderdn-
Garcidueias et al., 2019). Therefore, humans alner diving organism present in every

settlement on the earth faces the adverse effatiffefent anthropogenic pollutant loads.

Air quality, both indoors and outdoors, is closed§ated to morbidity and mortality from
respiratory, cardiovascular and neurodegeneratseades (Han and Naeher, 2006; Pope et
al.,, 2002; Knox, 2006; Maher, 2019). Thus, there aisnecessity of monitoring
methodologies for airborne pollutants with advesfects on human health. Among them,
magnetic biomonitoring offers a simple, fast andtageduced alternative to assess the

spatial and temporal patterns of contaminants. #uaknique was recently developed, and



63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

proposes the use of the environmental magnetisrhadetnd biological collectors, such as,
lichen spp. (Chaparro et al. 2013, Marié et alL&@aoli et al., 2017; Winkler et al. 2019),
moss spp. (Fabian et al., 2011; Vukoet al., 2015; Salo et al., 2016)illandsia spp.

(Castafieda-Miranda et al., 2016, Mejia-Echeverml.e018), tree leaves (Moreno et al.,
2003; Lehndorff et al., 2006; Mclintosh et al., 208agnotti et al., 2009; Rai, 2013), tree
ring cores and tree barks (Huhn et al., 1995; Kdet&ka et al., 2003; Zhang et al., 2008;

Brignole et al., 2018).

Most of these studies have been carried out usatigenspecies collection; however, recent
magnetic biomonitoring studies have proved the athge of species transplants (Salo and
Mékinen, 2019; Castafieda-Miranda et al., 2020; Wmlkt al., 2020) for hotspots and
specific study areas, as well as over controllgabsure periods. The usefulness of species
transplantation methodology is the ability to cohtnitial exposure conditions and time
periods for sampling, measure magnetic propertteadentration, mineralogy, and grain
size) over time, and choose sites of concern fopgaes of temporal monitoring or control
of airborne magnetic PM emissions (Marié et al190 On the other hand, Marié et al.
(2018) proposed the first methodology of “in situagnetic biomonitoring” by
measurements of in situ magnetic susceptibiifyon lichens, which preserves species in
its habitat and allows doing magnetic measuremen&s different periods of time. A
detailed data collection over time was possibleough this novel methodology, by
collection and analysis of a total 68300 measurements &f; over 60 measurement

surveys.
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This study proposes the use of street trees iescitor assessing airborne particulate
contamination. Trapped vehicle derived pollutamsagnetic particles and PTE) were
studied by the environmental magnetism method, dtidely coupled plasma optical
emission spectrometry (ICP-OES), and scanning releamicroscopy and X-ray energy
dispersive spectroscopy (SEM-EDS). After deterngmmagnetic properties and elemental
composition of trapped patrticles, their relatiopsivas studied by multivariate analysis. An
in situ magnetic biomonitoring was carried out oeetbarks, producings measurements.
Such data were analyzed by geostatistical techsjgitem which prediction maps of

magnetic susceptibility were obtained.

2 Sampling and labor atory methods

Detailed information of this section can be foundupplementary Material.

2.1. Study area and sampling

Mar del Plata is one of the largest cities in theelBos Aires province in Argentina, located
at latitude 38° 00’ S and longitude 57° 33’ W i tBE of the province (Fig. 1). A total of
560,000 vehicles, i.e.: 400,000 motor vehiclesqeeard public buses) and 160,000
motorcycles, from the stable population were infednm 2015 (I Informe Anual de Mar

del Plata, 2015). An initial sampling area of abodt knf (54 sampling sites) was studied
in April 2016, which was enlarged to 10.7 k86 sampling sites) for the second survey in
March 2017 (Fig. 1). The in situ magnetic biomonitg was carried out during the second
sampling survey. Within the sampling area, a samgpdirid of 0.2 km x 0.3 km was used.

Different available tree species inside the study avere censed; nine street tree species

5
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were selected, identified and classified by geraaher family. The ages of the sampled trees
were estimated by the method proposed by the latiemal Society of Arboriculture (ISA),
which is based on the tree diameter at breast h@@H) and the average growth rate for

each species.

2.2. Magnetic measurements

Dried tree bark material (0.4 — 1.2 g) was firmhggsed and placed into plastic containers
of 2.3 cnt for routine magnetic measurements. Tree bark sssmpkre labeled as MC
samples. Mass specific magnetic susceptibiligy, (percentage frequency-dependent
susceptibility §q% = 100 fo47xHz — Xa7kH2d | Yo.a7kHz, Mass specific anhysteretic
susceptibility farm), anhysteretic ratioxarm/y, saturation of isothermal remanent
magnetization (SIRM = IRMy7om7), remanent coercivity (§, and S-ratio (Soo = -IRM.
soomt / SIRM) were calculated. The temperature deperel@ichigh-field magnetization
was carried out using a laboratory-made horizamignetic translation balance (Escalante
and Bohnel, 2011). Measurementskgfwere done at the high resolution range (0.I%10
SI). ks values were corrected for drift through a 3 measient protocol (two air and one
sample readings). At each street tree, five cagrkealues okis were averaged obtaining a

representative measurement.

2.3. Chemical analysis and microscopy observations

Ba, Co, Cr, Cu, Fe, Mo, Ni, Pb, Sb, Sn, V, and Zerevdetermined in 27 samples by

inductively coupled plasma optical emission spenttry. The pollution load index (PLI)
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defined by Tomlinson et al. (1980), is a compositkex based on the mentioned PTE. It

was calculated using equation (1),

n ’ Ci
PLI - ?=1 Chase,i (1)

whereC; is the concentration of each PTE, &ds. iis the baseline value for each element,

obtained from minimum values. Tree barks were ofeserand examined by scanning
electron microscopy using a Phillips microscope eho®L30. This microscope also
allowed to analyze the elemental composition ofjlgiparticles by X-ray energy dispersive

spectroscopy with an EDAX model DX4 (detection tifi5%).

2.4. Statistical analysis

The statistical and multivariate analyses werequeréd using R (version 3.4.0, 2017). The
Ordinary Kriging method was used to build predistinaps of the most relevant magnetic

parameter.

3. Results

3.1. Street tree species

41 tree species are found in Mar del Plata. Theadgtncil has recommended 34 street tree
species for urban, suburban and coastal zones 20i& A list of such recommended and
excluded species are detailed at EMSUR (2018). Ajniba 54 sampling sites, 11 species
belonging to 9 families —Asparagaceae, Bignonad¢&daceae, Malvaceae, Oleaceae,
Pinaceae, Roseceae, Salicaceae, and Sapindaceae—idestified for this magnetic

7
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biomonitoring. As observed in Figure Qordyline australigG.Forst.) Endl., an&raxinus

excelsiorL., F. pensylvanicd.. are the most abundant species for this study.

According to the age estimation using the DBH ahe &verage growth rate, ages of
sampled street trees are between 21 and 138 yEabde(S1, Supplementary Material).
Therefore, all sampled trees in this study excéednionthly/annual exposure to particle
pollution. Studied samples of these species areesepted in the following ordeF.
excelsiorandF. pensylvanicg34.6% of samples);. australis(32.7%),Acer negund@and
A. pseudoplatanu$5.8%), Catalpa speciosd5.8%), Prunus cerasifera(5.8%), Albizia

julibrissin (5.8%),Cedrus deodor#3.8%),Tilia moltkei(3.8%), andPopulus nigra(1.9%).

3.2. Airborne magnetic particles

Measurements of isothermal remanent magnetizatoguisition evidence that samples
reached 95 — 97% of their saturation at 200 mTha\gh S-ratio ranges from 0.80 to 1,
most of values are between 0.90 — 0.98, indicdtiegdominance of ferrimagnetic minerals
with relatively low coercivity. Values of remanesdercivity ranges from 27.0 to 40.1 mT,

with mean + s.d. value of H= 37.0 + 2.4 mT (Table 1).

Thermomagnetic studies (M-T measurements) of sél€msamples are shown in Figure
3a, where Curie temperatures;)(Tvere calculated from the second derivative of M(T
Heating runs show a similar magnetic behavior amdifterent MC sites, which is
indicative of a common production source for trappeagnetic particles on street tree
barks. This fact is also observed in Figure 3bufblothe relationship between SIRM gnd

(R =0.86, p < 0.01). A main ferrimagnetic phaséhwi, = 553 — 561 °C was determined,
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according to literature (Dunlop and Ozdemir, 198i et al., 2012), it corresponds to
magnetite-like mineral. In addition, a minor higbeccivity phase with = 626 — 670 °C

was also determined. Such minor magnetic phase leagssociated to traffic derived
emission (diesel exhausts and/or asphalt debrie@sted by Marié et al., 2010), mixed
traffic and industrial emission (Castafieda-Mirartlal., 2016; Marié et al., 2016) or to soill
particles. Differences between heating and cootingves in the range RT — 720 °C
evidence differences in magnetic behavior betweamptes MC-1.4 and MC-

1.3/3.4/3.8/6.2/8.1/8.2. Magnetization increasetivben 38 — 88% for cooling runs at RT

as consequence of a neo-formation of magnetiteraline

Measurements of magnetic concentration dependenamatersy and SIRM are
represented in Figure 3b, both parameters are memxy magnetic proxies for pollution.
The magnetic proxy is the most used parameter because of being dasstrwith high
sensitivity, fast laboratory processing, and sus#iy meter is of relatively low cost.
Magnetic susceptibility is roughly proportional tmncentration of paramagnetic and
ferromagnetic minerals, but parameter SIRM is @¥psitive to ferromagnetic minerals.
As summarized in Table 1, mean * s.d. values oftimeed parameters are relatively high
for MC samplesy = 82.2 + 40.0 x1® m® kg?, SIRM = 9.3 + 4.3 x18 A m? kg?, being
four-fold higher than their corresponding minimuralues. According to Dunlop and
Ozdemir (1997)xarm iS @ concentration and grain size dependent miagpatameter.
Mean + s.d. value of this parameter is 287 + 139%m’ kg* (three-fold its minimum

value).
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Anhysteretic ratiogarm/y and ARM/SIRM are magnetic grain size dependerdrpaters
that have mean +* s.d. values of 4.0 £ 2.4 and 8.0301, respectively (Table 1). Both
ratios are normalized with concentration depenganameters for cancelling the effect of
magnetic concentration, and enhance the signakalwariations in grain size (Liu et al.,
2012).xarm/y is @ sensitive grain size indicator of magnetiteere values ofarv/y > 2.4,
and > 5.7 are indicative of the presence of verglsmagnetite particles (< dm, and 0.1
um, respectively, estimation based on King et &882). Airborne magnetic particles in this
study area are emitted mainly by mobile source$ @ag cars, motorcycles and public
buses. Traffic emission is one of the main advpadkition activity in Mar del Plata, where
a high number of motor vehicles (560,000) fromgtable population can increase by 25%
or more by tourism activity (I Informe Anual de Malel Plata, 2015). Percentage
frequency-dependent susceptibility (mean + s.duevaif y;¢% = 4.1 + 3.8%) indicates the
presence of superparamagnetic (SP) particles fjokréerrimagnetic particles <0.03m)
and other ones. These values belong to the rgg%e= 2 — 10%, corresponding to an
admixture between SP and coarser particles (Watah, 1999). Another size related ratio
SIRM/y, which correlates witharm/y (R = 0.78, p < 0.01), has mean = s.d. value of 3.

8.4 KA/m. High values indicate fine magnetic padesc

Some of these fine magnetic particles trapped erstinface of tree barks can be observed
by SEM microscopy. As appreciated in Figure 4, mostparticles are < 1 um
corresponding to the dangerous category ot £Me-rich irregular particles (Fig. 4a, 4b,
4d, and 4e) and spherules (Fig. 4c, 4e, and 4fpbserved, their composition by EDS

shows the co-existence of Fe with Al, Si, Ca, Tij, G}, and Ce.

10



208 As reported in literature, these Fe-rich particesitted by motor vehicles can host PTE
209 into their crystalline structure or onto their ¢ (adsorption). In Table 1, mean values of
210 Ba (101 mg kg), Co (0.9 mg k@), Cr (4.8 mg kg), Cu (48 mg k), Fe (3160 mg K9,

211 Mo (1.07 mg kd), Ni (2.9 mg kg"), Pb (32.4 mg k), Sb (2.5 mg kg), Sn (1.4 mg kg),

212 V(5.4 mg kg"), and Zn (1650 mg k) are listed. Such mean values, except Co, surpass
213 two-fold to five-fold their corresponding minimumalies, which evidences different

214  pollution loads regarding specific areas within Mat Plata.

215 4. Discussion

216 4.1. Magnetic carriers and potentially toxic elertgen

217 Airborne magnetic particles collected by these estigarks are characterized as low-
218 coercivity magnetite minerals. Thermomagnetic Mgyl IRM acquisition curves showed
219 similar patterns between MC samples, which evidencemmon pollution source, that is,
220 mentioned traffic derived particles. Mineralogy dedent magnetic parameters.,(5-
221 ratio, and H) varied in a narrow range {¥ 553 — 561 °C, and mean £ s.d. Qf #137.0 £
222 2.4 mT, Table 1), corresponding to magnetite mindraese results agree well with data
223 from vehicle derived studies reported by Chapara.g2010): T=580 °C and H = 33.1
224  + 8.6 mT for diesel soot,.= 580 °C and § = 31.0 £ 5.4 mT for gasoline soot. Moreover,
225 they are also in agreement with other magnetic biotaring studies carried out in cities
226 from Buenos Aires province, using a lichen sp.sB53 - 575 °C andH=34.2 £ 2.5 mT
227 for Tandil (Marié et al., 2016); = 38.2 = 1.3 mT for Mar del Plata (Gomez et &018);

228 and aTillandsiasp.: H, = 36.3 + 1.6 mT for La Plata (Castafieda-Mirandal.e2018).
11
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The composite PLI index shows values above 1, wisch reference value for minimum
contamination by PTE. Results of this index (calted using Eq. 1 and PTE data, Table 1)
give an assessment of the overall pollution stitusach MC sample. Mean + s.d. value of
PLI is 3.3 = 1.3, such values exceed three-fold dbetents of elements for a reference
(unpolluted) environment. The multivariate analygi®w that these magnetic particles host
potentially toxic elements. Among magnetic paramsgteoncentration dependent ones
and SIRM are correlated with Fe, Cr, Mo, Ni, V, ahé pollution index PLI. The best
relationships are observed fpwith Cr (R = 0.64, p < 0.01); Fe (R = 0.61, p €1); Mo,

Ni, V and PLI (R = 0.51 — 0.52, p < 0.01); and Ba< 0.45, p < 0.05). SIRM correlates
significantly with Ba, Cr, Fe, Mo and Ni (R = 0.410.45, p < 0.05). On the other hand, the

anhysteretic ratigarm/y, correlates inversely with Cu and Zn (R = -0.4% @.05).

Most of PTE, PLI,y and SIRM surpass up to five-fold their correspagdminimum
values, which is indicative of the atmospheric giadin contribution within the city. Ba, Cr,
Mo, Ni, Cu and Zn have been reported in other mtgmaonitoring of traffic emissions
(Weckwerth, 2001; Lin et al., 2005; Maher et al02; Sagnotti et al., 2009). According to
Lim et al. (2007), Ba, Cr, Fe, Cu and Zn are presenfuels and lubricating oils as
additives. Such PTE and other ones are emitteddbjlensources, that is after combustion
(Ba, Zn, Ni, Fe, Cr, and Cu, Lu et al., 2005; Matéal., 2010), and by general corrosion,
engine and brake abrasion (Fe, Al, Si, Ca, Mo,Baand Cu, Sanders et al., 2003; Chan

and Stachowiak, 2004).
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4.2. Potentially dangerous patrticles

These Fe-rich particles are not only harmful bytingsPTE, but also because of their
ultrafine/fine size as observed by SEM- EDS (Figo#ioften < 1 um. They are potential
dangerous particles that are inhalable, and thexeémlverse for humans and other living
organisms. Size distribution of all samples cossat submicron and micron magnetite

particles (Fig. 5).

MC grain size data is represented in Figure 5a witier available data from vehicle
emissions (Marié et al., 2010) and magnetic bionooinig studies carried in cities from
Buenos Aires province, in particular, using lickegn in Tandil (Marié et al., 2016) and Mar
del Plata (Gémez, 2019), and usififjandsia sp. in La Plata (Castafieda-Miranda et al.,
2018). Most of them fall in the range < 0.1 — 1 pna correspond to the category M
Comparison of MC sizes is in agreement with rarajeained for mentioned biomonitoring
studies. As appreciate in Figure 5b, the mean vafugze (and anhysteretic rat@rm/y)

for this tree bark data is slightly lower than \eduecorded by lichen sp. but higher than
Tillandsia sp. Although a complex composite of vehicle detiyarticles is expected in
these barks, contribution of exhausts, brake systemd asphalt has to be different (because
of their sizes) to reach 1.5 m above the groundallemparticles of about 1 um emitted by
combustion of diesel and gasoline (megru/y for gasoline/diesel PM is slightly lower
than for MC samples) seem to be preferred and mpiaieable trapped (and preserved) in
this case than larger brake wear and asphalt dgbean sizes of about 5 um, Marié et al.,
2010). This fact seems not to be related to théietiubiomonitor (tree bark) itself because

similar particle sizes were also observed in lickpacies in this city. The partial loss of

13
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292

larger particles possibly of brake wear provenaneg be explained by the role of rain, i.e.

washing off and redistribution of such large padescin exposed surfaces as well.

4.3. Particulate pollution: zones with high magnetoncentration

Dry and wet deposition of particles in the treekltake place via direct incorporation or via
the stem flow. Root uptake is another possible ygayhfrom soils; however, magnetic
particles (iron oxides) are not root-absorbed bgeahey are insoluble in soil solutions
(Huhn et al., 1995). Contents of airborne magngéidicles captured by street trees may
vary within the study area by multiple factors, Iswuas traffic volume, buildings, open
coastal areas, commercial, recreational and retsadleareas, population density, etc.
Although airborne particles are collected by défar tree bark species, their collection
represent similar time exposure over periods of timg/gears. As discussed by Catinon et
al. (2008, 2011), airborne particles are depositethe outer part of the tree bark, and then
part of them are incorporated into the bark tissWggh time, some of these tree bark
suber-included particles seem to undergo redudissolution into the deeper suber layers.
Thus, tree bark surface-deposited and some suberporated magnetic particles are
expected to contribute to the magnetic signal @ toarks. Cross sections of some twigs
studied by Flanders (1994) showed that magnetizatidghe core was almost two orders of
magnitude below that of the surface Salix matsudan&ee ring cores, Zhang et al. (2008)
observed that magnetic particles (emitted by arreling factory) were intercepted and
collected by tree bark and then entered into tydenx tissues during the growing season to
become finally enclosed into the tree ring by Hgation. Vezzola et al. (2017) observed a

partial fragmentation of magnetite particles inavgted (encapsulated) into the bark,
14
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suggesting that plant physiological processes nisgolve or disintegrate such magnetite
particles hosted in the inner part of barks. Ini@ald they found very low values of
magnetic susceptibility (being frequently diamagr)eand SIRM in inner bark (from inner
layers) samples and close to values measured anteotsite. Inter-species comparison
usingy andk;s values were studied here for the most represeatapecies. Results from
Kruskal-Wallis test show no significant differencgs > 0.12) between species through
magnetic concentration dependent parameters (T&3e Supplementary Material).
Therefore, trapped magnetic particles are indepgnafethe most representative spedtes

excelsiorandF. pensylvanicg35% of samples), ard. australis(33%).

Magnetic proxies for pollutiony and SIRM (Fig. 3b), accounted for the magnetic
concentration variation recorded in tree barks.(g.g 82.2 + 40.0 x18 m® kg™), which is
comparable to results obtained in other magnetimbnitoring studies using lichen sp. in
Tandil ¢ = 105 + 94 x18 m® kg?, Marié et al., 2016) and Mar del Plaja<119 + 38 x10

8 m® kg', Gémez, 2018). On the other hand, similar resoftsnagnetic concentration
dependent parameters between tree barks and hatiga spp. for an industrial study area
was reported by Paoli et al. (2017). Although stefaapture of magnetic particles seems
comparable between some tree barks and lichenespélsere is a clear difference with tree
leaves which may be related to their surface feat(moughness, protective cuticle, etc.). In
terms of surface magnetization (magnetization peit area), Flanders (1994) found
relative magnitudes of surface magnetization feegrleaves, brown leaves, and barks are

1, 2.5, and 200, respectively.
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Measurements gf for two surveys over 2016 and 2017 were proceasddare represented
in Figure 6a and 6b. Prediction maps for both sggveere obtained using variogram
functions of exponential type and by the spatitgnpolation method, Ordinary Kriging. In
general, lower values gf are observed for 2017 survey than for 2016 one, lmeadue to
the influence of rainier periods over 2017. Suatt fa supported by meteorological data
provided by the National Meteorological Serviceirffal data during both campaigns is
represented in Figure S1 (Supplementary Mateal), as observed, recorded rainfall was
higher for 2017 survey (47.6 mm) than for 2016 eyr¢21.6 mm). After moderate to
intense rainy periods, a partial decrease of magsesceptibility is expected in lichens
according to Marié et al. (2018). They highlightbdt such decrease is indicative of two
possibly inter-related pollutant dependent processbke first one is related to a superficial
“washing” of trapped particles on lichen’s thallasd the second one to a reduction of
dispersed airborne PM by wet deposition. A similduction of magnetic PM content by
rainfall on tree leaves was also reported by Matakd Maher (1999) and Castafieda-
Miranda et al. (2020). Although decreasegaver time is observed, about five main zones
with high magnetic concentration are distinguisie@016 surveyy > 80 x1¢® m® kg™)
and 2017 surveyy(> 70 x10° m® kg"). Such zones correspond to downtown Mar del Plata

and main access to the city such as Pedro Luro, &x0n Ave., and Independencia Ave.

On the other hand, measurements of in situ magsasticeptibility for biomonitoring are
more convenient than laboratory measurementsy obecause of execution time,
preservation of biomonitors, and collection «@f data over different periods of time as

proposed by Marié et al. (2018). After doing thespid measurements and a fast-
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processing data procedure, prediction maps for 2tvey (Fig. 7a) were obtained using
mentioned variogram functions and Ordinary Krigingecause of particles may be
deposited unevenly on the tree bark surface anditbin inner suber layers, differences
between laboratoryy) and in situ €is) magnetic susceptibility may arise from the
integration volume where magnetic signal is measymark sample and bark surface,

respectively) by sensors.

High values of in situ magnetic susceptibilitgs & 8 x10° Sl) allow identifying four main
pollution zones within the study area. Such zome®slve the highest population density
(10,800 — 39,000 people per Rmand the above mentioned avenues (Pedro Luro Ave.,
Colon Ave., Juan H. Jara Ave. and Independencia,Aig. 1) where recorded traffic is the
highest, between 19 — 64 veh fhirFig. 7b). On the contrary, low valuesigf (< 4 x10°

Sl) defined two less pollution impacted zones ledat NW and SE part (Fig. 7a). Both of
these zones comprise residential areas (low populdensity of 3,000 — 6,000 people per
km?) with higher street tree density and lower trarifbigtween 4 — 14 veh mti than

downtown.

5. Conclusion

Fe rich particles emitted by traffic pollution arellected from different street tree species,
beingC. australis F. excelsiorandF. pensylvanicahe most abundant species for this
study. Such particles are trapped in their tissargdand are characterized by a low-
coercivity phase of magnetite in agreement witffir@erived particles reported in

literature.
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These iron rich particles host a variety of dangsrelements such as Ba, Cr, Cu, Mo, Ni,
Pb, Sb, Sn, V, Zn, Al, Si, Ca, Ti, and Ce. Som¢hete, as well as the pollution index PLI,
surpass up to 5-fold their minimum values, whiclderces the pollution influence.
Another important result to be highlighted is ttrese particles fall in the size range of <
0.1 — 1 um. These ultrafine/fine particles are iabl@ and may reach deep into the lungs.

Exposure to this Pl is associated with adverse effects on humans #ed living things.

Zones with high magnetic PM concentrations were identified through predictiozps of
y andkjs. Comparison between 2016 and 2017 surveys indicatiecrease gfover time
due to an increase of rainfall. In situ magnetantonitoring is a novel, rapid and
convenient methodology for assessing particulabeifpmn by measurements of magnetic
susceptibility and biomonitors. Such biomonitoredtbarks) have a low magnetic signal
(due to their diamagnetic matrix) that may be eebkdrby collecting minute amounts of
ferrimagnetic vehicle derived particles. This fagt,well as availability and necessity of
trees for multiple functions in cities, allows e tuse of street tree barks as an efficient

option for particulate biomonitoring in many citiasund the world.
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Table and Figure captions

Table 1. Descriptive statistics of magnetic parametersgaotdntially toxic elements. Street

tree bark samples (MC - samples) from Mar del Riatkected in April 2016.
Fig. 1. Study area (Mar del Plata, Argentina) and calbexin situ measurement sites.

Fig. 2. Studied street tree species in the urbanized(Marndel Plata downtown). A total

of 54 trees were identified and studied.

Fig. 3. Magnetic measurements of street tree bark samplethermomagnetic
measurements; ant)(saturation of isothermal remanent magnetizatensws mass

specific magnetic susceptibility.
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Fig. 4. SEM-EDS analysis of micron and sub-micron Fe egittapped by street tree barks:

(a, ¢, €) sample MC-3.4, and(d, f) sample MC-3.7.

Fig. 5. Magnetic particles trapped by street tree bais fMar del Plata, sizes are
estimated fromd) parametergarm andy (calibration lines are based on data reported by
King et al., 1982) andb the anhysteretic ratignrm/y. FOr comparison purposes, reported
data (and mean values * s.d.) using lichen spairdil (170 km NW from the studied area,
Marié et al., 2016) and Mar del Plata (Gomez, 20IBpndsia sp. in La Plata (340 km N
from the studied area, Castafieda-Miranda et dl82@nd traffic derived particles (Marié

et al., 2010) are shown.

Fig. 6. Prediction maps using measurements of the magmetxy for air pollution: mass

specific susceptibility in 10° m® kg™ (a) April 2016; ) March 2017.

Fig. 7. (a) Prediction map using measurements of the magpedicy for air pollution: in
situ magnetic susceptibilitys in 10° SI (March 2017), andb] recorded traffic and

population density (data provided by Censo, 2010).
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Table 1

Variable N mean s.d. min. max.
x [10® m? kg™ 54 82.2 40.0 18.4 218
SIRM [10° Am®kg?] 54 9.3 43 2.5 19.2
Xarm [10°8 m*® kg™ 54 287 139 87.9 689
Xia% [%) 54 4.1 3.8 -0.8 16.9
Yarw/X [a.U.] 54 4.0 2.4 1.8 18.4
ARM/SIRM [a.u.] 54 0.03 0.01 0.01 0.07
SIRM/x [kA/m] 54 13.1 8.4 4.9 53.0
He [MT] 54 37.0 2.4 27.0 40.2
S-ratio [a.u.] 54 -- -- 0.80 1
Ba [mg kg] 27 101 40 27 186
Co [mg kg™] 27 0.9 0.9 0.1 3.2
Cr [mg kg™ 27 4.8 2.7 1.0 12.3
Cu [mg kg] 27 48 22 18 95
Fe [mg kg™] 27 3160 1560 1230 6820
Mo [mg kg™ 27 1.07 0.39 0.56 2.04
Ni [mg kg™ 27 2.9 1.0 1.1 4.6
Pb [mg kg™ 27 32.4 24.1 6.0 109
Sb [mg kg™ 27 2.5 2.1 0.5 9.9
Sn [mg kg™ 27 1.4 0.7 0.3 3.0
V [mg kg] 27 5.4 2.2 2.5 11.3
Zn [mg kg™ 27 1650 766 587 3530
PLI [a.u.] 27 3.3 1.3 1.2 6.2
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1. Populus nigra L. Mar del Plata (Arg.)
. I _____ Street trees (n= 54)

2. Tilia moltkei Spath ex C.K. Schneid.

3. Cedrus deodara (Roxb.) G.Don

4. Albizia julibrissin Durazz.

5. Prunus cerasifera Ehrh.

6. Catalpa speciosa (Warder) Warder ex Engelm.

7. Acer negundo L.; A. pseudoplatanus L.

8. Cordyline australis (G.Forst.) Endl.

9. Fraxinus pensylvanica L.; F. excelsior L.
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Highlights
Accumulated airborne magnetic particles are inhalable PM, s and potentialy harmful
In situ magnetic biomonitoring is rapid and convenient for air PM pollution assessment

Street tree barks are an efficient option for particle biomonitoring



