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Abstract

In this paper we study integral operators with kernels

K(z,y) = ki(z — A1y)..km(z — Any),

ki(z) = Qi(z), where ; : R® — R are homogeneous functions of degree
BRE

zero, satisfying a size and a Dini condition, A; are certain invertible ma-
trices,and > +... >~ =n—qa,0< a <n.
q1 9m

We obtain the boundedness of this operator from LP) into L90) for

% = i =, for certain exponent functions p satisfying weaker condi-
tions than the classical log-Holder conditions.
123

1 Introduction

Given a measurable set 2 C R™ we denote with P(£2) the family of measurable
function p(-) : Q@ — [1,00]. Given p(-) € P(Q) let LP()(Q) be the Banach space
of measurable functions f on €2 such that for some A > 0,

Pp(y,a(f/A) < oo,

where

poalf) = [ 1@P da | flieian,
O\ Qoo
Do = {z € Q: p(x) = oo}, with norm

1 lzor @) = Inf {A > 0y a(f/2) < 1}

We will denote || f|,) instead of ||f[|Lrc) () if the role of the set € is clear
enough. These spaces are known as variable exponent spaces and are a general-
ization of the classical Lebesgue spaces LP(R™). They have been widely studied
lately. See for example [1], [3] and [4]. The first step was to determine suffi-
cient conditions on p(-) for the boundedness on LP() of the Hardy Littlewood
maximal operator
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where the supremun is taken over all balls B containing x. Analogously for
0 < a < n we recall the definition of the fractional maximal operator

1
Maf(x)zng/BIf(y)ldy,

where also the supremun is taken over all balls B containing .
We also define M, g, for all 1 < s < oo,

Ma,sf = (Ma.s |f|s)1/s‘ (1)
Let p_ = essinf p(x) and let py = esssup p(x).

Definition 1 Given Q@ C R™, and function r(-) : Q@ — R, we say that r(-) is
locally log-Hélder continuous, and denote this by r(-) € LHy(QY), if there exist a
constant Cy such that for all x,y € Q, |z —y| < %,

Co
rz)—ry)| < ———-r.
Ir(z) —r(y)] “oaz = 9]
We say that r(-) is log-Hdlder continuous at infinity, and denote this by r(-) €
LHo (), if there exist constants Co and ™ such that for all x € Q,

Coo

|r(z) —re| < log(ie et

In [3], D. Cruz Uribe, A. Fiorenza and C. J. Neugebauer proved the following
result. If p(-) € P(R™), 1 < p_ < py < oo and p(-) € LHo(R™) N LH(R™),
then the Hardy Littlewood maximal operator is bounded on LP()(R™). In [2]
(chapter 4) the authors show that the boundedness of the maximal operator
can be obtained under weaker conditions on the exponent p(-). They define the
N, — condition as follows,

Definition 2 Given Q C R™ and p(-) € P(R"), we say that p(-) € Nuo () if
there exist constants Ao and pso such that
-1
) dxr < oo.

1 1
/ exp | —Awo ‘ -
o, p(*) P
Also, in [2], the authors define the Ky — condition as follows,

whereQ+:{xEQ: ‘1—1’ >0}.
p(z) P

Definition 3 Given p(-) € P(R"), then p(-) € Ko(R™) if there exists a constant
C' such that, for every cube Q,

”XQHLP(-)(Rn) ||XQ||LPI(')(R”) <C |Q|

They prove the following result. If p(-) € P(R"), 1 < p_ < py < o©
and p(-) € Ko(R™) N Nyo(R™), then the Hardy Littlewood maximal opera-
tor is bounded on LP()(R™). They also show that LHo(R™) N LH.(R") C
Ko(R™) N Noo (R™) and they give an example that shows that the the inclusion



is strict.
Let 0 < a<n,meeN. Forl <i < m,letl < ¢ < oo such that

q—’“;—l—-n—&-ﬁ:n—a. For a = 0 we take m > 1.We denote by ¥ = X,

the unit sphere in R™. Let Q; € LY(X). If z # 0, we write 2’ = z/|x]. We
extend this function to R™ \ {0} as ;(x) = Q;(z').

Let
bie) = e 2

and let
Tof(x) = - K(z,y) f(y)dy, (3)

with K(z,y) = ki(x — Ary)...km(x — Apy), where A;, are certain invertible
matrices and f € L5 (R™). In [6] the authors consider the operator T, defined

in (3) where, for 1 <i < m, k; is given by (2). For 1 <p < oo and Q; € L1(X),
they define the LP- modulus of continuity as

@, p(t) = sup (- +y) — () lps-
ly|<t

They make the following hypothesis about the functions ©;, 1 < i < m,

(Hy) There exists p; > ¢; such that Q; € LPi(%),

! dt
<m>/wmm7<w
0

They obtain the boundedness of this kind of operators in weighted Lebesgue
spaces. We recall that a weight w is a locally integrable and non negative
function. The Muckenhoupt class A,, 1 < p < oo, is defined as the class of

weights w such that
(o) (@ h=)" ] -
— | w]|—= [ w P 00,
Rl Jo @l Jq

where @ is a cube in R™.
For p =1, A; is the class of weights w satisfying that there exists ¢ > 0 such
that

sup
Q

Muw(z) < caw(z) a.e. z € R™.

We denote [w] , the infimum of the constant ¢ such that w satisfies the
above inequation.

In this paper we study the boundedness of T, on variable Lebesgue spaces.
The exponent functions will satisfy certain regularity conditions and also certain
relations with the different matrices A; involved in the kernel K. We will ask
the hypothesis p(A;z) < p(z) a.e.x € R™. In [9] we proved that this condition
is in fact necessary in some particular cases. We will first prove the boundeness
of the fractional maximal operator in variable Lebesgue spaces, with standard
extrapolation techniques. Then we obtain the LP()(R") — L4()(R") boundedess

of T, L = 2. To obtain this result we use the boundedness of the

11 [l
@ q()  p()  n”



"sharp maximal function”. We recall that given a function f € Li (R") we
define the sharp maximal function

# £(2) = sup — b
M f(a) = sup ! ‘f(y) 5 B/ 1) v

where B is a ball containing 2. In [2] the authors prove that given p(-) with
1 <p_ < p, < oo, if the maximal operator is bounded on L ) (R™) then there
exists ¢ > 0 such that

SUp [[Ex i )11} [y < €8P [|Exqmtare s@>e

and
Hf”p(') <c HM#pr(.) :

2 Main results

In this paragraph we use the sharp maximal function to obtain the boundedness
of the operator defined by (3).

In [5], B. Muckenhoupt y R.L. Wheeden define A(p,q), 1 <p<ocand 1 < ¢ <
00, as the class of weights w such that

o[ e i v ] < =

When p =1, w € A(1, q) if only if

1 i
Sup lw1XQ||w (W/Qw(w)%&) ] < oo.

They prove that M, : LP(wP) — L(w?) for weights w € A(p, q), % -1
(673

=. They also obtain the corresponding weak type inequality. With classical
extrapolation techniques we get the following result,

Lemma 1 Let 0 < o < n and let p(-) € P(R"), such that 1 < p_ < p; < 2.

Let q(-) € P(R™) be defined by ﬁ — ﬁ = = and we suppose that the mazimal
operator is bounded on L(‘J(')/QO)/(R”), with qo such that p% —-Ll-2

9 n
If p_ > 1 then there exist C > 0 such that

IMafll,y < ClIFL -
If p_ =1 then, for all A >0,

[N werns at sy >0 gy < CUF gy -

Proof. Let qq : p% _ qio = % and we suppose that p_ > 1. Let ¢(-) = %, we

take a bounded function f with compact support.

IMa 12 = [(Ma )5y <C sup / (Mo f)™ (2)h(x)dz,
Hh”g/(.)zl



We define an iteration algorithm on L9'()(R™) by

= MFh(x
=2

izo 2* IIMHv

As in [2] it follows that
(¢) |h(z)| < Rh(z) for all 2 € R™.
(i) R is bounded on L9 )(R™) and [RRlz ) < 21hllg 0y
(ii1) Rh € Ay and [Rh] 4, < 2| M]||;(,
So
d0 90 LN\
IMaf%) <C sup [ (Mof)™ (2) (Rh()7 )" da,
! Il =1
since Rh € A; then Rhi € A1 C A(p—, qo), and so, since M,, is bounded from
LP=(wP-) in L9 (w) for weights w € A(p_, qo),

sl <¢ s ([0 @ (R@F) i)

“thl(,)Zl
now we apply the Holder’s inequality with p(-) = %,

40

ML A%, <Ol s ||RAS

q(+) B(+)

17 ‘ 1= 7()

< ClIflE -

The rest of the proof follows as in the proof of Theorem 5.46 in [2], since
p+ < oo and then the set of bounded functions with compact support is dense
in LP()(R™) (see Theorem 2.72 in [2]). =

Lemma 2 Given Q CR"™. If p(-) € Noo(Q) and pso = 0o then 1 € LPO) ().

Proof. For A > 1 sufficiently large, by the N, — condition for p, and Q; =

QN Qoo
/ \—P(@) gy — / o—P(@) () g
ONQoo ONQoo
—Acop(z) B —Acop(@)
= e e Ao dr < e HoP Py < oo,
ONQoo ONQoo
]

Proposition 3 Let A be an invertible matrix n X n.
a) If p(-) € Noo(R™), 1 < p_ < p;y < 00 and p(Az) < p(x) a.ex € R™, then
there exists ¢ > 0 such that

1 0 A7 ey < el fllyey

for all f € LPO)(R™).
b) If p(Az) = p(x) a.e.x € R™ then there exist ¢ > 0 such that

1f o Allpey < ellfllpcys

for all f € LPO)(R™).



Proof. a) We assume that f is bounded with compact support and || f||,,) < 1.
We will prove that,

170 A7 0y < e
We descompose f = f1 + f2 where fi = fX{u:|f(2))>13 and f2 = [X{a:|p(2) <1}
[fo AT |y < Nfro ATy +lf20 A7H, -

We define E = {z : p(z) > poc } and F = {z : p(x) < poo}. We estimate || f2 o A*1||p(v),

120 A7H| pocy < M1f20 A7 Loy T 1F20 A7 oo () -
Since f5 is bounded and with compact support, fa € LP>=(R™) and so

foo AL € LP=(R")
Lemma 3.28 in [2], with ¢ = fo 0 A7, #(*) = Poo, u(-) = p(-) implies that, if
Hf2 o A_lHLpoo(E) < 1 then

120 A7 or ) < 120 A7 | ey +1 < 22

and if ||f2 o A~ > 1 then

o ()

[ £20 AilHLP(')(E) <2|f2o AilHLPoc(E) < 2det(A) [ foll oo m)

< 2det(A) [Ifoll e ) + 12l e )| -

To estimate || f2||; poo (E)» by the definition of E, we define the defect exponent

r(-) € P(E) by
1 1 1

- =
P p(x)  7(2)
By the generalizated Holder’s inequality, Corollary 2.28 in [2],
1f2ll Looe () < K Nl ey gy 1f2ll Loy () < KN e () < 00
The last inequality follows since r(-) € Ny, Too = 00 and so Lemma 2 implies
1e L"O(E).
To estimate || f2[| ;o0 (), We apply Lemma 3.28 in [2], with g = f> € LPO(F),
t(-) = p(-), u(-) = Poc- Since || f2]| Lpir(py < 1,
1f2ll Looe () < I1f2ll Loy @ny +1 < 2.
Combining the above estimates we get

Hfz oA—1HLP(~>(E) < C(K”l”LTU(E) +2) < oo

We define the defect

Now, in a similar way, we estimate || fooA
exponent s(-) € P(F) by

71||LP(-)(F)'

1.1
p(x) P s(z)



By the generalized Holder’s inequality, Corollary 2.28 in [2],

—1 —1
||f2OA||Lp(~)(F) = ||LP00(F)

Since s(-) € No and s, = 00, by Lemma 2 we have that 1 € L*()(F). Further,
we can now argue as we did above to get

120 A gy < 120 A7 ey < AU 1ol g

< det(A) [ fell o (&) + I fall oo ()| < 0

We now estimate || f1 o A‘1||p(_). Since p; < oo it’s enough to prove that there

exits ¢ > 0 such that p,.y(fi o A™') < e Since p(Az) < p(x) a.e.x € R™ and
again from Corollary 2.22 in [2],

/fl )P®)da = det(A /fl )PP da < det(A)pp( (1) < cllfillyy <e

For general f € LP() (R™), we apply Theorem 2.59 in [2]. For k € N, we
define f*(2) = | f| X{a:|c|<k,|f(2)|<k}> J*(2) increases to | f(x)| pointwise almost

everyhere and so || f¥| oy Il and also | o A‘1H — || fo A‘lup(_) .
Since each f* is a bounded function with compact support and ‘ WH <1,
p
we have proved that there exists a constant ¢ > 0 such that H \IICI;‘:)IT‘() O <cg,
r p(.
foA fro Al fkoA1 §
= G
||f|| T k5o | Ty |, koo || el

and then
150 A7) < ellfllyy

b) Let f € LPO)(R™). We have that

p(x)
If o Ally = inf{)\ >0 /n (f(‘:x)) dx < 1}.

By a change of variable and using the hypothesis on the exponent,

/n (f(;u))“”) = faee(a)] [ (f(y))p(” " n

Let D = |det(A™")|, then we have two cases: If D < 1,

||fOA||p() > ||pr()

If D > 1, then from (4) it is follows that

o[ () e ()




where C' = %. So,

L ()
/n (f(:lm))p(ﬂ dr < / (;;S?)p(x) dz.

From this last inequality it follows that

1
1foAll,y <D= [Ifll,-

That is,

Theorem 4 Let 0 < a < n and let T, be the integral operator given by (3).
Letm € N (orm € N\ {1} for a =0), let Ay, ..., A, be invertible matrices such
that A; — Aj is invertible for i # j, 1 < i,5 < m and the functions Q; satisfy
the hypothesis (H1) and (H2). Let s > 1 be defined by p% + ..+ pim + % =1, let
p(-) € P(R") be such that 1 < s < p_ < py < 2 and such that p(A;z) < p(z)
a.e.x € R™ and let q(-) € P(R") be defined by ﬁ - ﬁ = o If qT') €
Noo(R™) N Ko(R™) then,
a) there exist C > 0 such that

H/\X{w:Taf(a:)>A}Hq(.) <C ||pr(.)

for all A >0, f e LX(R").
b) If p_ > s then T, extends to a bounded operator from LPC)(R™) into
LIC)(R™).

Proof. a) In [6] the authors prove that, for f € L°(R"),

M#(Tof)(x) < e Masf (A7 ), ()

i=1

a.e.x € R®, where M, s is defined in 1. Since % € Noo(R™) N Ko(R™) then
¢ (") € Noo(R™) N Ko(R™). Indeed is easy to check that if p(-) € Noo(R™) then
ap(-) € Noo(R™) for all &« > 1. So s@ = ¢(-) € Noo(R™). Remark 4.6 in [2]
implies ¢'(-) € No(R™). Since % € Noo(R™) N Ko(R™) then by Theorem
4.52 in [2] the maximal operator it is bounded on L (R™). So, by Theo-
rem 4.37 in [2], it is bounded on LIC)(R™). Also by Corollary 4.64 in [2] it
is bounded on L7 ()(R™). By Corollary 4.50 in [2], ¢'(:) € Ko(R"). And so
q'(+) € Noo(R™) N Ko(R™).

Let A > 0 and f € LP(R™). Since ¢'(-) € Noo(R™) N Ky(R™), again Theo-
rem 4.52 in [2] implies that the maximal operator is bounded on L ()(R"), so
from Theorem 5.54 in [2] and (5),

M a0 p@)> 33 lae) < €8P AN (a1 @y >ap g
A>0

‘ < C'sup
a(-) A>0

= Cili% H’\X{z: T Moo f(A] Y2)>2)

A Z X{w:Ma o f(AT 2)> 25}
i=1 q(-)



< Csu H)\ 2Ays
0 A>%Z X{a:Ma.o|F1° (A7 2)>(25)7}

§C’supZH)\X{$MMf ATlz)> 2}

A>0 cm q()

So by Proposition 2.18 in [2] and by Theorem 2.34 in [2]

1

s

IAX (T f(2) >0} () < Cililgz H/\SX{I;MQ_S\f|S(A;lz)>( A )5}
=1

20} | a2
1
. ) X Ma 115 (A7 2)> (2007} 0
1
m A S
o] | Ao
30 L 1l as =1 Ml 47 )52y O

(50

ol

A
= Csupz sup / (—)°h(Asy)dy
3207 (I8l g0, =1 AT M L1 (AT ) (207} €

@ =

m
A
< C'sup g sup / (—)*h(Asy)dy
M0G0 | IAll gy, =1y Macs | F1° () > (25 T

We first apply the Holder’s inequality (Theorem 2.26 in [2]). Then we use
(%)’ € N (R™), Proposition 3, Lemma 1 and Proposition 2.18 in [2] to obtain

[AX (@ £ ()23 )

o |

m

< C'sup Z sup

A>°z 1[Il e,
(40

A s
%) X{y: Mo o|£1°(1)>(25)°}

B o oA,

w |=

As
%) X{y:Ma 5| f1° (y)>(

< C'sup Z sup

.
A>05T | Ikl g, ol e

'dwb—‘

< C'sup
A>0

\ <o

A
() X (Mol £1° () > (20)%) = C £l

b) Let f € LS°(R™). By Theorem 5.54 in [2], since ¢'(-) € Noo(R™) N Ko(R™),

ITafllyy < C 1M Tt o

Now we use (5) and since ¢(-) € Noo(R™), by the Proposition 3

<Z||wa Hq()<CZ||Maéf||q( = Cm |[(Mas 171" N



By the Proposition 2.18 in [2], Lemma 1 and Proposition 2.18 in [2]

= Cm ||(Ma.s [f) 50 < CHT 50 = Clliflloe) -

s s

Now b) follows since L°(R") is dense in LP()(R"). m

Theorem 5 Let 0 < o < n and let T, be the integral operator given by (3). Let
m €N (orm € N\ {1} fora =0). Let Ay, ..., Ap, be invertible matrices such
that A; — A; is invertible for i # j, 1 < 4,5 < m and the functions Q; satisfy
the hypothesis (Hy) and (Hs). Let s > 1 be defined by p% +...+ pim +1=1,
let p(-) € P(R") be such that 1 < s < p_ < p, < 2 and such that p(A;x) =
p(z) a.ex € R™ and let q(-) € P(R") be defined by ﬁ - Wld = &, If the
mazimal operator is bounded on LY ) (R™) then,
a) there exist ¢ > 0 such that

1M p@>all o) < ellF g

for all X\ >0, f e LXR").

b) If p_ > s then T, extendes to a bounded operator from LPC)(R™) into
LIC)(R™).
Proof. a) Let A > 0 and f € L®(R™). By Theorem 5.54 in [2], since the
maximal operator is bounded on L9 ()(R™),

Mot @>21 ) < C M rr# @n@=all o -

li
Now, by (5), as in the proof of the previous theorem and since (M) =

S

/
(M> , by Proposition 3, Lemma 1 and Proposition 2.18 in [2], we have that

S

H/\X{:v:Taf(I)>)‘} Hq() =

n S
A
< C'sup sup det Ai_1 () Xr,,. s PUY hoA; Y
A>0; Ihl(m)/—1’ ( )| om {uiMa s |fIP()>(2:)} 0 | ||(qg)>
_ 1
n A S
< C'sup sup det A;l () X1, s s Bl acyy:
>\>01.:Z1 |h|(q(,))/:1’ (47| em ) MyMasl 1P 0)>(25)" 20) | “( &)
L N »
< Csup <Cm> Xy Moo 717 ()>(25)°} ‘q(_) < Gl =C Ml

b) We suppose that s < p_. Let f € L®(R™). By Theorem 5.54 in [2], since
the maximal operator is bounded on L7 ()(R"),

1Tl < CIM#TA
by (5) and since q(A4;x) = ¢(z), by Proposition 3,
-1
ITafllge) < D0 IMas FAT ) 0y < C D MIMas fllyey < ClEllye -
i=1 i=1

where the last inequality follows as in the proof of the previous theorem. =

10
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