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Abstract. Let ne€ N. Let Ay,...A,, be nx n invertible matrices. Let 0 < a <nand 0 < o; <n
such that o) + ... + &, = n— a. We define

' 1
Tl ()= [ ey 0

In [8] we obtained the boundedness of this operator from LPC)(R") into L90)(R") for ﬁ =

in the case that A; is a power of certain fixed matrix A and for exponent functions

a
p() — n?
p satisfying log-Holder conditions and p(Ay) = p(y), y € R" . We will show now that the

hypothesis on p, in certain cases, is necessary for the boundedness of T and we also prove the
result for more general matrices A;.

1. Introduction

Let n € N. Given a measurable function p(-) : R” — [1,00), let LP()(R") be the
Banach space of measurable functions f on R” such that for some A > 0,

/(VEL—x)')p(x>dx<oo,

p(x)
7l =infd 2> 0: [ ('f;—”> dx< 1

These spaces are known as variable exponent spaces and are a generalization of the
classical Lebesgue spaces L”(IR"). They have been widely studied lately. See for ex-
ample [1], [3] and [4]. The first step was to determine sufficient conditions on p(-) for
the boundedness on LP() of the Hardy Littlewood maximal operator

with norm

1
I =50 /B )| dy,

where the supremun is taken over all balls B containing x. Let p_ = essinf p(x) and
let p+ = esssup p(x). In[3], D. Cruz Uribe, A. Fiorenza and C. J. Neugebauer proved
the following result.
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THEOREM 1. Let p(-) : R* — [1,00) be such that 1 < p_ < py < e. Suppose
Surther that p(-) satisfies

c 1
_ < _ —
lp(x) = p(y)| < T =yl <3, (D
and B
— < — > .

Then the Hardy Littlewood maximal operator is bounded on LP") (R").

We recall that a weight @ is a locally integrable and non negative function. The
Muckenhoupt class «7,, 1 < p < oo, is defined as the class of weights @ such that

| he) (@) ] <=

where Q is a cube in R”.
For p =1, < is the class of weights @ satisfying that there exists ¢ > 0 such
that
AMo(x) < co(x) ae xeR"

We denote [@],, the infimum of the constant ¢ such that @ satisfies the above inequa-
tion.

In [5], B. Muckenhoupt y R.L. Wheeden define <7 (p,q), 1 < p<eoand 1 < g <
oo, as the class of weights @ such that

(o foora)’ (g )] <=

When p=1, w € &/(1,q) if only if

sgbm*meééywwOﬂ<<w

Let 0< o< n. For 1 <i<m,let0< a; <n, besuch that
a +..+0,=n—a.

Let Tj, be the positive integral operator given by

where

Taf (5) = [ k() f ). 3)
1

1

k(x,y) =
) = A e A

O 7

and where the matrices A; are certain invertible matrices such that A; —A; is invertible
fori# j, 1<i,j<m.
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In the paper [7] the authors studied this kind of integral operators and they obtained
weighted (p,q) estimates, [11 = % — & for weights w € A(p,q) such that w(Ax) <
cw(x). In [8] we use extrapolation techniques to obtain p(-) —¢(-) and weak type es-
timates, in the case where A; = A, for some invertible matrix A such that AN = I, for
some N € N. This technique allows us to replace the log-Holder conditions about the
exponent p(-) by a more general hypothesis concerning the boundeness of the maximal

function . . We obtain the following results.

THEOREM 2. Let A be an invertible matrix such that AN =1, for some N € N,
let Ty be the integral operator given by (3), where A; = A" and such that A; — A; is
invertible for i # j, 1 <i,j <m. Let p:R" — [l,) be suchthat 1 <p_ < p, < g

and such that p(Ax) = p(x) a.e. x € R". Let q(-) be defined by #x) - ﬁx) =2 Ifthe
n—op_

maximal operator A is bounded on L( " q(-)) then T is bounded from LP") (R")
into L10)(R").

THEOREM 3. Let A be an invertible matrix such that AN =1, for some N € N,
let Ty be the integral operator given by (3 ), where A; = A" and such that A; —A; is
invertible for i # j, 1 <i,j <m. Let p:R" — [1,00) be suchthat 1 <p_ < p, < g
and such that p(Ax) = p(x) a.e. x € R". Let q(-) be defined by ﬁ - ﬁ =2 Ifthe

n—ap_ !
maximal operator A is bounded on L< w1 )) then there exists ¢ > 0 such that
||tX{x:Taf(x)>t} ||q() < C”f”p() :

We also showed that this technique applies in the case when each of the matrices
A; is either a power of an orthogonal matrix A or a power of A"

In this paper we will prove that these theorems generalize to any invertible matrices
Ay,...,Ay such that A; — A; is invertible for i#j, 1<i,j <m. We will also show, in
some cases, that the condition p(A;x) = p(x), x € R" is necessary to obtain p(.) —¢(.)
boundedness.

2. Necessary conditions on p

Let A be a n x n invertible matrix and let 0 < ¢ < n. We define

Tyf(x) = / mf (v)dy.

PROPOSITION 4. Let A be a nx n invertible matrix. Let p : R" — [1,00) be a
measurable function such that p is continuos at yy and at Ayy for some yy € R". If

p(Ayo) > p(yo) then there exists f € LPU)(R™) such that Ty f ¢ L10)(R™) for ﬁ_) =

2R

1
p()
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Proof. Since p is continuos at y, there exists ball B = B(yy,r) such that p(y) ~
p(yo) for y € B. We have that p(yg) < p(Ayp). In this case we take

x8(y)
fly) =22
ly = ol
for certain f§ < ( ) that will be chosen later. We will show that, for certain §, f €

LPO(R™) but Ty f ¢ L4 (R"). Indeed,

1
Taf(x) / (y)dy / dy,
o — A|" a/ B lx— A" % |y —yol?

SO

q(x)
1
(T3 () dx = /(/ = dy) dx
/ B |x— Ay |y — yo|?
1 q(x)

> dy dx

/ / n—ao B

B(Ayo.e) \ /B [x— Ay|" %]y — yo|

! q(x)
> / / 5 dy dx.
B(Ayo.e) \ /BN{y:|Ay—Ayol<|Ayo—2l} |x — Ay["~% |y — yo

Now, we denote by M = ||A|| = sup |Ay|]. Now for € < Mr and x € B(Ayy,€),
[Iyl=1
(yo7M [Ayo —x[) € BN {y: |Ay — Ayo| < |Avo —x[}. Indeed, [y—yo| < 57 |Ayo —x| <
M&‘ < rand |Ay — Ayo| < M|y —yo| < |Ayo — x|, so

| q(x)
> / / — gdy | dx,
B(Ayo.€) \ /B0, 37 lAvo—x)) |x — Ay % |y — yo

also, for y € B(yo, 3 |Ayo —x|)

|x — Ay| < |x — Ayo| + |Ayo — Ay| < [x — Ayo| + M [yo — y| < 2[x — Ay,

40 1 7t
(ﬁ) / 5 dy dx
B(Ayp.e) \ 2" % |x — Ayo| B(y0. 37 [4v0—x0) |y — yol

1 q(x) —B+n q(x)
BlAyo.e) <2n—0! |x_Ay0|n—0£> (C|Ay0 _.X| ) dx

. q(x)
/ dx.
B(Ayp.e) \ 2% |x—Ay0|B_a

SO
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Now, since q(Ayo) > q(yo), (Ayo) — 7> q(yo) for y= w We observe that
f ok = oty — & for B = 55, (Bo— @)q(vo) = (575 — @) alyo) = n. so since
q(Ayo) — 7> (), we obtain that ( - ) (q(Avo) —7) > n and still (B — a)

1 n n _ n
(glAyo) —y) > n for B = o — 1 (m— (a+—q(Ay0)7y)). So B = 5(1-8)

for some § > 0. Since ¢ is continuos, we chose € so that, for x € B(Ay,€), g(x) >
q(Ayp) — v and > 1 so this last integral is bounded from below by

C
2n- Ay P~

q(Ayo)—Y
1
¢ / S dx = oo,
Bl ) <|x AvyolP~ )

For this 8 we chose r to obtain that the ball B= B(y,r) C {y 1p(y) < 'i(%%)} . In this
way we obtain that f € LP()(R") but Ty f ¢ L10)(R"). O

COROLLARY 5. If AN =1 for some N € N, p is continuos and Ty is bounded
from LPY) into L"), then p(Ay) = p(y) for all y € R".

Proof. We suppose that p(Ayy) < p(yo). Since p is continuos in yg, by the last
proposition,

p(Ayo) < p(y0) = p(AVy) < p(AV1yp) < ... < p(Ayo) = p(Ao)

which is a contradiction. [

3. The main results

Given 0 < o < n, we recall that we are studying fractional type integral operators
of the form

Taf () = [ k() f 0)d. @
f € L (R"), with a kernel

1 1
|x— Aly|m1 |x_AmY|am 7

k(x,y) =
a+..+o,=n—oa, 0<a;<n.

THEOREM 6. Let m € N, let Ay,...A,, be invertible matrices such that A; — A;
is invertible for i # j, 1 <1i,j < m. Let Ty be the integral operator given by (4), let
p:R" — [1 00) be such that 1 < p— < py < ¢ and such that p(Aix) = p(x) a.e.
xR < m. Let q(-) be defined by ﬁ — ﬁ = & If the maximal operator M

n—ap_ .\
is bounded on L( a4l >> then there exists ¢ > 0 such that
X et >0} ||q(_) <l fll e
feLeR").
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REMARK 7. With the hypothesis of Theorem 6, if f € LP")(R"), the integral in
(4) converges a.e. x € R", we still call it Ty f(x) and we have that there exists ¢ > 0
such that

Hlx{x;raf(x)>/1}||q(.) <clflly, £€LPORM.

Proof. We take f > 0 and a sequence f, € L7 (R") such that f,(x) 7 f(x) a.e.
x € R™. Then Ty f,(x) / To f(x) a.e. x € R" and then
XieT o> () = KTy o> 23 (%)
and so by Fatou’s Lemma, (see Th. 2.61, p.46 [2])

1A% 1223 o) = IMINEAZ e, >3
< 1iminf||A'X{x:Tafn(x)>7L}||q(,) < hmlnf”f"”p() < Hf”p()

For general f, as usual, we write f = f— f~. O

THEOREM 8. Let m € N, let Ay,...A,, be invertible matrices such that A; — A;
is invertible for i # j, 1 <1i,j < m. Let Ty be the integral operator given by (4), let
p:R" — [1,00) be such that 1 < p_ < p, < £ and such that p(Ax) = p(x) a.e.

xeR" 1 <i<m. Let q(-) be defined by ﬁ — ﬁ = & If the maximal operator M
n—ap_

is bounded on L( =a0) then Ty is bounded from LP") (R") into L") (R").

4. Proofs of the main results
LEMMA 9. If f€ L}, (R") and A an invertible n x n matrix then

M (foA)(x) < c(A(f)oA)(x).

Proof. Indeed,

1
A(Fom) =sup o [ |(Foa))]dy.

B |Bl /B

where the supremun is taken over all balls B containing x. By a change of variable we
see that,

5 [1rommlay=ldaa = [ If)]a
T 0A)(y)|dy = |de T z)| dz,
|B| /B |B| Ja(B)

where A(B) = {Ay:y € B}. Now, if y € B= B(xo,r) then |Ay—Axo| < M|y —xo| < Mr,
where M = ||A||. Thatis Ay € B = B(Axo,Mr). So
- M"|det(A™1)]

3 [ 1@z < M lder(a . (4%)



BOUNDEDNESS OF INTEGRAL OPERATORS IN VARIABLE LEBESGUE SPACES 7

Therefore we obtain that,
M(foA) < c(M(f)oA),

with ¢ = M"|det(A"Y)|. O

Proof of Theorem 6. We take f € L7 (R"). In [7] (See page 459) the authors prove
that there exists ¢ > 0 such that,

1
L

m 90
supA (@ {x: [Tof(x)| >A})% < supi <wq°{x: Z///af(Ai’lx) > cl})
A>0 A>0 i=1

forall ® € @, and f € LY (R").

Let F) = A% X{x|Tof(x)|>2} the last inequality implies that,

F(x)o(x)%*dx < A0 o 11 0(x)%0d 5
- 2 (x) @(x) % dx i‘;% - X(x){x-Z,-:y///af(A,- L)>cA ) (x)0dx (5)

for some ¢ > 0 and for all @ € o%.. Now by proposition 2.18 in [2], if ¢(-) = % ,

1A% w7 p 1523 0y = A X 7 )23 i
= ||F)L||¢7(.) <c sup F) (x)h(x)dx.

We define an iteration algorithm on L9 04 by

= n(x)

Hh(x) = Z

PYSTRRTITa (6)
i=o 2X H///le}(.)'

where, for k > 1, .#* denotes k iteration of the maximal operator . and .#° (h) =
|| We will check that

a) |h(x)| < Zh(x) xR,

b) Forall j:1,....m,[|ZhoAj|; \, < cllhllz.y-

¢) Forall j: 1,...,m,%’h% 0Aje A (p-,q0)
Indeed, @) is evident from the definition. To verify b),

|%hoA| P i H///khoAqu(')/
0Aill+ v < _
! q(> k=0 zkH%”g()/
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and

ka0
a2 ho Al ,_mf{,1>o: (%) dxgl}.
Rn

But, by a change of variable and using the hypothesis on the exponent,

!

/"(m)”dx_w i (//f"h) .

put D= max{|det( HLj=1. m}

)
k q ()
<D (M) dy. (7
Rn A
IfD<1,
H///khoAsz].(')/ < H///kh”’q(.)’-
So,
|FhoA;| < ¥ el -7l <l i Lo
oAl /\ < — = R
a0 & ok, 2* "

If D > 1 then from (7) it is follows that

D/"(%Zl(y))zz’u)dy:/w <Mk}f(1y,)>§m N

ACav)
and D = é where C = min{|det(A;)|,j = 1...m}. So,

. q0)
M*h
<[ (*22) a
AC@)-
That is,
A R(A )\ T MEh(x) "
! R\ 1c@)-

From this last inequality it follows that

1

| A ho Al < DD~ i

1
and so b) is verified with ¢ =2D@)- . To see ¢), by Lemma 9,

M (RN 0 A))(x) < c.ll (W) (A )
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. . 1
Zh € o (see [2]) implies that Zh% € 7] and so,

Then c¢) follows since a weight ® € <7 implies that ® € <7 (p_,qo).
And so,

¢ sup Fy(x)h(x)dx < ¢ sup F) (x)2%h(x)dx
Al =17R" Al g7y =17R"

1
and by (5), since Zh% € o/ (p_,qo) and Rh € | C Ao,

1
<c sup sup/nAq"x{xzz{il‘///af(Aflxbd}({%’h"O (x))%dx.

IAlly7) =140
Since,
mn 1 ), " 1 CA«
: A C : AT -
xi;///af(lx)>c lyl{x //Zaf(,x)>m}
then,
m
Xy | ttafa7 0>cA} S 1X{x;.//,1f(A;1x)>%}’
1=
)

m
<c sup sup) [ ANy(x)
Hthl(.):11>0i:l R

1
(oMo f(A] x)> <Ly (Zh% (x))dx

m

1
=c sup sup / AP Rh (x))Pdx
Hhumzlbo; (o f(A; ' 2)> )
m 1
=c sup sup 7L‘1°|det(A-)|/ (Zh0 (Ay)) 10 dy,
HhHZ]«(_):ll>0i:21 l A?'{x:.///af<A?'X>>%} l
m 1
<c swp sy am [ (17 (Aiy))®dy
HhH[ﬂ_):ll>0; {y://af(y>>%} l

40

m

< s swd ([ 101 @@ )

Iy =12>0i=1

40

m

—c swp 3 ([ 1ol @@n )

4llr)=1i=1
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We denote by p(-) = y. Holder’s inequality, 2) and Proposition 2.18 in [2] and again

the hypothesis about A; and p give
40

P— P—
<%h 490 ) OAj

1204

40

||7LX{x;\Taf(x)\>/1}||Z‘(’.)<C||fp’||lf'§?> sup Z
1Allgcy=1j=1

< sup CmIfI50 RlGey < I -
2l =1

n
n—o

Now f is bounded and with compact support, so Ty f € L*(R") for <5 < oo, (see

Lemma 2.2 in [7]) thus H)“%{XITaf(X)M}Hq(,) <oo. [O

Proof of Theorem 7. In the paper [7] the authors obtain an estimate of the form
m
[ Tty Gpw@dx < e Y. [ (Aaf)” owiamx, ®)
j=1

for any w € @, and 0 < p < oo (See the last lines of page 454 in [7]). We denote
q(-) = %, we define an iteration algorithm on L30)" a5 in the last proof (see (6)). We
have a) For all x € R”, |h(x)| < Zh(x),

b) For all _] l,...,m, ||%h0AJHZI-()/ < CHth()/,
1
c)Forall j:1,..mZ0hoA;e .o (p_,q).

We now take a bounded function f with compact support. So as in Theorem 5.24
in [2],

HTaf”Z(().) _ H(Taf)qOHq(-) = CHhHsup 1 (To /)T (x)h(x)dx
ay=

<C sup (To. /) (x)Zh(x)dx

gy =1
<C sup Z/(%af)qo(x)%h(ij)dx
1Allgcy =1 j=1

90

<C sup i</|f(x)|p%hz_o(ij)dx> )

Ihllgp=1=1

1
where the last inequality follows since Zh% o A; are weights in <7 (p_,qo) (by ¢)).
Now, following as in the last proof,

490
<CIAGL -

Also, as in the last proof, we show that ||7¢f]|,.) < eo. The theorem follows since

bounded functions with compact support are dense in L) (R™) (See Corollary 2.73 in
[2D). O
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