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Abstract. Let N be a nilpotent Lie group and K a compact subgroup of the
automorphism group Aut(N) of N . It is well-known that if (KnN,K) is a Gelfand
pair then N is at most 2-step nilpotent Lie group.

The notion of Gelfand pair was generalized when K is a non-compact group. In
this work, we give an example of a 3-step nilpotent Lie group and a non-compact
subgroup K of Aut(N) such that (K nN,N) is a generalized Gelfand pair.

1. Introduction

Let G be a Lie group and K a compact subgroup of G. We denote by D(G/K) the
space of C∞-functions on G/K with compact support and by DK(G) the subspace of
D(G) of functions on G which are right K-invariant. Both spaces are identified by
mapping f ∈ D(G/K) to f0 := f ◦ P , where P : G→ G/K is the natural projection.

It follows from the Schwartz’s kernel Theorem, that every linear operator which
maps continously D(G/K) in D′(G/K) with respect to the standard topologies and
commuting with the action of G is a convolution operator with a K-bi-invariant dis-
tribution in D′(G).

In particular, we consider the subalgebra of convolution operators which kernels are
K-bi-invariant integrable functions on G. When this algebra is commutative, we can
expect a kind of simultaneous “diagonalization” of all these operators. This motivated,
in part, the study of Gelfand pairs and the corresponding spherical analysis. In this
sense, we begin by introducing the concept of Gelfand pair. The following statements
are equivalent:

i) The convolution algebra of K-bi-invariant integrable functions on G is commuta-
tive.

ii) For any irreducible unitary representation (π,H) of G, the subspaceHK of vectors
fixed by K is at most one dimensional.

When any of the above holds, we say that (G,K) is a Gelfand pair.

Very well studied examples of Gelfand pairs are provided by symmetric pairs of
compact or non-compact types. More recent works have put attention on Gelfand
pairs of the form (K nN,K) where N is a nilpotent Lie group and K is a subgroup
of the automorphism group Aut(N) of N (see [1],[2],[3],[4],[7],[8],[12], among others).
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One of the first results, proved in [2], stated that if (K n N,K) (in short (K,N)) is
a Gelfand pair then N is abelian or a 2-step nilpotent group.

The notion of Gelfand pair was extended to the case when K is non-compact.
Observe that, in this case, the space of K-invariant integrable functions on G/K is
trivial. Thus, one attempt is to generalize (ii). Seminal papers are due to J. Faraut
[6] and E.G. Thomas [11], and there is a nice survey in [13]. First of all, we assume
that G and K are unimodular groups.

Let (π,H) be a unitary representation of G, and denote by H∞ the space of C∞-
vectors, that is, H∞ = {v ∈ H : g 7→ π(g)v ∈ C∞(G)}. H∞ is a Fréchet space
equipped with a natural Sobolev topology. Let H−∞ be the antidual of H∞, with the
strong topology (uniform convergence on bounded sets of H∞). This yields natural
imbeddings

H∞ ⊂ H ⊂ H−∞.
We denote by π∞ the restriction of π to H∞, and for g ∈ G define π−∞(g) on H−∞
by duality: for φ ∈ H−∞, v ∈ H∞

〈π−∞(g)φ, v〉 := 〈φ, π∞(g)v〉.
The elements of H−∞ are called distribution vectors.

We say that (G,K) is a generalized Gelfand pair if for any irreducible unitary
representation (π,H) of G the space H−∞K of distribution vectors fixed by K is at most
one dimensional.

In this work, we give an example of a 3-step nilpotent Lie group and a non-compact
subgroup K of Aut(N) such that (K,N) is a generalized Gelfand pair. This is stated
in Theorem 3.2.

Acknowledgements: We are grateful to G. Ratcliff who let us know the article
[10].

2. Preliminaries

We begin this section by recalling some known results about generalized Gelfand
pairs.

When (G,K) is a Gelfand pair, there is a one-to-one correspondence between K-
bi-invariant functions on G of positive type and equivalent classes of unitary repre-
sentations having a cyclic vector fixed by K. Moreover, for a K-bi-invariant function
ψ on G of positive type it holds a Bochner-Godement Theorem

ψ =

∫
Σ

ϕdµ (ϕ)

where Σ denotes the set of extremal K-bi-invariant functions on G of positive type
(or spherical functions of positive type) and dµ is a Radon measure on Σ. This allows
to see that any spherical representation of G decomposes multiplicity free.

There is an analogous result for a generalized Gelfand pair: Let (π,H) be a unitary
representation of G having a nonn zero distribution vector φ ∈ H−∞K . Then for



HARMONIC ANALYSIS IN NILMANIFOLS 3

f ∈ D(G), it is easy to see that π∞(f)φ ∈ H∞ and Tφ defined by

Tφ(f) = 〈φ, π∞(f)φ〉,
is a K-bi-invariant distribution of positive type.

Conversely, let T be aK-bi-invariant distribution of positive type. For f ∈ D(G/K),
let f0 = f ◦ P . On D(G/K) let us consider the scalar product 〈f, g〉 = Tφ(f ∗0 ∗ g0),

where f ∗0 (x) = f0(x−1), and denote by N the subspace of vectors of lenght zero. The
Hilbert subspace H of D′(G/K) associated to T is the completion of D(G/K)/N , and
an easy computation (using that a Hilbert space H is identified with its dual) shows
that if J∗ : D(G/K)→ D(G/K)/N is the natural projection and J : H → D(G/K)′

is the dual map, then for f ∈ D(G/K), (J ◦ J∗)f = f0 ∗ T .
T is called the reproducing kernel of H.

Thus, we have the following result (for a detailed proof see [13]).

Theorem (A). There is a one-to-one correspondence between unitary representations
of G having a cyclic distribution vector fixed by K and K-bi-invariant distributions
of positive type in D′(G) (the corresponding representation is realized as an invariant
Hilbert subspace of D′(G/K)).

Also the following results hold:

• Bochner-Godement’s theorem: For every K-bi-invariant distribution T of pos-
itive type there exists a Radon measure on the set Σ of extremal K-bi-invariant
distributions of positive type, such that T =

∫
Σ
Tsdµ(s);

• Every G-invariant Hilbert subspace of D′(G/K) decomposes multiplicity free.

Now, let us consider a unimodular Lie group H such that for any (γ,V) ∈ Ĥ, γ(f)
is a trace class operator for all f ∈ D(H) (this property holds for a wide class of Lie
groups such as nilpotent or semisimple Lie groups).

Let us consider the pair (G,K) where G = H × H and K = diag(H × H) which
is naturally identified with H. Also G/K can be identified with H. Let us denote
by (γ∗,V∗) the contragradient representation of (γ,Vγ). On the first hand, V∗ ⊗ V is
canonically isomorphic to the Hilbert subspace Hγ of D′(H) of distributions of the
form f ∗ χγ, f ∈ D(H). On the other hand, γ∗ ⊗ γ corresponds to the representation
of H × H on D′(H) given by (h1, h2) 7→ L(h1)R(h2). Thus, χγ is the reproducing
kernel of Hγ and clearly χγ is a distribution vector in H−∞γ fixed by H.

The complete result, due to Mokni and Thomas in [9] yields an analogous of a
Carcano criterion for Gelfand pair.

Theorem (B). Let (ω,W), (γ,V) be unitary representations of H such that γ is irre-
ducible. Then γ appears in the decomposition of ω into irreducible components if and
only if γ∗ ⊗ ω has a distribution vector fixed by H as (H ×H)-module.

Let N be a nilpotent Lie group and denote by N̂ the set of equivalent class of

irreducible unitary representation of N . We describe N̂ according to Kirillov’s theory.
Let n be the Lie algebra of N . The group N acts on n by the adjoint action Ad, and
N acts on n∗, the dual space of n, by the dual representation Ad∗(n)Λ = Λ ◦Ad(n−1).
Fixed a non trivial Λ ∈ n∗, let OΛ := {Ad∗(n)Λ : n ∈ N} be its coadjoint orbit.
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From Kirillov’s theory it follows that there is a correspondence between N̂ and the
set of coadjoint orbits in n∗. Indeed, let

BΛ(u, v) := Λ([u, v]), u, v ∈ n. (2.1)

Let m be a maximal isotropic subspace of n, and set M = exp(m). Defining on M the
character χΛ(expu) = eiΛ(u), the irreducible representation of N corresponding to OΛ

is the induced representation ρΛ := IndNM(χΛ).
Let K be a subgroup of Aut(N). Given k ∈ K, Λ ∈ n∗ there is a new represen-

tation of N defined by ρkΛ(n) := ρΛ(k · n). The stabilizer of ρΛ is KΛ := {k | ρΛ ∼
ρkΛ}. For each k ∈ KΛ, one can choose an intertwining operator ωΛ(k) such that
ρkΛ(n) = ωΛ(k)ρΛ(n)ωΛ(k−1) for all n ∈ N . The map k 7→ ωΛ(k) is a projective repre-
sentation of KΛ, i.e, ωΛ(k1k2) = σΛ(k1, k2)ωΛ(k1)ωΛ(k2), with |σΛ(k1, k2)| = 1 for all
k1, k2 ∈ KΛ. The map ωΛ is called the intertwining representation of ρΛ or metaplectic
representation and σΛ the multiplier for the projective representation ωΛ.

Here we shall consider a 3-step nilpotent Lie group introduced in [10] and a certain
subgroup K of Aut(N), such that

(i) for all Λ ∈ n∗, KΛ = K,
(ii) ωΛ is a true representation of K.

In this situation, Mackey theory asserts that for σ ∈ K̂,

ρσ,Λ(k, n) = σ(k)⊗ ωΛ(k)ρΛ(n)

is an irreducible representation of K n N and by varying σ ∈ K̂ and ρΛ ∈ N̂ this

construction exhausts K̂ nN .
Notice that the representation ρσ,Λ|K coincides with σ ⊗ ωΛ. Thus, the Theorem B

implies that the irreducible representation σ⊗ωΛρΛ has a distribution vector fixed by
K if and only if the dual representation σ∗ of K appears in the decomposition into
irreducible components of ωΛ (see [9], Theorem 2.1).

As a consequence, we have the following result.

Theorem (C). (K,N) is a generalized Gelfand pair if and only if ωΛ is multiplicity
free.

3. Example

The group N to be considered is the simplest case of the family introduced by G.
Ratcliff in [10]. Let H1 be the 3-dimensional Heisenberg group with Lie algebra h1

whose coordinates are (x, y, t) ∈ R3 and Lie bracket defined by

[(x, y, t), (x′, y′, t′)] = (0, 0, xy′ − yx′).
Let S be the subgroup of Sp(1) ⊆ Aut(H1) consinting of the matrices

s =

(
1 0
s 1

)
, s ∈ R.

Let us consider the action of S on H1 given by

s · (x, y, t) = (x, sx+ y, t).
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This action gives rise to a semidirect product N = S nH1 such that

(s, x, y, t)(s′, x′, y′, t′) = (s+ s′, x+ x′, sx′ + y + y′, t+ t′ +
y′x− x′y

2
). (3.1)

Let s be the Lie algebra of S. The Lie algebra n associated to N is a 3-step nilpotent
Lie algebra with coordinates (s, x, y, t), where s ∈ s, x, y, t ∈ R, and product

[(s, x, y, t), (s′, x′, y′, t′)] = (0, 0, sx′ − s′x, xy′ − x′y); (3.2)

its one-dimensional center is c = {(0, 0, 0, t) | t ∈ R}.
We denote by Aut0(N) the group of automorphisms of N acting on c by the identity.

Since the exponential map is the identity

Aut0(N) = {k ∈ GL(4,R) : k([u, v]) = [k(u), k(v)] for all u, v ∈ n, k |c= I}. (3.3)

Let Φ ∈ Aut0(N), and B = {ej}4
j=1 be the cannonical basis of R4. According to (3.2)

and (3.3), Φ must satisfy the following relationships

Φ([e1, e2]) = Φ(e3); Φ([e2, e3]) = Φ(e4);

Φ([e1, e3]) = Φ([e1, e4]) = Φ([e2, e4]) = Φ([e3, e4]) = Φ(0) = 0.

Thus, we obtain that

Aut0(N) =




r a 0 0

0 r−
1
2 0 0

d b r
1
2 0

e c −dr− 1
2 1

 : r, a, b, c, d, e ∈ R and r 6= 0

 .

We define

A :=




r 0 0 0

0 r−
1
2 0 0

0 0 r
1
2 0

0 0 0 1

 : r ∈ R

 and

M :=




1 a 0 0
0 1 0 0
d b 1 0
e c −d 1

 : a, b, c, d, e ∈ R

 .

Then we have that A is acting by conjugation over M and Aut0(N) = AnM .
Writing the elements in M as 5-uplas (a, b, c, d, e), we have that the product is given
by

(a, b, c, d, e)(a′, b′, c′, d′, e′) = (a+a′, b+b′+da′, c+c′+ea′−db′, d+d′, e+e′−dd′) (3.4)

Moreover, M is isomorphic to H nR3, where

H :=




1 0 0 0
0 1 0 0
d 0 1 0
e 0 −d 1

 : d, e ∈ R

 , and
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M0 :=




1 a 0 0
0 1 0 0
0 b 1 0
0 c 0 1

 : a, b, c ∈ R

 ' R3.

Indeed, the product on H is

(0, 0, 0, d, e)(0, 0, 0, d′, e′) = (0, 0, 0, d+ d′, e+ e′ − dd′),
and thus we can indentify H with the subgroup {(d,−d, e) : d, e ∈ R} of H1. By
considering the action of H over R3 given by

(d, e) · (a′, b′, c′) = (a′, b′ + da′, c′ + ea′ − db′),
and using (3.4) we obtain that M = H nM0.

The subgroup K of Aut0(N) that we will consider is

K =

k =


1 0 0 0
0 1 0 0
0 k1 1 0
0 k2 0 1

 : k1, k2 ∈ R

 ' R2. (3.5)

Let K1 (resp. K2) be the subgroup of K whose elements have matrix entry k2 = 0
(resp. k1 = 0).

We denote by (α, µ, ν, λ) the elemnts of n∗. The pairing between n and n∗ is given
by

(α, µ, ν, λ)[(s, x, y, t)] = αs+ µx+ νy + λt.

For Λ ∈ n∗, it is easy to see that KΛ = {k ∈ K | k ·Λ ∈ OΛ} where OΛ is the coadjoint
orbit of Λ. Let XΛ ∈ n such that Λ(Y ) = 〈Y,XΛ〉 for all Y ∈ n, hence it follows that

k · Λ(Y ) = 〈Y, k−1tXΛ〉. So

KΛ := {k ∈ K | kt ·XΛ ∈ OΛ}, (3.6)

where kt denotes the transposed of k.
The generic orbits are those which correspond to the representations with non-

zero Plancherel measure and were computed in [10]. They are parametrized by Λ =
(α, 0, 0, λ) with λ 6= 0, and if Oα,λ is the coadjoint orbit of Λ, then

Oα,λ = {(α− 1

2λ
ν2, µ, ν, λ) | µ, ν ∈ R}.

In the case of the non-generic orbits with Λ = (α, µ, ν, 0), by the well-known equality
Ad ◦ exp = exp ◦ ad, we obtain that OΛ = {(β, η, ν, 0) | β, η ∈ R}. Let (0, 0, ν, 0) be a
representative of O(α,µ,ν,0), and we denote O(α,µ,ν,0) by Oν .

We now compute explicitly the representation ρΛ corresponding to the orbits OΛ

for all Λ ∈ n∗. We denote ρΛ by ρα,λ in the case Λ = (α, 0, 0, λ) and by ρν in the case
Λ = (0, 0, ν, 0).

Fixed Λ = (α, 0, 0, λ) with λ 6= 0, the non-degenerate skew-symetric form associated
is

BΛ((s, x, y, t), (s′, x′, y′, t′)) = (α, 0, 0, λ)([(s, x, y, t), (s′, x′, y′, t′)])

= (α, 0, 0, λ)(0, 0, sx′ − s′x, xy′ − x′y)
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= λ(xy′ − x′y).

Thus, a maximal isotropic subspace associated to Λ is given by

MΛ = {(s, 0, y, t) ∈ n | s, y, t ∈ R}.
The character χΛ defined on MΛ = exp(MΛ) is χΛ(s, 0, y, t) = eΛ(s,0,y,t) = ei(αs+λt),
and

ρα,λ = IndNMΛ
(χΛ).

We recall that the induced representation is the pair (ρα,λ, Hα,λ) where Hα,λ is the
completion of

{f ∈ Cc(N) | f(nm) = χΛ(m−1)f(n) for all m ∈MΛ, n ∈ N},

with respect to the inner product 〈f, g〉 =
∫
N/MΛ

f(u)g(u)du, and the action is given

by the regular left translation, that is (ρα,λ(n)f)(n′) = f(n−1n′), n, n′ ∈ N . Notice
that setting

(s, x, y, t) = (0, x, 0, 0)(s, 0, y, t− xy

2
),

we can identify Hα,λ with L2(R) via the map (0, u, 0, 0) 7→ u.
Since

(s, x, y, t)−1 = (−s,−x, sx− y,−t),
for f ∈ Hα,λ we obtain

[ρα,λ(s, 0, 0, 0)f ](u) = f((s, 0, 0, 0)−1(0, u, 0, 0))

= f((−s, 0, 0, 0)(0, u, 0, 0))

= f(−s, u,−su, 0)

= f((0, u, 0, 0)(−s, 0,−su, su
2

2
)

= χΛ(s, 0, su,−su
2

2
)f(0, u, 0, 0)

= esα−λ
su2

2 f(u).

Analogously, we have

[ρα,λ(s, 0, 0, 0)f ](u) = eis(α−
λu2

2
)f(u),

[ρα,λ(0, x, 0, 0)f ](u) = f(u− x),

[ρα,λ(0, 0, y, 0)f ](u) = e−iλuyf(u),

[ρα,λ(0, 0, 0, t)f ](u) = eiλtf(u).

We observe that the representations ρα,λ with λ 6= 0, are extensions of irreducible
representations of H1.

We now describe the representations corresponding to non-generic orbits Oν with
ν 6= 0. In this case, BΛ((s, x, y, t), (s′, x′, y′, t′)) = ν(sx′ − s′x), and a maximal
isotropic subspace is again MΛ = {(s, 0, y, t) : s, y, t ∈ R}. The character associ-
ated is χΛ(s, 0, y, t) = eiνy. With similar computations to the above case, we obtain

[ρν(s, 0, 0, 0)f ](u) = eiνsuf(u),
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[ρν(0, x, 0, 0)f ](u) = f(u− x),

[ρν(0, 0, y, 0)f ](u) = eiνyf(u),

[ρν(0, 0, 0, t)f ](u) = f(u).

By (3.6) we can easily see that KΛ = K for all Λ ∈ n∗. Thus, the metaplectic
representation ωΛ must satisfy

ρkΛ(n)ωΛ(k) = ωΛ(k)ρΛ(n) for all k ∈ K and n ∈ N.
The subgroups K1 and K2 fix the elements (s, 0, 0, 0), (0, 0, y, 0) and (0, 0, 0, t) for

all s, y, t ∈ R. Then, we have to find an unitary operator ωΛ on L2(R) such that

ρkΛ(0, x, 0, 0)ωΛ(k) = ωΛ(k)ρΛ(0, x, 0, 0), ∀x ∈ R, k ∈ K (3.7)

and
ρΛ(n)ωΛ(k) = ωΛ(k)ρΛ(n) (3.8)

for n = (s, 0, 0, 0), n = (0, 0, y, 0) and n = (0, 0, 0, t), k ∈ K.

Proposition 3.1. For all Λ ∈ n∗ the representation ωΛ of K is multiplicity free.

Proof. We denote by ωα,λ (resp. ων) the metaplectic representation corresponding to
Λ = (α, 0, 0, λ) (resp. Λ = (0, 0, ν, 0)).

It is easy to see that given k1 ∈ K1, we have

k1 · (0, x, 0, 0) = (0, x, k1x, 0).

By writing (0, x, k1x, 0) = (0, x, 0, 0)(0, 0, k1x, 0)(0, 0,−k1x2

2
), we get that

[ρα,λ(0, x, k1x, 0)f ](u) = e−iλk1xu+iλk1
x2

2 f(u− x),

and hence we define

[ωα,λ(k1, 0)f ](u) = e−iλ
u2

2
k1f(u).

Also, given k2 ∈ K2,
k2 · (0, x, 0, 0) = (0, x, 0, k2x).

Then
[ρα,λ(0, x, 0, k2x)f ](u) = eiλk2xf(u− x),

and we set
[ωα,λ(0, k2)f ](u) = eiλk2uf(u).

That is,

[ωα,λ(k1, k2)f ](u) = e−iλ
u2

2
k1+iλk2uf(u).

The analysis to the non generic orbit is similar, and we obtain

[ρν(0, x, k1x, 0)f ](u) = eiνk1xf(u− x),

[ρν(0, x, 0, k2x)f ](u) = f(u− x).
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Then,
[ων(k1, 0)f ](u) = eiνk1uf(u),

[ων(0, k2)f ](u) = f(u).

That is,
[ων(k1, k2)f ](u) = eiνk1xf(u).

It follows straightforward that (3.8) holds for all Λ ∈ n∗.

Thus we can conclude that the decomposition of ωα,λ on L2(R) is

L2(R) =

∫
R
χ−λu2

2
,λu

du (3.9)

where χ−λu2

2
,λu

(k1, k2) = ei(−k1λ
u2

2
+λuk2).

Analogously, the decomposition of ων on L2(R) is

L2(R) =

∫
R
χνu,0 du (3.10)

where χνu,0(k1, k2) = eik1νu.

In the last case, Λ ≡ 0 thus mΛ = n and χΛ ≡ 1. Hence ρΛ is the trivial represen-
tation. This case concludes the analysis of the metaplectic representation obtaining
that ωΛ is multiplicity free for all Λ ∈ n∗. �

Then, we obtain the following result.

Theorem 3.2. Let N = S nH1 and K ⊆ Aut0(N) defined in (3.5). Then, the pair
(K,N) is a generalized Gelfand pair.
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