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Abstract. Until a couple of years ago, the only known examples of Lie groups admitting
left-invariant metrics with negative Ricci curvature were either solvable or semisimple. We
use a general construction from a previous article of the second named author to produce a
large amount of examples with compact Levi factor. Given a compact semisimple real Lie
algebra u and a real representation π satisfying some technical properties, the construction
returns a metric Lie algebra l(u, π) with negative Ricci operator. In this paper, when
u is assumed to be simple, we prove that l(u, π) admits a metric having negative Ricci
curvature for all but finitely many finite-dimensional irreducible representations of u⊗RC,
regarded as a real representation of u. We also prove in the last section a more general
result where the nilradical is not abelian, as it is in every l(u, π).

1. Introduction

A natural question that has inspired a great deal of research is what can be said
about a differentiable manifold M that admits a metric with curvature of a certain
sign. In the homogeneous case, while the scalar and sectional curvature behavior
are settled, the question of when a homogeneous manifold admits a left-invariant
metric with negative Ricci curvature seems far from being understood (see e.g. the
introductions of [1] or [10]).

In this paper we are interested in the case when M is a Lie group. We note that
in this case one can study the problem at the Lie algebra level. There are three
kinds of examples in the literature of Lie groups admitting metrics with negative
Ricci curvature.

Dotti, Leite and Miatello proved in [3] that the only unimodular Lie groups that
can admit a left-invariant metric with Ric < 0 are the non-compact semisimple
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ones. Furthermore, they where able to show that most of the non-compact simple
Lie groups indeed have one with the exception of the following groups:

(1.1)
SL(2,C), SL(3,C), SO(5,C), SO(7,C), Sp(3,C), Sp(4,C),

Sp(5,C), (G2)C, SL(2,R), Sp(2,R), Sp(3,R), G2

(cf. remark after [3, Thm. 2.1]). It is known that SL(2,R) does not admit a Ricci
negative metric (see [8]) but the existence of such a metric on the other groups
listed above is still open. It is worth mentioning that Jablonski and Petersen
recently proved in [5] that such semisimple Lie group cannot have any compact
factor.

The second sort of examples are solvable Lie groups. This is the most developed
case (see [2], [10], [9], [1]) probably due to the relationship with Einstein solvman-
ifolds. Recall that any non-flat Einstein solvmanifold is an example of a Lie group
with a metric of negative Ricci curvature.

Let s be a solvable Lie algebra admitting an inner product with negative Ricci
operator. Besides the fact that s cannot be unimodular (see [2]), Nikolayevsky
and Nikonorov [10] gave the only necessary condition known so far, namely, there
exists Y ∈ s such that tr adY > 0 and every eigenvalue of adY|z(n)

have positive
real part, where n is the nilradical of s and z(n) is the center of n.

The second named author constructed in [11] the first examples of Lie groups,
which are not solvable nor semisimple, admitting a left-invariant metric with neg-
ative Ricci curvature. This construction was extended to a more general setting
in [12] that we next describe.

Let u be a compact semisimple Lie algebra. Given (π, V ) a finite-dimensional
real representation of u, let l(u, π) be the Lie algebra defined by

(1.2) l(u, π) := (RZ ⊕ u) n V determined by adZ |u = 0 and adZ |V = Id .

It was proven in [12, Thm. 3.3] that, if (π, V ) satisfies some technical conditions, the
Lie algebra l(u, π) admits an inner product with negative definite Ricci operator.
See Theorem 3.1 for the precise statement.

Furthermore, the article [12] provides explicit examples of the above construc-
tion by using representations of the classical compact real Lie algebras (su(n),
so(2n+ 1), so(2n), and sp(n) for n ≥ 2) realized as a vector space of homogeneous
polynomials.

The main goal of this article is to find systematic ways to construct metric Lie
algebras with negative Ricci operator from Theorem 3.1. From now on we will
consider complex representations of the complexified Lie algebra uC := u ⊗R C,
viewed as real representations of u by restriction and by restricting scalars. More
precisely, a finite-dimensional complex representation π : uC → gl(V ) induces the
real representation π|u : u → gl(V ), where V is regarded as a real vector space.
This representation will still be denoted by (π, V ).

We develop three essentially different approaches to decide whether such a rep-
resentation satisfies the hypotheses in Theorem 3.1. The corresponding represen-
tations are given in Theorems 3.4, 3.7, and 3.8. The first approach is called the
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Weyl chamber approach because it assumes the existence of a weight of the repre-
sentation inside a Weyl chamber. This allows us to prove the main result of the
article.

Theorem 1.1. Let u be a compact real Lie algebra such that its complexified Lie
algebra uC is simple. For all but finitely many finite-dimensional irreducible com-
plex representations (π, V ) of uC, the real Lie algebra l(u, π) given by (1.2) admits
a metric with negative Ricci curvature.

Furthermore, for u an arbitrary compact real semisimple Lie algebra, Theo-
rem 3.5 ensures that l(u, π) admits an inner product with negative Ricci curvature
for infinitely many finite-dimensional irreducible complex representations (π, V ) of
uC.

Although the Weyl chamber approach (Theorem 3.4) provides a great amount of
examples, it does not work very well for small representations. We then show two
more constructions, the Weyl group orbit approach and the zero weight approach.
The first one was inspired by the constructions in [12], where it was used implicitly.

In Section 4 we show many explicit examples. In particular, when uC has rank
at most two, we classify all irreducible representations π of uC where Theorem 3.1
can be applied. We obtain that the above holds for every such π with the only
exceptions of the 7-dimensional irreducible representation of the complex simple
Lie algebra of type G2, and the fundamental representations when the type is A2

or B2 = C2.
With all these examples in mind, it is clear that the set of Lie groups admitting

left-invariant metrics of negative Ricci curvature is much bigger than it seemed
and the classification problem has become more complicated.

We show in the last section that one can get examples with non-abelian nil-
radical. To be able to do that we need to show a slightly more general version
of [12, Thm. 3.3] (see Theorem 5.1). More precisely, we consider a Lie algebra
(RZ ⊕ u) n n, where u is a compact semisimple Lie algebra acting on n by deriva-
tions and [Z, u] = 0. Note that in order to get such a Lie algebra, adZ must be a
derivation of n and therefore it can never act as a multiple of the identity unless n
is abelian.

It is known that there is no topological obstruction on a differential manifold to
the existence of a complete Riemannian metric with negative Ricci curvature (see
[7]). Nevertheless, the situation changes when dealing with left-invariant metrics
on Lie groups. First, recall that if K is a maximal compact subgroup of a Lie
group G, then all the nontrivial topology of G is in K, in the sense that as a
differentiable manifold, G is the product K ×Rn. Therefore, from the semisimple
examples in [3], it follows that almost all compact simple Lie groups may appear
as maximal compact subgroups of a Lie group with negative Ricci curvature with
the exceptions (1.1) namely,

(1.3) SO(2), SU(2), SU(3), Sp(2), Sp(3), Sp(4), Sp(5), SO(7), Gc2.

Here, Gc2 denotes the simply connected compact Lie group with the Lie algebra of
type G2. In [11] and [12] were covered all the groups in the above list with the only
exception of Gc2, which is now attained by Theorem 1.1 (see also Proposition 4.1).
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Therefore, as in the general case, there are (almost) no topological obstructions for
the existence of a left-invariant metric of negative Ricci curvature on a Lie group.

The paper is organized as follows. In Section 2 we recall all the facts about
compact Lie groups and their representations that will be used in the sequel.
Section 3 contains the three approaches to ensure that l(u, π) admits a metric of
negative Ricci curvature, as well as the proof of the main theorem. Several explicit
examples are shown in Section 4. In the last section, we construct Lie algebras with
the non-abelian nilradical admitting an inner product of negative Ricci curvature.

Acknowledgments
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2. Preliminaries

Throughout the paper, all Lie algebras as well as their representations are as-
sumed finite dimensional.

In this section we first recall well-known facts on compact real forms and rep-
resentations of a complex semisimple Lie algebra via root systems. Very good
general references are [4, §2.4 and §3.1–2] and [6, Ch. II and V].

1. Root system

Let g be a complex semisimple Lie algebra and B its Killing form. We fix a Cartan
subalgebra h of g, and let ∆ denote the corresponding system of roots and W the
Weyl group. One has the root decomposition

(2.1) g = h⊕
⊕
α∈∆

gα,

where gα = {X ∈ g : [H,X] = α(H) for all H ∈ h} is one dimensional for all
α ∈ ∆.

For α ∈ ∆, we denote by Hα the corresponding coroot, that is, the only element
in h such that B(H,Hα) = α(H) for all H ∈ h. We denote by hR the R-linear span
of all Hα for α ∈ ∆, which is a real form of h. We will consider the inner product
on h∗R determined by 〈α, β〉 := B(Hα, Hβ).

For each α ∈ ∆, it is possible to choose Xα ∈ gα such that, for all α, β ∈ ∆,

(2.2)

[Xα, X−α] = Hα,

[Xα, Xβ ] = Nα,βXα+β if α+ β ∈ ∆,

[Xα, Xβ ] = 0 if α+ β 6= 0 and α+ β /∈ ∆,

where Nα,β = −N−α,−β ∈ R (see [6, Thm 6.6]). It turns out that

(2.3) u :=
∑
α∈∆

RiHα +
∑
α∈∆

R(Xα −X−α) +
∑
α∈∆

Ri(Xα +X−α)

is a compact real form of g, that is, a real Lie algebra whose complexified Lie
algebra is g, which has negative definite Killing form (see [6, Thm. 6.11]).
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We denote Hα = iHα, Xα = (Xα − X−α) and Y α = i(Xα + X−α) for each
α ∈ ∆. For α, β ∈ ∆, one has that
(2.4)

[Hα, Xβ ] = cα,βY
β , [Xα, Xβ ] = Nα,βX

α+β −N−α,βX−α+β if β 6= ±α,
[Hα, Y β ] = −cα,βXβ , [Y α, Y β ] = −Nα,βXα+β −N−α,βX−α+β if β 6= ±α,
[Xα, Y α] = 2Hα, [Xα, Y β ] = Nα,βY

α+β −N−α,βY −α+β if β 6= ±α,

where cα,β are real numbers and Nα,β = 0 if α+ β /∈ ∆.

2. Weights of representations

Let (π, V ) be a complex representation of g, that is, a C-linear map π : g→ gl(V )
satisfying that π([X,Y ]) = π(X)π(Y )− π(Y )π(X) for all X,Y ∈ g. We recall our
convention that all representations are assumed finite-dimensional.

One has the weight decomposition

(2.5) V =
⊕
µ

V (µ),

where µ ∈ h∗ and

(2.6) V (µ) = {v ∈ V : π(H)v = µ(H)v for all H ∈ h}.

Those µ ∈ h∗ satisfying V (µ) 6= 0 are called the weights of π and belong to
the weight lattice P (g) := {µ ∈ h∗ : 〈µ, α〉/〈α, α〉 ∈ Z for all α ∈ ∆} ⊂ h∗R.
Furthermore,

(2.7) π(gα)V (µ) ⊂ V (µ+ α)

for α ∈ ∆ and µ ∈ P (g). The dimension of V (µ) is called the weight multiplicity
of µ in π. One has dimV (w · µ) = dimV (µ) for all w ∈W .

We now pick a positive system ∆+ of ∆. Let Π be the set of simple roots. An
element µ ∈ h∗R is called dominant if 〈µ, α〉 ≥ 0 for all α ∈ ∆+. Each connected
component of the complement of the set of hyperplanes {µ ∈ h∗R : 〈µ, α〉 = 0} for
α ∈ ∆ is called a Weyl chamber. The cone of dominant elements coincides with the
closure of the fundamental Weyl chamber {µ ∈ h∗R : 〈µ, α〉 > 0 for all α ∈ ∆+}.

Let P+(g) denote the set of dominant elements in the weight lattice P (g). We
write Π = {α1, . . . , αn} (n is the rank of g). The fundamental weights ω1, . . . , ωn
are given by 2〈ωi, αj〉/〈αj , αj〉 = δi,j and satisfy P (g) =

⊕n
i=1 Zωi and P+(g) =⊕n

i=1 Z≥0ωi.
The next result will be useful in the sequel (see for instance [4, Prop. 3.2.11]).

Lemma 2.1. Let µ ∈ P (g) dominant and ν a weight of V . If ν−µ can be written
as a sum of positive roots, then µ is a weight of V .

The Highest Weight Theorem parameterizes irreducible complex representations
of g with dominant elements in P (g). For λ ∈ P (g) dominant, we write (πλ, Vλ)
the corresponding irreducible complex representation of g with highest weight λ.
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We conclude the preliminaries section by showing the existence of a weight of
a representation in a Weyl chamber, for all but finitely many irreducible represen-
tations of a complex simple Lie algebra. Although this result may be present in
the mathematical literature, we include a case-by-case proof because the authors
could not find any reference. The reader will find two shorter and uniform proofs
in the answers by Sam Hopkins and David E Speyer of the MathOverflow question
[13].

Lemma 2.2. Let g be a complex simple Lie algebra. For all but finitely many
complex irreducible representations (π, V ) of g, we have that (π, V ) contains a
weight in a Weyl chamber.

Proof. By the Highest Weight Theorem, every irreducible representation of g is
in correspondence with an element in {

∑n
j=1 ajωj : aj ∈ Z≥0 for all j}. Since

Pr := {
∑n
j=1 ajωj : aj ∈ Z and 0 ≤ aj ≤ r for all j} is finite for every r ≥ 0, it

is sufficient to prove that, for r sufficiently large, every irreducible representation
of g with highest weight λ ∈ P+(g) r Pr has a weight in the fundamental Weyl
chamber.

To do that, we will use Lemma 2.1. More precisely, for such λ, we will show
that

there are β1, . . . , βl ∈ ∆+ such that λ − (β1 + · · · + βl) is in the
fundamental Weyl chamber.

Clearly, it is sufficient to show that there is an integer r big enough satisfying
that

for each 1 ≤ i ≤ n, there are β1, . . . , βl ∈ ∆+ such that rωi −
(β1 + · · ·+ βl) is dominant and its ωj-coefficient is positive for all
1 ≤ j ≤ n.

The checking process of the above condition involves only computations in the
corresponding irreducible root system. We will do it case by case.

We start considering complex simple Lie algebras of exceptional type. We will
use the data available in [6, §C.2], where the fundamental weights ω1, . . . , ωn are
written in terms of the simple roots α1, . . . , αn.

Type G2: In this case, n = 2, ω1 = 2α1 + α2, and ω2 = 3α1 + 2α2. It follows
immediately that rω1 − α1 − α2 = (r − 2)ω1 + ω2 and rω2 − α1 − α2 =
(r − 1)ω2 + ω1, thus the required condition holds with r = 3.

Type F4: In this case, n = 4, and the fundamental weights are ω1 = 2α1 + 3α2 +
2α3 + α4, ω2 = 3α1 + 6α2 + 4α3 + 2α4, ω3 = 4α1 + 8α2 + 6α3 + 3α4, and
ω4 = 2α1 + 4α2 + 3α3 + 2α4. It follows that

rω1 − 5α1 − 2α2 − α3 = (r − 7)ω1 + (2ω1 − α1) + (3ω1 − 2α1)

+ (2ω1 − 2α1 − 2α2 − α3)

= (r − 7)ω1 + ω2 + ω3 + ω4,
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rω2 − 4α1 − 9α2 − 5α3 − 2α4 = (r − 4)ω2 + ω1 + ω3 + ω4,

rω3 − 3α1 − 8α2 − 7α3 − 3α4 = (r − 3)ω3 + ω1 + ω2 + ω4,

rω4 − α1 − 3α2 − 3α3 − 4α4 = (r − 5)ω4 + ω1 + ω2 + ω3.

Hence, the required condition holds with r = 8.
Type En: In these cases, n = 6, 7, 8 and, for each 1 ≤ i ≤ n, ωi =

∑n
j=1

aj
2 αj

with a1, . . . , an positive integers. Although it is pretty involved to give
the explicit calculations as in the previous two cases, it is clear that for a
positive integer r sufficiently large, one has

rωi = (r − s)ωi +

n∑
j=1

bjωj + µ

for some integer s ≤ r, b1, . . . , bn positive integers, and µ a sum of simple
roots. Hence, the condition is valid.

We next consider the classical Lie algebras. The root system data can be found
in [6, §C.1]. We give all the details for type Dn since it is the one that presents
more difficulties. The rest of the types are given in a brief way because the method
is analogous.

Type Dn: In this case, g = so(2n,C) for any n ≥ 3, hR = SpanR{ε1, . . . , εn},
∆+ = {εi ± εj : 1 ≤ i < j ≤ n}, ωi = ε1 + · · · + εi for 1 ≤ i ≤ n − 2,
ωn−1 = 1

2 (ε1 + · · ·+ εn−1 − εn), and ωn = 1
2 (ε1 + · · ·+ εn). We have that

rω1 − (ε1 − ε2) = (r − 1)ω1 + ε2 = (r − 2)ω1 + ω2,(2.8)

rωi − (εi − εi+1) = (r − 1)ωi + (ε1 + · · ·+ εi)− (εi − εi+1)(2.9)

= ωi−1 + (r − 2)ωi + ωi+1

for 2 ≤ i ≤ n− 3, and

rωn−2 − (εn−2 − εn−1) = (r − 1)ωn−2 + (ε1 + · · ·+ εn−3) + εn−1(2.10)

= ωn−3 + (r − 2)ωn−2 + (ε1 + · · ·+ εn−1)

= ωn−3 + (r − 2)ωn−2 + ωn−1 + ωn,

Furthermore,

(2.11) rωn−1 − 3(εn−1 − εn)− (εn−2 − εn−1)

= (r − 6)ωn−1 + 3ωn−2 − (εn−2 − εn−1)

= ωn−3 + ωn−2 + (r − 5)ωn−1 + ωn,

and

(2.12) rωn − 2(εn−1 + εn)− (εn−2 − εn−1)

= (r − 4)ωn + 2ωn−2 − (εn−2 − εn−1)

= ωn−3 + ωn−1 + (r − 3)ωn.
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The above identities tell us that, for any 1 ≤ i ≤ n, one can subtract to rωi
a sum of positive roots obtaining a dominant element with positive ωi−1

and ωi+1-coefficients (it is understood that there are no ωi-coefficient for
i = 0, n+1). Proceeding in this way several times, one obtains a dominant
element in P (g) with positive ωj-coefficient for all j, for r large enough.
This proves the required condition.

Type Bn: g = so(2n + 1,C) for any n ≥ 2, hR = SpanR{ε1, . . . , εn}, ∆+ =
{εi ± εj : 1 ≤ i < j ≤ n} ∪ {εi : 1 ≤ i ≤ n}, ωi = ε1 + · · · + εi for
1 ≤ i ≤ n− 1, and ωn = 1

2 (ε1 + · · ·+ εn).
One can check that (2.8) holds, as well as (2.9) for 2 ≤ i ≤ n − 2.
Furthermore, rωn−1 − (εn−1 − εn) = ωn−2 + (r − 2)ωn−1 + 2ωn, and
rωn − εn = ωn−1 + (r − 2)ωn.

Type Cn: g = sp(n,C) for any n ≥ 2, hR = SpanR{ε1, . . . , εn}, ∆+ = {εi ± εj :
1 ≤ i < j ≤ n} ∪ {2εi : 1 ≤ i ≤ n}, ωi = ε1 + · · ·+ εi for 1 ≤ i ≤ n.
One can check that (2.8) holds, as well as (2.9) for 2 ≤ i ≤ n− 1. Further-
more, rωn − 2εn = 2ωn−1 + (r − 2)ωn.

Type An: g = sl(n+1,C) for any n ≥ 1, hR = {
∑n+1
i=1 aiεi : ai ∈ R ∀ i,

∑n+1
i=1 ai =

0}, ∆+ = {εi−εj : 1 ≤ i < j ≤ n+1}, ωi = ε1+· · ·+εi− i
n+1 (ε1+· · ·+εn+1)

for 1 ≤ i ≤ n.
One can check, for any 1 ≤ i ≤ n, that

rωi − (εi − εi+1) = ωi−1 + (r − 2)ωi + ωi+1,

where ω0 = ωn+1 = 0.

We conclude that the required condition holds for every complex simple Lie
algebra, which completes the proof.

3. Existence of Ricci negative metric Lie algebras

In this section we introduce three different approaches to use Theorem 3.1.
Furthermore, it also contains the proof of the main theorem.

In what follows, u denotes a compact semisimple real Lie algebra and, since a
compact real form of a semisimple complex Lie algebra is unique up to isomorphism
(see [6, Cor. 6.20]), there is a root system ∆ of the complex Lie algebra uC := u⊗RC
and elements Xα ∈ (uC)α for each α ∈ ∆ such that the compact real form given
by (2.3) coincides with u. Furthermore, we fix ∆+ a positive system for ∆ and
Π = {α1, . . . , αn} an ordered set of simple roots.

In the sequel, we will use the objects introduced in Section 2 without further
comments, for instance, the weight lattice P (uC), its dominant elements P+(uC),
weights of a complex representation, the Weyl group W , Weyl chambers, the fun-
damental weights ω1, . . . , ωn, the (unique up to equivalence) irreducible represen-
tation (πλ, Vλ) with the highest weight λ ∈ P+(uC), etc.

1. Ricci negative inner products

We first recall the main theorem in [12], which will be the main tool in the sequel.
To a given real representation (π, V ) of a real Lie algebra u we associate the real

Lie algebra l(u, π) := (RZ ⊕ u) n V , where RZ ⊕ u is a central extension of u (i.e.
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adZ |u = 0) and Z acts as the identity on V (i.e. adZ |V = Id). More precisely, the
brackets in l(u, π) are determined by

[Z,X] = 0, [Z, v] = v, [X, v] = π(X)v, [v, w] = 0,(3.1)

for all X ∈ u and v, w ∈ V .

Theorem 3.1. [12, Thm. 3.3] Let (V, π) be a real representation of u. We assume
the decomposition V = V1 ⊕ V2 and the existence of an inner product 〈·, ·〉 on V
satisfying the following properties:

(1) V1 and V2 are ihR-invariant.
(2) π(Xα)(V1) ⊂ V2 and π(Y α)(V1) ⊂ V2 for every α ∈ ∆+.
(3) V1 is orthogonal to V2.
(4) π(H) is a skew-symmetric operator of V for every H ∈ ihR.
(5) π(Xα)|V1 and π(Y α)|V1 are not trivial for every α ∈ ∆+.

(6) trπ(Y )t|V1
π(X)|V1 = 0 whenever X 6= Y are elements of {Xα, Y α, α ∈

∆+}.
Then, the real Lie algebra l(u, π) given by (3.1) (i.e. l(u, π) = (RZ ⊕ u)n V where
adZ|u = 0 and adZ|V = Id) admits an inner product with negative Ricci curvature.

The idea of the proof is to first prove that l(u, π) degenerates into a solvable Lie
algebra l∞ to finally show that this limit admits an inner product with Ric < 0.
By continuity, so does the starting Lie algebra.

2. Common generalities

Let (π, V ) be a complex representation of uC. We can regard V as a real vector
space by restricting scalars, and then the restriction of π to u becomes a real
representation of u. To simplify the notation, the resulting real representation
π|u : u→ gl(V ) is again denoted by (π, V ).

Let U be the simply connected Lie group with Lie algebra u. We denote again
by π the associated homomorphism of groups U → GL(V ). Since U is compact,
there is a complex inner product 〈〈·, ·〉〉 on the complex vector space V such that
π is unitary. More precisely, for v, w ∈ V , one has that 〈〈π(a)v, π(a)w〉〉 = 〈〈v, w〉〉
for all a ∈ U , which gives 〈〈π(X)v, w〉〉 = −〈〈v, π(X)w〉〉 for all X ∈ u. We set

(3.2) 〈v, w〉 = Re(〈〈v, w〉〉) for v, w ∈ V.

This is clearly a real inner product on V . Moreover, 〈π(X)v, w〉 = −〈v, π(X)w〉
for all X ∈ u and v, w ∈ V , that is, π(X) acts as a skew-symmetric operator on V
for all X ∈ u. From now on, we will associate such real inner product on V to any
complex representation of uC without further comments.

It follows immediately from the definition (2.6) that a weight space is invariant
by hR. Thus, property (1) in Theorem 3.1 suggests us to decompose V = V1 ⊕ V2,
by taking V1 and V2 subspaces given by sums of distinct weight spaces.

The simple observations from the two last paragraphs guarantee us four prop-
erties from Theorem 3.1.
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Proposition 3.2. Let (π, V ) be a complex representation of uC and let S be a
subset of weights of π. We set

V1 =
⊕
µ∈S

V (µ), V2 =
⊕
µ/∈S

V (µ).

Then, there exists a real inner product on V = V1 ⊕ V2 such that the induced
real representation of u on V satisfies properties (1), (3), (4), and (6) from Theo-
rem 3.1. Moreover, if in addition S has exactly one element, then (2) also holds.

Proof. Property (1) follows from (2.6). We already mentioned that π(X) : V → V
is skew-symmetric on V with respect to 〈·, ·〉 for all X ∈ u, thus property (4) holds.

Let µ and ν be distinct weights of π and let v ∈ V (µ) and w ∈ V (ν). For any
H ∈ h, one has that

(3.3) µ(H)〈〈v, w〉〉 = 〈〈π(H)v, w〉〉 = −〈〈v, π(H)w〉〉 = −ν(H)〈〈v, w〉〉,

which implies 〈v, w〉 = Re(〈〈v, w〉〉) = 0 by taking H ∈ h such that µ(H) 6= ν(H).
This shows that different weight spaces are orthogonal with respect to 〈·, ·〉; in
particular (3) holds.

We next prove the validity of property (6). Let {v1, . . . , vd} be an orthogonal
C-basis of (V, 〈〈·, ·〉〉) given by weight vectors, such that {v1, . . . , vc} is a C-basis of
V1 (c ≤ d). It turns out that {v1, iv1, . . . , vd, ivd} is an R-basis of V , as well as
{v1, iv1, . . . , vc, ivc} is an R-basis of V1

We note for X,Y ∈ u that

(3.4)

trπ(Y )t|V1
π(X)|V1 =

c∑
j=1

〈π(Y )t|V1
π(X)|V1 vj , vj〉+ 〈π(Y )t|V1

π(X)|V1 ivj , ivj〉

=

c∑
j=1

〈π(X)vj , π(Y )vj〉+ 〈π(X)ivj , π(Y )ivj〉.

Since π(Xα)V (µ) ⊂ V (µ − α) ⊕ V (µ + α), π(Y α)V (µ) ⊂ V (µ − α) ⊕ V (µ + α)
by (2.7), and 〈V (µ), V (ν)〉 = 0 for µ 6= ν, it follows that trπ(Xβ)t|V1

π(Xα)|V1 ,

trπ(Y β)t|V1
π(Xα)|V1 , trπ(Xβ)t|V1

π(Y α)|V1 , and trπ(Y β)t|V1
π(Y α)|V1 are all equal

to zero for α 6= β in ∆+.
It remains to show that trπ(Y α)t|V1

π(Xα)|V1 = 0 for all α ∈ ∆+. This follows

from the facts that π(Xα) preserves the (orthogonal) subspaces

(3.5) SpanR{v1, . . . , vc} and SpanR{iv1, . . . , ivc},

while π(Y α) switches them. We conclude that (6) holds.
We now assume that S has exactly one element, say µ0. Then, the validity of (2)

follows since, for any α ∈ ∆+, (2.7) yields that π(Xα)V1 and π(Y α)V1 are included
into V (µ0 + α)⊕ V (µ0 − α), which is included in V2 because µ0 ± α /∈ S = {µ0}.

The next lemma will be very useful to check property (5).



NEGATIVE RICCI CURVATURE

Lemma 3.3. Let (π, V ) be a complex representation of uC, let µ be a weight
of π, and let α ∈ ∆. If the integer 〈α, µ〉 is non-zero, then π(Xα)|V (µ−kα)

and
π(Y α)|V (µ−kα)

are non-trivial for all k between 0 and the integer 〈α, µ〉.

Proof. It is well known that aα := SpanC{Hα, Xα, X−α} is isomorphic to sl(2,C).
Let v ∈ V (µ) with v 6= 0.

We first assume that the integer m := 〈α, µ〉 is positive. From the well-known
representation theory of sl(2,C) (see for instance [6, §I.9]), since

(3.6) π(Hα)v = µ(Hα)v = 〈µ, α〉v = mv,

we deduce that the irreducible aα-submodule of V containing v has dimension at
least m + 1, and moreover, π(X−α)kv 6= 0 for all 0 ≤ k ≤ m. Consequently,
π(Xα)|V (µ−kα)

and π(Y α)|V (µ−kα)
are non-trivial for all 0 ≤ k ≤ m.

We now assume that m is negative. Analogously as above, π(Xα)kv 6= 0 for all
m ≤ k ≤ 0, thus π(Xα)|V (µ−kα)

and π(Y α)|V (µ−kα)
are non-trivial.

3. Weyl chamber approach

The following result is the first approach to use Theorem 3.1. The main result of
the paper, Theorem 1.1, is proved below as a consequence of this approach.

Theorem 3.4. Let (π, V ) be a complex representation of uC. We assume that
there is a weight µ0 of π lying in a Weyl chamber. By setting V1 = V (µ0) and
V2 =

⊕
µ6=µ0

V (µ), all the properties in Theorem 3.1 hold. Consequently, the real
Lie algebra l(u, π) admits an inner product with negative Ricci curvature.

Proof. The decomposition V = V1 ⊕ V2 chosen is as in Proposition 3.2 with S =
{µ0}, thus it only remains to show property (5). This follows immediately from
Lemma 3.3 since 〈µ0, α〉 6= 0 for all α ∈ ∆+ because µ0 is not orthogonal to any
root from being inside a Weyl chamber.

We are now in position to prove the main theorem.

Proof of Theorem 1.1. By applying Theorem 3.1, Theorem 3.4 tell us that for
every complex representation (π, V ) of uC containing a weight in a chamber Weyl,
l(u, π) admits an inner product with negative Ricci curvature. Then, Lemma 2.2
ensures that this property holds for all but finitely many irreducible representations
of uC, which completes the proof.

Theorem 3.5. Let u be a compact semisimple real Lie algebra. The real Lie
algebra l(u, π) given by (1.2) admits an inner product with negative Ricci curvature
for infinitely many finite-dimensional irreducible complex representations (π, V ) of
uC.

Proof. There are u1, . . . , um real compact Lie algebras such that

u '
m⊕
j=1

u(j) uC '
m⊕
j=1

u
(j)
C ,

and u
(j)
C is simple for all j. There is also a root system ∆ =

⋃m
j=1 ∆(j) of uC such

that ∆(j) is a root system of u
(j)
C with associated real compact form u(j).
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Every irreducible representation of uC is of the form (π, V (1)⊗· · ·⊗V (m)), where

(π(j), V (j)) is an irreducible representation of u
(j)
C for all j and

(3.7) π(X1, . . . , Xm) v(1) ⊗ · · · ⊗ v(m) =

m∑
j=1

v(1) ⊗ · · · ⊗ π(j)(Xj)vj ⊗ · · · ⊗ v(m)

for all Xj ∈ u
(j)
C and v(j) ∈ V (j) for all j.

By Lemma 2.2, there are infinitely many irreducible representations (π, V (1) ⊗
· · · ⊗ V (m)) of uC such that, for every j, V (j) contains a weight η(j) in a Weyl
chamber associated to ∆(j). It follows that η := η(1) + · · · + η(m) is in a Weyl
chamber of ∆. In fact, if α ∈ ∆, then α ∈ ∆(j) for some j, thus 〈α, η〉 = 〈α, η(j)〉 6=
0. The proof follows from Theorem 3.4.

Remark 3.6. For g a complex semisimple non-simple Lie algebra, Lemma 2.2 is not
longer true. We assume for simplicity that g = g1 ⊕ g2. We fix V an irreducible
complex representation of g1 having no weight in a Weyl chamber. Thus, for any
irreducible complex representation W of g2, the irreducible complex representation
V ⊗W of g does not contain any weight in a Weyl chamber, and of course, there
are infinitely many such representations.

4. Other approaches

The next result is our second approach to use Theorem 3.1. We call it the Weyl
group orbit approach because S is the Weyl orbit of a weight of the representations
satisfying certain conditions.

Theorem 3.7. Let (π, V ) be a complex representation of uC. We assume there is
a non-zero weight µ0 of π such that µ0 + α /∈W · µ0 for all α ∈ ∆. By setting

V1 =
⊕
w∈W

V (w · µ0), V2 =
⊕

µ/∈W ·µ0

V (µ),

all the properties in Theorem 3.1 hold. Consequently, the real Lie algebra l(u, π)
admits an inner product with negative Ricci curvature.

Proof. The decomposition V = V1⊕V2 coincides with the one from Proposition 3.2
by taking S = W ·µ0, the Weyl orbit of µ0. It follows that properties (1), (3), (4),
and (6) hold.

For α ∈ ∆+ and w ∈ W , π(Xα) and π(Y α) map V (w · µ0) to V (w · µ0 + α)⊕
V (w · µ0 − α) by (2.7). If V (w · µ0 ± α) ⊂ V1, then w · µ0 ± α ∈ W · µ0, thus
µ0±w−1 ·α ∈W ·µ0, which contradicts the assumption since W (∆) ⊂ ∆. Hence,
π(Xα) and π(Y α) map V (w ·µ0) into V2 for all α ∈ ∆+ and w ∈W , thus property
(2) holds.

It only remains to establish the validity of (5). We fix α ∈ ∆+. Let w0 ∈ W
satisfying that 〈α,w0 ·µ0〉 6= 0. Such element exists because α 6= 0 and SpanC(W ·
µ0) = h∗ (since µ0 6= 0). We assume that the integer m := 〈α,w0 · µ0〉 is positive;
the negative case is analogous.

Let v ∈ V (w0 · µ0) with v 6= 0. We have that π(Hα)v = (w0 · µ0)(Hα)v =
〈α,w0 · µ0〉v = mv. Similarly as in the proof of Lemma 3.3, the representation
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theory of sl(2,C) implies that π(X−α)kv 6= 0 for all 0 ≤ k ≤ m. In particular,
π(X−α)v 6= 0, hence π(Xα)|V1 and π(Y α)|V1 are non-trivial. This completes the
proof.

The Weyl group orbit approach has been implicitly used in [12]. In fact, the
proof of [12, Thm. 1.1] decomposes any polynomial representation π of a classical
Lie algebra as in Theorem 3.7 with µ0 the highest weight of π.

We now state the zero weight approach which picks S = {0}.

Theorem 3.8. Let (π, V ) be a complex representation of uC. We assume that 0
and all the roots are weights of π. By setting V1 = V (0) and V2 =

⊕
µ6=0 V (µ),

all the properties in Theorem 3.1 hold. Consequently, the real Lie algebra l(u, π)
admits an inner product with negative Ricci curvature.

Proof. The decomposition V = V1⊕V2 is as in Proposition 3.2 with S = {0}, thus
it only remains to check that property (5) holds.

Let α ∈ ∆+. By assumption, α is a weight of π, that is, V (α) 6= 0. Since
〈α, α〉 is a positive integer, Lemma 3.3 ensures that π(Xα)|V (0)

and π(Y α)|V (0)
are

non-trivial.

4. Explicit examples

This section contains many explicit examples of metric Lie algebras with nega-
tive Ricci operator constructed from Theorems 3.4, 3.7 and 3.8.

We recall that the irreducible complex representations of uC are in correspon-
dence with elements in P+(u) =

⊕n
i=1 Z≥0ωi, where ω1, . . . , ωn are the fundamen-

tal weights corresponding to the simple root system Π = {α1, . . . , αn}. In the
sequel, when we consider a particular complex simple Lie algebra, we will use the
positive root system chosen in [6, §C.1–2].

If λ =
∑n
i=1 aiωi ∈ P+(uC) satisfies ai > 0 for all i, then λ lies in the funda-

mental Weyl chamber C+. It follows immediately that l(u, πλ) admits an inner
product having negative Ricci curvature from the Weyl chamber approach (Theo-
rem 3.4). It remains to analyze those dominant integral weights lying in the faces
of C+, namely {

n∑
i=1

aiωi : ai ∈ N ∀i ∈ I, ai = 0 ∀i /∈ I

}

for each non-empty and proper subset I of {1, . . . , n}.
When u = su(2), every non-trivial dominant integral weight is in the funda-

mental Weyl chamber. Consequently, l(su(2), π) admits an inner product with
negative Ricci curvature for all non-trivial complex irreducible representation π of
uC. Indeed, this fact was proved in [11, §3].

We next classify, in the case when the rank of uC is two, the dominant integral
weights λ such that one of our approaches applies and therefore l(u, πλ) admits an
inner product with negative Ricci operator.

Proposition 4.1. Let u be a real Lie algebra such that uC is simple of rank two.
Then, l(u, πλ) admits an inner product with negative Ricci curvature for every
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λ ∈ P+(uC) except possibly {0, ω1, ω2} for types A2 and B2 = C2, and {0, ω1} for
type G2.

Proof. For short, we say that a complex representation π of uC has Ricci negative
curvature if l(u, πλ) admits an inner product with negative Ricci operator.

Every dominant integral weight is of the form aω1 + bω2 for some non-negative
integers a, b. From the above discussion, the cases ab ≥ 1 follow from the Weyl
chamber approach. Hence, it only remains to check the cases aω1 and aω2 for
a ∈ N.

We first assume that uC is of type G2. Let α1 and α2 denote the simple roots,
thus ∆+ = {α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2} and the fundamental
weights are ω1 = 2α1 + α2 and ω2 = 3α1 + 2α2.

From the Weyl chamber approach, πaω1
(resp. πaω2

) has negative Ricci operator
if a ≥ 3 (a ≥ 2) since λ − α1 ∈ Pλ(uC) ∩ C+ (λ − α1 − α2 ∈ Pλ(uC) ∩ C+). The
case λ = ω2 follows from the zero weight approach (Theorem 3.8) since Pλ(uC) =
∆ ∪ {0}. The case λ = 2ω1 follows from the Weyl orbit approach (Theorem 3.7)
since λ+ α /∈W · λ for all α ∈ ∆.

The rest of the cases follows from the more general result in Lemma 4.2 below.

Lemma 4.2. Let u be a compact real simple Lie algebra such that uC is of classical
type and rank n. Then l(u, πaωp) admits an inner product with negative Ricci
curvature for every a ≥ 2 and 1 ≤ p ≤ n.

Proof. Let uC be the simple complex Lie algebra of type Cn for some n ≥ 2. There
is a C-basis {ε1, . . . , εn} of h∗ such that ∆+ = {εi± εj : 1 ≤ i < j ≤ n} ∪ {εi : 1 ≤
i ≤ n}, ωp = ε1 + · · · + εp for any 1 ≤ p ≤ n, W ' Sn × {±1}n and the element
(σ, {ti}ni=1) acts by

∑n
i=1 aiεi 7→

∑n
i=1 tiaσ(i)εi. Thus W · aωp = {±aωi : 1 ≤ i ≤

n}. It follows immediately that aωp+α /∈W ·aωp for all α ∈ ∆. Thus, the Lemma
follows by Theorem 3.7.

The rest of the cases are very similar.

Remark 4.3. One can easily check that the non-trivial exceptions in Proposition 4.1
(i.e. πω1

, πω2
for types A2 and B2, and πω1

for type G2) do not follow from any of
the three approaches. In case it is possible, it would be interesting to find in any of
the corresponding Lie algebras an inner product with negative Ricci curvature. We
note that beyond the solvable case there is no necessary condition in the literature
for a Lie group to admit a metric with negative Ricci curvature. This makes the
problem to prove that a Lie algebra does not admit such a metric, a challenging
one.

5. General nilradical

Finally, we can use the same idea as in [12, Thm. 5.4] to get examples with a
non-abelian nilradical. Explicitly, we will consider the more general setting of a
Lie algebra g = (RZ⊕u)nn where u is a compact semisimple Lie algebra acting on
a nilpotent Lie algebra n by derivations and as always, Z commutes with u. Note
that in order to get a Lie algebra, adZ must be a derivation of n and therefore
could not act as a multiple of the identity unless n is abelian.

First we will prove a more general version of Theorem 3.1.
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Theorem 5.1. Let u be a compact semisimple Lie algebra, and let (π, V ) be
a finite dimensional real representation of u. We assume V decomposes in u-
submodules as V = W1 ⊕ · · · ⊕ Wk such that, for some index i, there exists a
decomposition Wi = V ′1 ⊕ V ′2 and a real inner product on Wi satisfying properties
(1)–(6) from Theorem 3.1. Then, for all positive real numbers c1, . . . , ck, the Lie
algebra (RZ ⊕ u) n V determined by adZ |u = 0 and adZ |Wi = ci IdWi

admits a
Ricci negative inner product.

Proof. Assume Wi = V ′1 ⊕ V ′2 , 〈·, ·〉i satisfies (1)–(6) from Theorem 3.1. It is not
hard to check that all these hypotheses remain valid for V = V1 ⊕ V2 and 〈·, ·〉
where V1 = V ′1 , V2 = V ′2 ⊕

∑
j 6=iWj and 〈·, ·〉 is obtained by extending 〈·, ·〉i to V

in such a way that V = W1 ⊕ · · · ⊕Wk is an orthogonal decomposition and such
that every element of u acts as a skew-symmetric operator of

∑
j 6=iWj (see (3.2)).

Then, Theorem 3.1 proves the theorem for the case c1 = · · · = ck = 1. Moreover,
the case c1 = · · · = ck also follows from Theorem 3.1 since positive rescaling at
the element Z in the definition (1.2) of l(u, π) returns isomorphic Lie algebras.

For the general case, we can follow the same proof as in [12, Thm. 3.3] with
minor changes coming from the fact that we have a different mean curvature vector
on l̃ even though it still is a multiple of Z. We next sketch this proof by following
the notation in [12].

Let l̃ denote the Lie algebra (RZ ⊕ u) n V determined by adZ |u = 0 and
adZ |Wi = ci IdWi

. We first note that the same degeneration given in [12, Lem. 3.1]

shows that l̃ degenerates into the solvable Lie algebra l̃∞ = (RZ ⊕ u⊕ V, µ) which

only differs from l∞ by the action of Z. The next step is to show that l̃∞ admits an
inner product with negative Ricci operator. Note that the mean curvature vector
of l̃∞ is

H = cZ, where c = tr(adµ Z) =

k∑
i=1

ci dimWi.

We proceed by noting that −c adZ is negative definite on V and diagonalizes in
any basis formed as a union of basis of Wj , so one can find an appropriated ρ.
Finally note that because of this diagonalization property, we can perturb the
inner product on V1 and still get a block diagonal Ricci operator as in [12].

Let g be a non-solvable real Lie algebra. From its Levi decomposition, we know
there is a semisimple Lie subalgebra u of g (called the Levi subalgebra of g) such
that g ' uns, where s is the radical of g. In the next theorem, we will assume that
u is compact and the nilradical n of s has codimension one. It is not hard to see
that one can always get a complement a of n in s such that [u, a] = 0 (see [12] after
Theorem 5.2). Thus, for a non-zero element Z ∈ a, we have that g ' (RZ⊕u)nn,
with [Z, u] = 0.

Theorem 5.2. Let g = (RZ ⊕ u) n n be a real Lie algebra where u is a compact
semisimple Lie algebra, n is a nilpotent Lie algebra and Z is a non-zero element
commuting with u. Let n = n1⊕· · ·⊕nk be the decomposition of n as an u-module in
irreducible components. If any of the nj admits a decomposition as in Theorem 3.1
and adZ|n acts as a positive multiple of the identity in every ni, then g admits an
inner product with negative Ricci curvature.
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Proof. We know that adZ|ni = ci Idni for some ci > 0. We set a = RZ.

It is shown in [12, Theorem 5.4 or (31)] that g = (RZ ⊕ u⊕ n, [, ]) degenerates
into a Lie algebra l = (RZ ⊕ u ⊕ n, [, ]0) where the action of RZ ⊕ u on n is the
same as in g but n is an abelian ideal of l. In fact, for each t > 0 let us consider
ψt ∈ gl(g) such that

ψt|a⊕u
= Id, ψt|n = t Id .

Using that n is an ideal of g, it is easy to check that [, ]t := ψt · [, ] is given by

(5.1)

[X1, X2]t = [X1, X2] for X1, X2 ∈ a⊕ u,

[X1, X2]t = 1
t [X1, X2] for X1, X2 ∈ n,

[X1, X2]t = [X1, X2] for X1 ∈ a⊕ u, X2 ∈ n.

Hence, lim
t→∞

[, ]t =: [, ]0 is well defined and is given by

(5.2)
[X1, X2]0 = [X1, X2] for X1 ∈ a⊕ u, X2 ∈ g,

[X1, X2]0 = 0 for Xi ∈ n.

Note that since [n, n]0 = 0, the Lie algebra (RZ ⊕ u ⊕ n, [, ]0) is an l(u, π) as
in (1.2). Now, by Theorem 5.1, it admits an inner product with negative Ricci
curvature and therefore so does g.

We note that when adZ|n is a positive definite operator with respect to some
inner product on n or equivalently it is diagonalizable with positive eigenvalues, if
it preserves an irreducible submodule, then it necessarily acts as a multiple of the
identity. In fact, in this case there always exist a decomposition of n in irreducible
submodules such that adZ acts as a positive multiple of the identity in every term.
Hence, with the same idea of the above proof we obtain the following theorem.

Theorem 5.3. Let g = (RZ ⊕ u) n n be a real Lie algebra where u is a compact
semisimple Lie algebra, n is a nilpotent Lie algebra and Z is a non-zero element
commuting with u. Assume that adZ|n is diagonalizable with positive eigenvalues

and n = n(1)⊕ · · · ⊕ n(k) is the corresponding decomposition in eigenspaces. If any
of the irreducible components of n(i) as an u-module admits a decomposition as in
Theorem 3.1, then g admits an inner product with negative Ricci curvature.

Proof. Since n = n(1)⊕· · ·⊕n(k) is the decomposition in eigenspaces of adZ|n and

[Z, u] = 0, u preserves each n(i) and one therefore gets

n = n
(1)
1 ⊕ . . . n

(1)
j1
⊕ · · · ⊕ n

(k)
1 ⊕ · · · ⊕ n

(k)
jk
,

a decomposition of n in irreducible submodules and adZ|n(i)
j

= ci Id
n
(i)
j

for some

ci > 0.

The rest of the proof follows as in Theorem 5.2.
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